JP2011195375A - Method and apparatus for growing single crystal - Google Patents

Method and apparatus for growing single crystal Download PDF

Info

Publication number
JP2011195375A
JP2011195375A JP2010063472A JP2010063472A JP2011195375A JP 2011195375 A JP2011195375 A JP 2011195375A JP 2010063472 A JP2010063472 A JP 2010063472A JP 2010063472 A JP2010063472 A JP 2010063472A JP 2011195375 A JP2011195375 A JP 2011195375A
Authority
JP
Japan
Prior art keywords
crucible
crystal
inclined member
temperature
crystal growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010063472A
Other languages
Japanese (ja)
Inventor
Nanae Matsuoka
七絵 松岡
Kimihisa Kaneko
公寿 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2010063472A priority Critical patent/JP2011195375A/en
Publication of JP2011195375A publication Critical patent/JP2011195375A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an apparatus for producing a crystal having a structure with which a high quality single crystal is stably obtained by a simple process, in a growth apparatus of a single crystal by a vertical Bridgman method.SOLUTION: The apparatus for producing a crystal is constituted of: a support member 10 for supporting the lower part of a crucible 1 for growing a single crystal 3 and pulling down the crucible 1; and an inclined member 20 which has an inclined part tapered downward, wherein a lower part of the inclined part is attached to the support member 10, and an upper part of the inclined part is attached to the bottom face of the crucible 1. The temperature distribution of the bottom face of the crucible 1 is optimized so that the central part of the crystal 3 is projected upward.

Description

本発明は、垂直ブリッジマン法による、単結晶の成長装置および製造方法に関する。   The present invention relates to a single crystal growth apparatus and manufacturing method by the vertical Bridgman method.

結晶を育成する製造法である垂直ブリッジマン法は、結晶形状がルツボの形状に依存するので、形状制御が容易であるが、ルツボに直に触れた状態で結晶が成長するために、ルツボの中心部と外周部との間では温度勾配が生じ、結晶成長に欠陥を生じさせることになる。   The vertical Bridgman method, which is a manufacturing method for growing crystals, is easy to control because the crystal shape depends on the shape of the crucible. However, since the crystal grows in direct contact with the crucible, A temperature gradient occurs between the central portion and the outer peripheral portion, which causes defects in crystal growth.

従来の垂直ブリッジマン法からなる結晶成長装置構造を図6に示す。図6の従来装置構造では、ルツボ1の底部に種結晶を位置させておき、その上に原料溶融液2を投入して、ルツボ1で結晶3を成長させ、結晶の成長では、結晶の固液界面4が存在する。   FIG. 6 shows a structure of a crystal growth apparatus formed by a conventional vertical Bridgman method. In the structure of the conventional apparatus shown in FIG. 6, a seed crystal is positioned at the bottom of the crucible 1, and the raw material melt 2 is put on the seed crystal to grow the crystal 3 with the crucible 1. There is a liquid interface 4.

そして、ルツボ1を支持する支持体5と、ルツボ1の周囲を覆うように炉心管6を設け、その周囲に上下方向の温度を任意に設定できる側面ヒーター7を配置し、これらは、筐体8内に配置されて、筐体8の内側は、断熱材9により熱が外部に逃げることを防いでいる。   And the support body 5 which supports the crucible 1, and the furnace core tube 6 are provided so that the circumference | surroundings of the crucible 1 may be covered, and the side surface heater 7 which can set the temperature of an up-down direction arbitrarily is arrange | positioned in the circumference | surroundings. 8, the inside of the housing 8 prevents heat from escaping to the outside by the heat insulating material 9.

また、図7に記載の従来の別の装置構成においては、ルツボ1の底面の中心部を、支持棒10により支持し、ルツボ1の底部中心部からの熱の逃げが大きくなることを防ぐために、支持棒10を優先的に加熱するヒーター11を有している。(特許文献1)   Further, in another conventional apparatus configuration shown in FIG. 7, the center portion of the bottom surface of the crucible 1 is supported by the support rod 10 so as to prevent the heat escape from the center portion of the bottom portion of the crucible 1 from increasing. The heater 11 for preferentially heating the support rod 10 is provided. (Patent Document 1)

特開平10‐101484号公報JP-A-10-101484

結晶の固液界面4の形状については、下に凸形状になると、ルツボ1の内壁で発生する欠陥が結晶中に取り込まれて単結晶化を困難にすることや、下に凸部中心の結晶中央部には異物が集まりやすくなり、結晶の中央部に欠陥が生じるという問題があった。   As for the shape of the solid-liquid interface 4 of the crystal, if it is convex downward, defects generated on the inner wall of the crucible 1 are taken into the crystal, making it difficult to make a single crystal, There is a problem that foreign matters are likely to collect in the central portion and defects are generated in the central portion of the crystal.

