JP2006151745A - Method for producing single crystal and oxide single crystal obtained by using the same - Google Patents

Method for producing single crystal and oxide single crystal obtained by using the same Download PDF

Info

Publication number
JP2006151745A
JP2006151745A JP2004344207A JP2004344207A JP2006151745A JP 2006151745 A JP2006151745 A JP 2006151745A JP 2004344207 A JP2004344207 A JP 2004344207A JP 2004344207 A JP2004344207 A JP 2004344207A JP 2006151745 A JP2006151745 A JP 2006151745A
Authority
JP
Japan
Prior art keywords
crystal
crucible
diameter
inner diameter
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004344207A
Other languages
Japanese (ja)
Inventor
Ichiji Kamiyama
一司 神山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2004344207A priority Critical patent/JP2006151745A/en
Publication of JP2006151745A publication Critical patent/JP2006151745A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a single crystal, which is based on a Czochralski method and by which an oxide single crystal having uniform characteristics and an arbitrary length can be grown in high reproductibility. <P>SOLUTION: In the method for producing the single crystal, comprising immersing a seed crystal 13 attached to a pulling shaft into a raw material melt 14 heated and melted in a crucible 11, and growing the oxide single crystal by pulling the seed crystal 13, the ratio (d/D) of the diameter of a grown crystal 15 to the inner diameter of the crucible 11 is set to be within a range of 0.45-0.65, and the ratio (H/D) of the height at the inner diameter side of the crucible 11 to the inner diameter of the crucible 11 is set to be within a range of 0.4-1.5. Further, as the material of the crucible 11, a material containing at least one kind of iridium, molybdenum, tungsten and rhenium is used. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、チョクラルスキー法によって単結晶を製造する方法およびサファイアに関するものである。   The present invention relates to a method for producing a single crystal by the Czochralski method and sapphire.

チョクラルスキー法による従来の単結晶製造装置の断面図を図2に示す。   FIG. 2 shows a cross-sectional view of a conventional single crystal manufacturing apparatus using the Czochralski method.

単結晶製造用ルツボ11は高周波加熱コイル15により誘導加熱され、ルツボ11内の原料が融点以上に加熱されることで融液14を形成する。ルツボ11および原料融液14上には種結晶13が取り付けられた回転引き上げ軸12が設けられている。単結晶15は種結晶13を融液14の表面に接した後に引き上げられて育成される。一定寸法の直径を有する単結晶15を育成するには、一般に、目的とする直径を有すると仮定した場合の結晶重量や重量変化に対し、実際の育成結晶の重量や重量変化を検出し、この検出された重量や重量変化を計算上の重量や重量変化と比較することにより、融液の温度を高周波や抵抗加熱の手段により変化させ、育成される結晶の重量や重量変化を増減させることで直径を制御する手法が用いられる。   The crucible 11 for producing a single crystal is induction-heated by the high-frequency heating coil 15, and the raw material in the crucible 11 is heated to the melting point or higher to form the melt 14. On the crucible 11 and the raw material melt 14, a rotary pulling shaft 12 to which a seed crystal 13 is attached is provided. The single crystal 15 is pulled up and grown after contacting the seed crystal 13 with the surface of the melt 14. In order to grow the single crystal 15 having a diameter of a certain size, in general, the weight or weight change of the actual grown crystal is detected with respect to the crystal weight or weight change when it is assumed to have the target diameter. By comparing the detected weight and weight change with the calculated weight and weight change, the temperature of the melt can be changed by means of high frequency and resistance heating, and the weight and weight change of the crystal to be grown can be increased or decreased. A technique for controlling the diameter is used.

このとき、ルツボ内部の融液は半径方向、引き上げ方向に温度分布を有している必要があり、ルツボ壁方向に温度勾配がなければ、直径を制御するために融液の温度を変化させると、結晶が融液から分離したり、融液表面やルツボ壁からも結晶が成長したりしてしまい、直径を制御することが困難になるばかりか、結晶の育成そのものが困難になる。そのため、ルツボ内部の融液の半径方向、引上げ方向に温度分布に影響を及ぼす要因となる、加熱されるルツボの径と育成する結晶径の関係について適切にする必要がある。   At this time, the melt inside the crucible needs to have a temperature distribution in the radial direction and the pulling direction. If there is no temperature gradient in the crucible wall direction, the temperature of the melt is changed to control the diameter. Further, the crystal is separated from the melt, or the crystal grows from the melt surface or the crucible wall, which makes it difficult to control the diameter and makes the crystal growth itself difficult. Therefore, it is necessary to make appropriate the relationship between the diameter of the crucible to be heated and the crystal diameter to be grown, which is a factor affecting the temperature distribution in the radial direction and the pulling direction of the melt inside the crucible.