このため、結晶の固液界面4を上に凸形状にする必要がある。
結晶の固液界面4が上に凸になるか、下に凸になるかは、ルツボ1に接触している原料溶融液の周辺部分の温度が、原料溶融液中央の温度と比較して高くなるか、低くなるかである。
For this reason, it is necessary to make the solid-liquid interface 4 of the crystal convex upward.
Whether the solid-liquid interface 4 of the crystal is convex upward or downward is that the temperature of the peripheral portion of the raw material melt in contact with the crucible 1 is higher than the temperature at the center of the raw material melt. Is it going to be lower?

図6(a)に示す従来装置においては、結晶融液のルツボ1壁近傍と中心部とでは、ルツボ1壁近傍の温度が低く、中心部の温度が高くなるような温度差が生じ、ルツボの底面においては、図6(b)に示す温度特性となる。このような温度特性では、結晶の固液界面4では、図6(c)に示すように、下に凸形状の結晶となる。この原因として、ルツボを支える支持体からの熱の逃げも影響をしている。   In the conventional apparatus shown in FIG. 6 (a), the temperature difference between the vicinity of the crucible 1 wall and the center of the crystal melt is such that the temperature in the vicinity of the crucible 1 is low and the temperature in the center is high. The bottom surface of FIG. 6 has the temperature characteristics shown in FIG. With such temperature characteristics, the crystal solid-liquid interface 4 has a downwardly convex crystal as shown in FIG. As a cause of this, the escape of heat from the support that supports the crucible also has an effect.

また、図7のように、ルツボ1を支持棒10で支持する場合もあり、この従来例では、支持棒10をヒーター11で加熱し、原料溶融液の温度分布がほぼ均一になるように伝熱量の制御を行うという方法もある(例えば特許文献1)。   Further, as shown in FIG. 7, the crucible 1 may be supported by a support rod 10, and in this conventional example, the support rod 10 is heated by a heater 11 so that the temperature distribution of the raw material melt is substantially uniform. There is also a method of controlling the amount of heat (for example, Patent Document 1).

しかし、図7(a)のような構成では、ルツボの底部が側面よりもヒーター11による熱の影響を大きくうけることになるので、図7(b)に示す温度特性のように、中心の温度が高くなる。したがって、図7(c)のように、結晶の中心にくぼみができてしまう。   However, in the configuration as shown in FIG. 7 (a), the bottom of the crucible is more greatly affected by the heat from the heater 11 than the side surface, so that the temperature at the center as shown in the temperature characteristic shown in FIG. 7 (b). Becomes higher. Therefore, as shown in FIG. 7C, a depression is formed at the center of the crystal.

また、従来技術では、支持棒とルツボの間に熱伝導率異方性を有する円柱型の部材を用いることで界面の底上げを行っていることを特徴としている。しかしながら、円柱型の部材は側面からの熱の流入が少ないため、熱が全体に伝わりにくい。   In addition, the conventional technique is characterized in that the interface is raised by using a cylindrical member having thermal conductivity anisotropy between the support rod and the crucible. However, since the cylindrical member has little inflow of heat from the side surface, it is difficult for heat to be transmitted to the whole.

上述のように、側面部分と中央部分には温度差が生じやすく、その温度差や温度勾配により高品質な単結晶が得にくい。
そこで、本発明では、簡便な方法で、高品質な単結晶を安定して得ることができる構造の結晶製造装置を提供することを目的とする。
As described above, a temperature difference is likely to occur between the side surface portion and the center portion, and it is difficult to obtain a high-quality single crystal due to the temperature difference or temperature gradient.
Accordingly, an object of the present invention is to provide a crystal manufacturing apparatus having a structure capable of stably obtaining a high-quality single crystal by a simple method.

上記課題を解決するために、本発明では、結晶性物質の原料溶融液を保持するルツボと、前記ルツボの周囲に配置された側面ヒーターとを有し、断熱材で覆われた筐体に収納され、前記ルツボを引き下げて単結晶を成長させる結晶の成長装置で、前記ルツボの底面に取り付けられていて、引き下げ方向の軸に対して下方に向かって先細りする傾斜部材と、前記傾斜部材の下方部を支持して引き下げを行うための支持部材とを有するように構成する。   In order to solve the above-mentioned problems, the present invention has a crucible for holding a raw material melt of a crystalline substance, and a side heater disposed around the crucible, and is housed in a casing covered with a heat insulating material. An apparatus for growing a single crystal by pulling down the crucible, attached to the bottom surface of the crucible and tapered downward with respect to an axis in the pulling direction; And a support member for supporting and lowering the portion.

装置の仕様や、結晶成長装置の動作条件により、傾斜部材の最適な高さを決めることにより、周囲環境を含めた動作条件に変化が無ければ、特別な制御を必要とせずに、ルツボの底面での温度特性として、ルツボの中央部が、周囲に対して、緩やかな傾斜により低くなるようにすることができるので、固液界面が上に凸形状となる結晶が得られる。   By determining the optimum height of the inclined member according to the specifications of the equipment and the operating conditions of the crystal growth equipment, if there are no changes in the operating conditions including the surrounding environment, no special control is required and the bottom of the crucible As for the temperature characteristics, the central part of the crucible can be lowered with a gentle inclination with respect to the surroundings, so that a crystal in which the solid-liquid interface is convex upward is obtained.

また、前記傾斜部材は、全体が熱伝導の良い、例えば銅などの熱伝導性に優れた部材で形成するか、あるいは、前記傾斜部材を外周が熱伝導性に優れた部材からなる中空構造とし、内部に熱伝導性に優れた流体を充填する構成とすることができる。   In addition, the inclined member is formed of a member having a good thermal conductivity, for example, copper or the like, or having a hollow structure in which the outer periphery is made of a member having an excellent outer thermal conductivity. In addition, it is possible to have a configuration in which a fluid excellent in thermal conductivity is filled inside.

さらに、前記傾斜部材と前記支持部材とは、ネジ接続され、前記傾斜部材と前記ルツボの底面とは、伝熱性ペーストの塗布を介して接触することが、熱の伝わりを向上させることができるので、好ましい形態である。   Further, the inclined member and the support member are screw-connected, and contact between the inclined member and the bottom surface of the crucible through application of the heat conductive paste can improve heat transfer. Is a preferred form.

そして、結晶成長中に、室温などの周囲環境に変化が起こる可能性のある場合には、前記支持部材を加熱と冷却とができる手段を有することが良く、固液界面での結晶が上に凸形状となるように、前記支持部材と前記ルツボとの移動熱量の制御を行うことが良い。   When there is a possibility that the ambient environment such as room temperature may change during crystal growth, it is preferable to have a means for heating and cooling the support member, so that the crystal at the solid-liquid interface is on the top. It is preferable to control the amount of heat transferred between the support member and the crucible so as to have a convex shape.

本発明によれば、ルツボを支持する支持棒とルツボ底部との接触部に、ルツボの方向に広く、支持棒側に細くなるように、下方に向かって先細りする傾斜部を備えて、傾斜部の下方部が支持棒に取り付けられ、上方部がルツボの底面に取り付けられている傾斜部材を設けることで、ルツボの壁面から温度が逃げるのを軽減し、ルツボの底面での温度特性として、中央部が低くなるようにして、結晶の固液界面が上に凸形状になるようにできるので、高品質な単結晶を安定して得ることができる。   According to the present invention, the contact portion between the support rod that supports the crucible and the bottom portion of the crucible is provided with the inclined portion that tapers downward so as to be wide in the direction of the crucible and narrow toward the support rod. The lower part of the crucible is attached to the support rod and the upper part is attached to the bottom surface of the crucible to reduce the temperature escape from the wall of the crucible. Since the solid-liquid interface of the crystal can be convex upward so that the portion is lowered, a high-quality single crystal can be stably obtained.