特許文献1では、再現性よく且つ高収率で化合物半導体単結晶をLEC法で製造する方法として、成長させる結晶とルツボの直径の比{(ルツボ直径)/(結晶直径)}を2.2〜3.2の範囲にする単結晶製造方法が報告されている。   In Patent Document 1, as a method for producing a compound semiconductor single crystal with high reproducibility and high yield by the LEC method, the ratio of the crystal to be grown and the diameter of the crucible {(crucible diameter) / (crystal diameter)} is 2.2. A method for producing a single crystal in the range of ~ 3.2 has been reported.

これは、成長させる結晶とルツボの直径の比が2.2未満の場合には、固液界面が安定せず融液側に凹となる部分が発生し易く、転位が集中してリネージや亜粒界の形成に繋がるものとされている。また、成長させる結晶とルツボの直径の比が3.2以上の場合には、単位時間当たりに成長した結晶の重量を測定し、これを算術的に処理して結晶径を算出し、加熱手段であるヒータの出力を制御するのが一般的であり、成長させる結晶の径とルツボの直径の比が大きくなりすぎた場合には、ヒータの出力の制御に対する径への応答性が遅くなるために、成長させる結晶の径の変動が大きくなるものとされている。また、結晶径の変動が激しいと、固液界面も安定せず、融液側に凹となる部分が発生し易く、転位が集中してリネージ、亜粒界の形成に繋がるとされている。   This is because, when the ratio of the diameter of the crystal to be grown and the crucible is less than 2.2, the solid-liquid interface is not stable, and a concave portion is likely to be formed on the melt side. It is supposed to lead to the formation of grain boundaries. If the ratio of the diameter of the crystal to be grown and the crucible is 3.2 or more, the weight of the crystal grown per unit time is measured, this is arithmetically processed to calculate the crystal diameter, and the heating means In general, the output of the heater is controlled, and if the ratio of the diameter of the crystal to be grown and the diameter of the crucible becomes too large, the response to the diameter with respect to the control of the output of the heater becomes slow. Furthermore, it is supposed that the fluctuation of the diameter of the crystal to be grown becomes large. If the crystal diameter fluctuates drastically, the solid-liquid interface is not stabilized, and a concave portion is likely to be formed on the melt side. Dislocations are concentrated and lead to the formation of lineage and subgrain boundaries.

さらに、特許文献2では、酸化ホウ素(B2O3)を用いた液体封止引き上げ法(LEC法)として、直径が63.5mm以上のリン化ガリウム単結晶を成長させる場合、結晶直径/ルツボ内径を0.7以下とするリン化ガリウム単結晶製造方法が報告されている。   Furthermore, in Patent Document 2, when a gallium phosphide single crystal having a diameter of 63.5 mm or more is grown as a liquid sealing pull-up method (LEC method) using boron oxide (B 2 O 3), the crystal diameter / crucible inner diameter is 0. A method for producing a gallium phosphide single crystal that is .7 or less has been reported.

上記手法を用いることにより、融液表面と液体封止剤表面の温度差を小さくすることができ、固液界面近傍の気泡が結晶に取り込まれることが防止され、結晶トップ側でボイドが発生することを抑制でき、ウェーハのボイドの発生を抑制することができるとされている。   By using the above method, the temperature difference between the melt surface and the liquid sealant surface can be reduced, and bubbles near the solid-liquid interface are prevented from being taken into the crystal, and voids are generated on the crystal top side. This can be suppressed and generation of voids in the wafer can be suppressed.

つまり、ボイドの発生は、結晶頭部が液体封止剤から出たときに急激に冷却されることによって、固液界面で結晶が急成長するか、あるいは、融液の温度低下を補うために急加熱されて、融液が過飽和となって、気泡が発生するなどして、固液界面近傍の気泡が結晶に取り込まれるためとされている。そこで、融液表面と液体封止剤表面の温度差を小さくすることを目的として結晶直径/ルツボ内径を0.7以下とするとされている。
特開2001−80989号公報 特開2003−192498号公報
In other words, the generation of voids takes place in order to compensate for the rapid growth of the crystal at the solid-liquid interface or the decrease in the temperature of the melt by being rapidly cooled when the crystal head comes out of the liquid sealant. It is said that bubbles near the solid-liquid interface are taken into the crystal because the melt is supersaturated due to rapid heating and bubbles are generated. Therefore, the crystal diameter / crucible inner diameter is set to 0.7 or less for the purpose of reducing the temperature difference between the melt surface and the liquid sealant surface.
JP 2001-80989 A JP 2003-192498 A