( a ) は本発明の実施の形態における単結晶の成長装置断面図( b )は 本発明の実施の形態における結晶の固液界面での温度特性グラフ( c ) は本発明の実施の形態による成長結晶の断面図(a) is a cross-sectional view of a single crystal growth apparatus in an embodiment of the present invention (b) is a temperature characteristic graph (c) at a solid-liquid interface of a crystal in an embodiment of the present invention, according to the embodiment of the present invention Cross section of a grown crystal 本発明の実施の形態における要部の説明図Explanatory drawing of the principal part in embodiment of this invention 本発明の実施の形態を示す要部の断面図Sectional drawing of the principal part which shows embodiment of this invention 本発明の別の実施の形態を示す要部の断面図Sectional drawing of the principal part which shows another embodiment of this invention ルツボの中心軸から側面までの相対温度値分布シミュレーション結果を示す図The figure which shows the relative temperature value distribution simulation result from the central axis to the side of the crucible ( a ) 従来技術に用いられる単結晶の成長装置断面図 ( b ) 従来技術における結晶の固液界面での温度特性グラフ ( c ) 従来技術による成長結晶の断面図(a) Cross-sectional view of single crystal growth equipment used in the prior art (b) Temperature characteristic graph at the solid-liquid interface of the crystal in the prior art ( a ) 別の従来技術に用いられる単結晶の成長装置断面図 ( b ) 別の従来技術における結晶の固液界面での温度特性グラフ ( c ) 別の従来技術による成長結晶の断面図(a) Cross-sectional view of single crystal growth device used in another prior art (b) Temperature characteristic graph at the solid-liquid interface of crystal in another prior art (c) Cross-sectional view of crystal grown by another prior art

以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。
図1は、垂直ブリッジマン法による単結晶の成長装置で、本発明を適用した実施例である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In all the drawings, the same reference numerals are given to the same components, and the description will be omitted as appropriate.
FIG. 1 shows an apparatus to which the present invention is applied in a single crystal growth apparatus using the vertical Bridgman method.

従来の図7との相違点は、ルツボ1の下部の支持に、本発明の傾斜部材20を介して支持棒10を接続した点である。
この傾斜部材20は、ルツボ1と支持棒10の間に位置し、支持棒10の軸芯方向に傾斜する形状で、傾斜方向は、ルツボ1の方向に広くなり、逆に支持棒10の側に細くなっている。そして、傾斜部材20は、ルツボ1の底部との接触部は、ルツボ1と同じ径まで広がっていることが望ましいが、ルツボ1の径より小さくても良い。また、傾斜部材20は、図1に示すように、ルツボ1の底部の接触部まで傾斜させても良いし、ルツボ1の底部と接触させたい径まで傾斜されてから、支持棒10の軸芯方向に伸びる厚み部を設けるよう(円柱部材を重ねたような形状)にしても良い。傾斜部材20の支持棒10側は、支持棒10と同じ径まで細くなることが望ましいが、特にこの形状に限定はされない。
The difference from the conventional FIG. 7 is that the support bar 10 is connected to the lower support of the crucible 1 via the inclined member 20 of the present invention.
The inclined member 20 is positioned between the crucible 1 and the support rod 10 and is inclined in the axial direction of the support rod 10, and the inclination direction becomes wider in the direction of the crucible 1. It has become thinner. The inclined member 20 preferably has a contact portion with the bottom of the crucible 1 extending to the same diameter as the crucible 1, but may be smaller than the diameter of the crucible 1. Further, as shown in FIG. 1, the inclined member 20 may be inclined to the contact portion of the bottom portion of the crucible 1, or after being inclined to a diameter to be brought into contact with the bottom portion of the crucible 1, You may make it provide the thickness part extended in a direction (shape which piled up the column member). The support member 10 side of the inclined member 20 is desirably thinned to the same diameter as the support rod 10, but is not particularly limited to this shape.