しかしながらサファイア結晶育成においては、融液や結晶の熱伝導率が高く、かつ結晶が赤外線に対して透明なため、結晶や融液がルツボ内壁からの輻射熱を吸収しにくく、ルツボの内径に対して育成する結晶の直径が小さい場合、ルツボ壁近傍の温度勾配に対し、ルツボ中心部付近の融液表面の温度勾配が十分に得られないため、結晶の直径を制御することが困難になる。   However, in sapphire crystal growth, the thermal conductivity of the melt or crystal is high and the crystal is transparent to infrared rays, so the crystal or melt is difficult to absorb the radiant heat from the inner wall of the crucible and the inner diameter of the crucible. When the diameter of the crystal to be grown is small, it is difficult to control the diameter of the crystal because the temperature gradient on the surface of the melt near the crucible center cannot be sufficiently obtained with respect to the temperature gradient near the crucible wall.

また結晶の直径が大きい場合、育成結晶が融液と接する面積が大きくなり、結晶を通じて結晶下部の融液からの輻射熱による放熱が大きくなるため融液の温度が低下し、融液方向への結晶成長が起こりやすく、結晶底部が過剰に下凸になって結晶の品質を低下させ、またルツボ底部に接触して結晶育成を困難にすることがあった。   In addition, when the crystal diameter is large, the area where the grown crystal comes into contact with the melt increases, and heat radiation due to the radiant heat from the melt below the crystal increases through the crystal, so the temperature of the melt decreases and the crystal in the melt direction decreases. Growth is likely to occur, and the bottom of the crystal becomes excessively convex to lower the quality of the crystal, and it may be difficult to grow the crystal by contacting the bottom of the crucible.

そこで、本発明は、チョクラルスキー法での単結晶の製造方法において、育成結晶の直径と前記ルツボの内径の比(結晶直径d/ルツボ内径D)を、0.45〜0.65の範囲に設定したことを特徴とする。   Accordingly, the present invention provides a method for producing a single crystal by the Czochralski method, wherein the ratio of the diameter of the grown crystal to the inner diameter of the crucible (crystal diameter d / crucible inner diameter D) is in the range of 0.45 to 0.65. It is characterized by being set to.

また、チョクラルスキー法での単結晶の製造方法において、前記ルツボの内径側高さと前記ルツボの内径の比(ルツボ内径側高さH/ルツボ内径D)を0.5〜1.5の範囲に設定したことを特徴とする。   Moreover, in the manufacturing method of the single crystal by the Czochralski method, the ratio of the inner diameter side height of the crucible to the inner diameter of the crucible (crucible inner diameter side height H / crucible inner diameter D) is in the range of 0.5 to 1.5. It is characterized by being set to.

さらに、チョクラルスキー法での単結晶の製造方法において、前記ルツボはイリジウム、モリブデン、タングステン、レニウムのうち少なくとも一種類を含有することを特徴とする。   Furthermore, in the method for producing a single crystal by the Czochralski method, the crucible contains at least one of iridium, molybdenum, tungsten, and rhenium.

また、本発明の単結晶の製造方法を用いて酸化物単結晶を製造したことを特徴とし、酸化物単結晶の不純物含有量が1%以下であることを特徴とする。   In addition, an oxide single crystal is manufactured using the method for manufacturing a single crystal of the present invention, and the impurity content of the oxide single crystal is 1% or less.

本発明による単結晶の製造方法によれば、育成結晶の直径と前記ルツボの内径の比(結晶直径d/ルツボ内径D)を、0.45〜0.65の範囲に設定したことにより、結晶の直径変動が小さくなるため、結晶の直径を制御することが容易になり、また結晶底部が大きく下凸になることが無くなる。これにより、本発明の単結晶製造方法により得られる結晶は、粒界やリネージなどの結晶欠陥は入らない高品質なものとなる。さらに、前記ルツボの内径側高さと前記ルツボの内径の比(ルツボ内径側高さH/ルツボ内径D)を0.5〜1.5の範囲に設定することにより、融液の対流により固液界面に蓄積する気泡や不純物を拡散させて、結晶欠陥の少ない高品質な結晶を育成できる。   According to the method for producing a single crystal according to the present invention, the ratio of the diameter of the grown crystal to the inner diameter of the crucible (crystal diameter d / crucible inner diameter D) is set in the range of 0.45 to 0.65, Therefore, it becomes easy to control the diameter of the crystal, and the bottom of the crystal is not greatly lowered. Thereby, the crystal obtained by the method for producing a single crystal of the present invention has a high quality without crystal defects such as grain boundaries and lineage. Furthermore, by setting the ratio of the inner diameter side height of the crucible to the inner diameter of the crucible (crucible inner diameter side height H / crucible inner diameter D) in the range of 0.5 to 1.5, solid liquefaction can be achieved by convection of the melt. High quality crystals with few crystal defects can be grown by diffusing bubbles and impurities accumulated at the interface.