この傾斜部材20は、ルツボ1の底部に一体形成しても良いし、支持棒10に一体形成しても良いが、形状の異なる傾斜部材20を容易に交換可能として用いるためには、傾斜部材20が、ルツボ1と支持棒10とは別の部品とすることが良い。   The inclined member 20 may be formed integrally with the bottom of the crucible 1 or may be formed integrally with the support rod 10. However, in order to use the inclined member 20 having a different shape as being easily replaceable, the inclined member 20 is used. 20 may be a separate component from the crucible 1 and the support rod 10.

傾斜部材20の最適形状は、結晶成長装置の仕様や実際の結晶成長のための装置動作条件により、ルツボ1の底面における温度特性として、ルツボの周囲から緩やかな傾斜で中央部が低くなるように、シミュレーションなどを用いて、傾斜部材20の最適な形状(高さ)を決める。   The optimum shape of the inclined member 20 is such that the central portion is lowered with a gentle inclination from the periphery of the crucible as the temperature characteristics at the bottom of the crucible 1 depending on the specifications of the crystal growth apparatus and the apparatus operating conditions for actual crystal growth. Then, the optimum shape (height) of the inclined member 20 is determined using simulation or the like.

結晶成長中での、周囲環境(周囲の雰囲気温度)を含めた動作条件に変化が無ければ、この発明による傾斜部材20を用いることにより、ルツボ1の底面の温度制御を必要とせずに、成長する結晶の固液界面が上に凸形状とすることができ、品質の良い単結晶を得ることができる。   If there is no change in the operating conditions including the surrounding environment (ambient ambient temperature) during crystal growth, the inclined member 20 according to the present invention is used to grow without requiring temperature control of the bottom surface of the crucible 1. The solid-liquid interface of the crystal to be formed can be convex upward, and a high quality single crystal can be obtained.

結晶成長装置の設置場所や環境などにより、結晶成長中に室温などの周囲環境に変化が起こる可能性のある場合には、前記支持部材20を加熱と冷却とができる手段を有することで、固液界面での結晶が上に凸形状となるように、前記支持部材と前記ルツボとの移動熱量の制御を行うことが良い。図1においては、支持棒10にヒーター11と冷却部23を設け、ヒーター電源や冷却機能装置を兼ね備えた温度制御部24により、ルツボ1の底面の温度をモニターしながら、適切な温度分布となるような制御が行われる。   When there is a possibility that the ambient environment such as room temperature may change during crystal growth depending on the installation location or environment of the crystal growth apparatus, the supporting member 20 can be heated and cooled to have a means for fixing. It is preferable to control the amount of heat transferred between the support member and the crucible so that the crystal at the liquid interface has a convex shape upward. In FIG. 1, a heater 11 and a cooling unit 23 are provided on the support rod 10, and an appropriate temperature distribution is obtained while monitoring the temperature of the bottom surface of the crucible 1 by a temperature control unit 24 having both a heater power source and a cooling function device. Such control is performed.

支持棒10に移動する熱量は、例えば、温度差が時間に依存せず、ほぼ定常状態とみなせる場合、式(1)と式(2)より、支持棒10内の特定区間の温度差から求めることができる。   For example, when the temperature difference does not depend on time and can be regarded as a substantially steady state, the amount of heat transferred to the support rod 10 is obtained from the temperature difference of a specific section in the support rod 10 from Equation (1) and Equation (2). be able to.

そして、ルツボの底面での温度特性として、中央部が周囲に対して、緩やかな傾斜により低い最適な状態となるように、加熱冷却装置を用いて、支持棒10を移動する熱量をコントロールすることで、中心部と周囲(側面)の温度差をより細かに温度制御することも可能である。   Then, as a temperature characteristic at the bottom surface of the crucible, the amount of heat that moves the support rod 10 is controlled using a heating / cooling device so that the center portion is in a low optimum state with a gentle inclination with respect to the surroundings. Thus, it is possible to finely control the temperature difference between the central portion and the surrounding (side surface).