さらに、本発明によれば、前記ルツボはイリジウム、モリブデン、タングステン、もしくはレニウムのうち少なくとも一種類を含有することから、融液との反応がなく酸素を含む雰囲気や不活性雰囲気において結晶の育成が可能となる。   Furthermore, according to the present invention, since the crucible contains at least one of iridium, molybdenum, tungsten, or rhenium, there is no reaction with the melt, and the crystal can be grown in an atmosphere containing oxygen or an inert atmosphere. It becomes possible.

また、酸化物単結晶を製造する方法において、本発明の単結晶製造方法を用いることにより、安定して生産性の高い結晶育成が可能となり、また結晶欠陥の少ない高品質な結晶を育成することができる。さらに、酸素および不活性雰囲気下での結晶育成が可能となる。 In addition, in the method for producing an oxide single crystal, by using the method for producing a single crystal of the present invention, it is possible to stably grow a crystal with high productivity, and to grow a high-quality crystal with few crystal defects. Can do. Furthermore, crystal growth under oxygen and inert atmosphere becomes possible.

また、本発明の単結晶製造方法により、結晶欠陥の少ない結晶を育成でき、上記結晶から作成されるサファイア基板にも欠陥が少なく、上記基板上にエピタキシャル成長する場合には好適である。従ってサファイア基板を製造するための結晶育成に特に好適であることが保証される。   Further, the single crystal manufacturing method of the present invention can grow a crystal with few crystal defects, and the sapphire substrate formed from the crystal has few defects and is suitable for epitaxial growth on the substrate. Therefore, it is guaranteed to be particularly suitable for crystal growth for manufacturing a sapphire substrate.

本発明の実施形態について図1を用いて説明する。図1は、本発明の方法による単結晶製造装置の一実施例を示す断面図である。   An embodiment of the present invention will be described with reference to FIG. FIG. 1 is a cross-sectional view showing an embodiment of a single crystal manufacturing apparatus according to the method of the present invention.

単結晶製造用ルツボ11は、有底筒状のルツボ保持容器16の内部に配設された保温材17の凹部に配設されており、前記ルツボ11の内部には原料融液14が配設されている。   The crucible 11 for producing a single crystal is disposed in a concave portion of a heat insulating material 17 disposed in a bottomed cylindrical crucible holding container 16, and a raw material melt 14 is disposed in the crucible 11. Has been.

さらに、ルツボ保持容器16の回りに同軸状にワークコイル20が配設されており、ルツボ保持容器16の内径側中央部付近には、断熱保温円板18が配設されている。また、ルツボ保持容器16の上部には、外側断熱材19が配設されており、前記外側断熱材19の中央部には、単結晶15を種結晶13とともに引き上げるための引き上げ軸12を通すための貫通孔が形成されている。   Further, a work coil 20 is coaxially disposed around the crucible holding container 16, and a heat insulating heat retaining disc 18 is disposed in the vicinity of the central portion on the inner diameter side of the crucible holding container 16. Further, an outer heat insulating material 19 is disposed on the upper part of the crucible holding container 16, and a pulling shaft 12 for pulling the single crystal 15 together with the seed crystal 13 is passed through the central portion of the outer heat insulating material 19. Through-holes are formed.

まず、引き上げ軸12の先端に、目的の結晶方位に切り出された種結晶13を固定する。ワークコイル20によりルツボ11が誘導加熱されて、ルツボ11内の原料が融点以上まで加熱されることにより原料融液14が形成する。そして、不活性ガスを流し、引上げ軸12を降下させていき、種結晶13の先端を融液14の表面に接触させ、種結晶13と融液14をなじませた後に、引き上げ軸12を回転しながら上昇させ、引き上げを開始する。   First, the seed crystal 13 cut in the target crystal orientation is fixed to the tip of the pulling shaft 12. The crucible 11 is induction-heated by the work coil 20, and the raw material melt 14 is formed by heating the raw material in the crucible 11 to the melting point or higher. Then, an inert gas is flowed, the pulling shaft 12 is lowered, the tip of the seed crystal 13 is brought into contact with the surface of the melt 14, the seed crystal 13 and the melt 14 are blended, and then the pulling shaft 12 is rotated. While raising, start raising.