傾斜部材20の形状については、図2に示すように、傾斜角度θを変えて傾斜部材20に高さを変化させるようにする。図2( a )の傾斜部材20aのように、高さであるh1を広くしたり、図2( b )の傾斜部材20bのように、高さh2を狭くしたりすれば、ルツボ1内の原料溶融液2側から結晶3を通してルツボ1の下部に抜ける熱量が変わり、周囲と中央の温度差を調節することで、結晶の形状をコントロールすることができる。   As for the shape of the inclined member 20, as shown in FIG. 2, the inclined member 20 is changed in height by changing the inclination angle θ. If the height h1 is increased as in the inclined member 20a in FIG. 2 (a), or the height h2 is decreased in the inclined member 20b in FIG. 2 (b), the inside of the crucible 1 The amount of heat passing from the raw material melt 2 side through the crystal 3 to the lower part of the crucible 1 changes, and the shape of the crystal can be controlled by adjusting the temperature difference between the periphery and the center.

傾斜部材20の形態については、図3に示すように、全体が熱伝導の良い、例えば銅などの熱伝導性に優れた部材で形成することができる。
そして、傾斜部材20cと支持部材10aとはネジ接続をする構造とし、傾斜部材20cとルツボ1の底面とは、伝熱性ペーストを塗布してから接触させると、熱の伝わりを向上させることができる。
About the form of the inclination member 20, as shown in FIG. 3, the whole can be formed with the member excellent in thermal conductivity, such as copper, for example with favorable thermal conductivity.
The inclined member 20c and the support member 10a are connected to each other with a screw connection. When the inclined member 20c and the bottom surface of the crucible 1 are brought into contact with each other after the heat conductive paste is applied, heat transfer can be improved. .

接合部としてネジを使用すると、接触面積が増えるので、傾斜部材20cと支持部材10aをネジ接続とすることは、熱伝導の効果を高めることになる。
傾斜部材20の別の形態としては、図4に示すように、傾斜部材20dを外周が熱伝導性に優れた部材からなる中空構造として、その内部に熱伝導性に優れた流体21を充填する構成とすることもできる。
When a screw is used as the joint portion, the contact area increases. Therefore, the screw connection between the inclined member 20c and the support member 10a enhances the effect of heat conduction.
As another form of the inclined member 20, as shown in FIG. 4, the inclined member 20 d has a hollow structure made of a member whose outer periphery is excellent in thermal conductivity, and the fluid 21 excellent in thermal conductivity is filled therein. It can also be configured.

本発明による効果として、本発明の傾斜部材20を用いた結晶成長装置と、図7に記載の従来装置との比較を、ルツボ1の底部の温度分布をシミュレーションによって行った。その結果を図5に示す。図5は、ルツボの半径と、任意の高さにおける固液界面温度の相対温度の関係を示した。   As an effect of the present invention, the crystal growth apparatus using the inclined member 20 of the present invention was compared with the conventional apparatus shown in FIG. 7, and the temperature distribution at the bottom of the crucible 1 was simulated. The result is shown in FIG. FIG. 5 shows the relationship between the radius of the crucible and the relative temperature of the solid-liquid interface temperature at an arbitrary height.

また、図5において、本発明については、傾斜部材20の傾斜角度θ(図2参照)が45°以下の場合の結果であり、従来技術については、図7に示す支持棒のヒータを使った場合の結果である。   Further, in FIG. 5, the present invention is a result when the inclination angle θ (see FIG. 2) of the inclined member 20 is 45 ° or less, and the conventional technique uses the heater of the support rod shown in FIG. Is the result of the case.

図7の従来構成の場合、図5の結果では、中央の温度が高く、ルツボの周囲(側面)に向けて、急激に温度が低下し、その後も緩やかに温度が低下していることが分かる。このような温度分布においては、結晶の固液界面の形状が、下に凸形状になり、結晶の質が低下してしまう。   In the case of the conventional configuration of FIG. 7, the result of FIG. 5 shows that the temperature at the center is high, the temperature rapidly decreases toward the periphery (side surface) of the crucible, and then gradually decreases. . In such a temperature distribution, the shape of the solid-liquid interface of the crystal becomes a downward convex shape, and the quality of the crystal is lowered.

そこで、本発明のように、傾斜部材20を用いた場合には、ルツボの周囲(側面)から中心部に向けて、温度が緩やかに低下をしており、上に凸形状の良好な結晶が得られる温度分布となることが分かる。   Therefore, when the inclined member 20 is used as in the present invention, the temperature gradually decreases from the periphery (side surface) of the crucible toward the center, and a good crystal with a convex shape is formed on the top. It can be seen that the resulting temperature distribution is obtained.

本発明においては、結晶成長装置の仕様や運転条件から、図2に記載のような傾斜部材20の高さhを変えて、最適化するために、支持棒と結晶のモデルを作成し、熱伝導率等の物性値を設定して、結晶と原料溶融液との固液界面4での温度分布をシミュレーションで求めることで、温度分布が、ルツボ1の中心部が周囲(側面)よりも低くなるような、傾斜部材20の高さhの最適形状を決定することができる。   In the present invention, in order to change and optimize the height h of the inclined member 20 as shown in FIG. 2 from the specifications and operating conditions of the crystal growth apparatus, a support rod and a crystal model are created, By setting the physical properties such as conductivity and determining the temperature distribution at the solid-liquid interface 4 between the crystal and the raw material melt by simulation, the temperature distribution is lower at the center of the crucible 1 than the surrounding (side surface). The optimum shape of the inclined member 20 with the height h can be determined.

1 ルツボ
2 原料溶融液
3 結晶
4 固液界面
5 支持体
6 炉心管
7 側面ヒーター
8 筐体
9 断熱材
10 支持棒
11 ヒーター
12 ヒーター制御装置
20 傾斜部材
21 伝熱性流体
22 伝熱性ペースト材
23 冷却部
24 温度制御装置
1 crucible
2 Raw material melt
3 Crystal
4 Solid-liquid interface
5 Support
6 Core tube
7 Side heater 8 Housing 9 Heat insulating material 10 Support rod 11 Heater 12 Heater control device 20 Inclined member 21 Heat transfer fluid 22 Heat transfer paste material
23 Cooling unit 24 Temperature control device

Claims (5)

結晶性物質の原料溶融液を保持するルツボと、前記ルツボの周囲に配置された側面ヒーターとを有し、前記ルツボを引き下げて単結晶を成長させる結晶の成長装置において、
前記ルツボの底面に取り付けられていて下方に向かって先細りする傾斜部材と、
前記傾斜部材の下方部を支持して引き下げを行うための支持部材とを有することを特徴とする結晶の成長装置。
In a crystal growth apparatus that has a crucible for holding a raw material melt of a crystalline substance, and a side heater disposed around the crucible, and pulls down the crucible to grow a single crystal.
An inclined member attached to the bottom surface of the crucible and tapering downward;
A crystal growth apparatus comprising: a support member for supporting and lowering the lower portion of the inclined member.
前記傾斜部材は、前記ルツボの底面よりも全体が熱伝導性に優れた部材からなることを特徴とする請求項1に記載の結晶の成長装置。 2. The crystal growth apparatus according to claim 1, wherein the inclined member is made of a member that is more excellent in thermal conductivity than the bottom surface of the crucible. 前記傾斜部材は、中空構造であり外周が熱伝導性に優れた部材からなり、前記中空構造の内部に熱伝導性に優れた流体を充填してなることを特徴とする請求項1に記載の結晶の成長装置。 2. The inclined member according to claim 1, wherein the inclined member is formed of a member having a hollow structure and an outer periphery having excellent heat conductivity, and the inside of the hollow structure is filled with a fluid having excellent heat conductivity. Crystal growth equipment. 前記傾斜部材は、前記支持部材とネジ接続され、前記ルツボの底面とは、導電性ペーストの塗布を介して接触していることを特徴とする請求項1ないし3のいずれかに記載の結晶の成長装置。 4. The crystal according to claim 1, wherein the inclined member is screw-connected to the support member, and is in contact with a bottom surface of the crucible through application of a conductive paste. Growth equipment. 前記支持部材は加熱冷却手段を有し、前記支持部材と前記ルツボとの移動熱量を制御することを特徴とする請求項1ないし4のいずれかに記載の結晶の成長装置。




5. The crystal growth apparatus according to claim 1, wherein the support member has heating and cooling means, and controls the amount of heat transferred between the support member and the crucible.




JP2010063472A 2010-03-19 2010-03-19 Method and apparatus for growing single crystal Withdrawn JP2011195375A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010063472A JP2011195375A (en) 2010-03-19 2010-03-19 Method and apparatus for growing single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010063472A JP2011195375A (en) 2010-03-19 2010-03-19 Method and apparatus for growing single crystal

Publications (1)

Publication Number Publication Date
JP2011195375A true JP2011195375A (en) 2011-10-06

Family

ID=44874049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010063472A Withdrawn JP2011195375A (en) 2010-03-19 2010-03-19 Method and apparatus for growing single crystal

Country Status (1)

Country Link
JP (1) JP2011195375A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115216831A (en) * 2022-07-15 2022-10-21 中国电子科技集团公司第十三研究所 Crystal growth device and method capable of controlling temperature gradient

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6414189A (en) * 1987-07-09 1989-01-18 Mitsubishi Monsanto Chem Growing device for crystal of semiconductor
JPH0597566A (en) * 1991-10-07 1993-04-20 Sumitomo Electric Ind Ltd Method for growing single crystal and device therefor
JPH09263480A (en) * 1996-03-29 1997-10-07 Sumitomo Sitix Corp Graphite crucible and apparatus for pulling single crystal
JPH10167878A (en) * 1996-12-05 1998-06-23 Toyo Tanso Kk Crucible for single crystal pulling
JPH10273375A (en) * 1997-03-27 1998-10-13 Super Silicon Kenkyusho:Kk Pedestal device for crystal growth furnace

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6414189A (en) * 1987-07-09 1989-01-18 Mitsubishi Monsanto Chem Growing device for crystal of semiconductor
JPH0597566A (en) * 1991-10-07 1993-04-20 Sumitomo Electric Ind Ltd Method for growing single crystal and device therefor
JPH09263480A (en) * 1996-03-29 1997-10-07 Sumitomo Sitix Corp Graphite crucible and apparatus for pulling single crystal
JPH10167878A (en) * 1996-12-05 1998-06-23 Toyo Tanso Kk Crucible for single crystal pulling
JPH10273375A (en) * 1997-03-27 1998-10-13 Super Silicon Kenkyusho:Kk Pedestal device for crystal growth furnace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115216831A (en) * 2022-07-15 2022-10-21 中国电子科技集团公司第十三研究所 Crystal growth device and method capable of controlling temperature gradient

Similar Documents

Publication Publication Date Title
CN110983429A (en) Single crystal furnace and monocrystalline silicon preparation method
KR101467103B1 (en) Apparatus for Growing Silicon Single Crystal And Method For Growing the Same
JP2007230846A (en) Crucible for single crystal producing apparatus
KR101105950B1 (en) Manufacturing device for crystal ingot
WO2014013698A1 (en) APPARATUS FOR PRODUCING SiC SINGLE CRYSTAL AND METHOD FOR PRODUCING SiC SINGLE CRYSTAL
CN105531406A (en) Silicon single crystal puller
CN101445954A (en) Method for controlling temperature gradient and thermal history of a crystal-melt interface in growth process of czochralski silicon monocrystal
KR20110094025A (en) Upper heater for manufacturing single crystal, single crystal manufacturing apparatus and single crystal manufacturing method
CN208701250U (en) A kind of water-cooled seed rod for crystal growing furnace
JP6853445B2 (en) Heater insulation structure and single crystal manufacturing equipment
JP6033650B2 (en) Single crystal manufacturing apparatus and single crystal manufacturing method
JP6367469B2 (en) Seed chuck and ingot growth apparatus including the same
JPH11255588A (en) Apparatus for feeding single crystal raw material and feeding of single crystal raw material
US4390505A (en) Crystal growth apparatus
KR20100085470A (en) Method for growing single crystal improved in tail-process and grower for the same
JP2011195375A (en) Method and apparatus for growing single crystal
CN105112993B (en) A kind of device and method for adjusting micro- drop-down crystal growth thermal gradient
JP2005231958A (en) Apparatus for growing sapphire single crystal
JP5167960B2 (en) Silicon single crystal growth equipment
JP2006151745A (en) Method for producing single crystal and oxide single crystal obtained by using the same
JP2010132498A (en) Method and apparatus for manufacturing single crystal
JP2019043788A (en) Method and apparatus for growing single crystal
JPH11189487A (en) Production apparatus for oxide single crystal
KR20150017502A (en) Apparatus and method for growing ingot
JP2021508665A (en) Silicon single crystal growth method and equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131001

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20131030