まず、育成結晶15の直径と前記ルツボ11の内径の比(結晶直径d/ルツボ内径D)が、0.45〜0.65の範囲になるように、ワークコイル20の出力を下げることで結晶15の直径を制御して、円錐形状に結晶15のショルダー部を形成した後、上記直径にて一定の長さまで直胴部を引き上げる。最後にワークコイル20の出力を上げることにより融液14の温度を上げ、種結晶13から円錐形状に直径を拡大したのと逆の操作により結晶15底部の直径を小さくし、最終的に融液14と結晶15とを切り離す。この操作の後に、炉内10の温度を室温まで下げて結晶15を炉から取り出して結晶育成が完了する。   First, the output of the work coil 20 is lowered so that the ratio of the diameter of the grown crystal 15 to the inner diameter of the crucible 11 (crystal diameter d / crucible inner diameter D) is in the range of 0.45 to 0.65. After controlling the diameter of 15 to form the shoulder portion of the crystal 15 in a conical shape, the straight body portion is pulled up to a certain length with the above diameter. Finally, the temperature of the melt 14 is raised by increasing the output of the work coil 20, and the diameter of the bottom of the crystal 15 is reduced by the reverse operation of expanding the diameter from the seed crystal 13 to a conical shape. 14 and crystal 15 are separated. After this operation, the temperature in the furnace 10 is lowered to room temperature, the crystal 15 is taken out of the furnace, and crystal growth is completed.

ここで、育成結晶15の直径と前記ルツボ11の内径の比(結晶直径d/ルツボ内径D)が、0.45〜0.65の範囲になるようにすることで、ルツボ壁からの温度勾配を確保し、温度操作による結晶直径の制御を容易にし、また結晶15が接する融液14の面積を必要以上に大きくしないことで、結晶15を透過する輻射熱により融液14の温度が低下し、結晶14下部が不安定に成長することによる品質の低下や、育成の困難を回避することが出来、高品質で形状の安定した結晶15を安定して育成することが可能となる。   Here, the ratio of the diameter of the grown crystal 15 to the inner diameter of the crucible 11 (crystal diameter d / crucible inner diameter D) is in the range of 0.45 to 0.65, whereby the temperature gradient from the crucible wall. The crystal diameter can be easily controlled by temperature operation, and the area of the melt 14 in contact with the crystal 15 is not increased more than necessary, so that the temperature of the melt 14 is lowered by the radiant heat transmitted through the crystal 15, It is possible to avoid quality degradation and difficulty in growing due to unstable growth of the lower part of the crystal 14, and it is possible to stably grow a crystal 15 having a high quality and a stable shape.

しかし、育成結晶15の直径とルツボ11の内径の比(結晶直径d/ルツボ内径D)が、0.45未満であると、ルツボ11から結晶15までの距離が大きくなりすぎて、ルツボ11近傍のような温度勾配が結晶15付近で得られないため結晶径の制御が不安定となりあまり好ましくない。また、結晶15の直径変動が大きくなりこれに伴って粒界やリネージなどの結晶欠陥が結晶外周部から入り、この欠陥が結晶内部にまで増加する。一方、育成結晶15の直径とルツボ11の内径の比(結晶直径d/ルツボ内径D)が、0.65より大きくなるとルツボ11との距離は短くなるものの、結晶15と接する融液部分が大きくなるため、結晶15を通して輻射熱による放熱により融液14の温度が低下して結晶育成が困難となるので好ましくない。また、結晶底部が融液に向かって大きく凸状になるため、結晶成長界面付近の気泡や不純物を結晶15に取り込むことにより、結晶15の巨視的な欠陥密度が増加する。   However, if the ratio of the diameter of the grown crystal 15 to the inner diameter of the crucible 11 (crystal diameter d / crucible inner diameter D) is less than 0.45, the distance from the crucible 11 to the crystal 15 becomes too large, and the vicinity of the crucible 11 Such a temperature gradient cannot be obtained in the vicinity of the crystal 15, so that the control of the crystal diameter becomes unstable, which is not preferable. Further, the diameter variation of the crystal 15 is increased, and accordingly, crystal defects such as grain boundaries and lineage enter from the outer periphery of the crystal, and the defects increase to the inside of the crystal. On the other hand, when the ratio of the diameter of the grown crystal 15 to the inner diameter of the crucible 11 (crystal diameter d / crucible inner diameter D) is larger than 0.65, the distance from the crucible 11 is shortened, but the melt portion in contact with the crystal 15 is large. Therefore, the temperature of the melt 14 decreases due to heat radiation by radiant heat through the crystal 15, and crystal growth becomes difficult. Further, since the bottom of the crystal becomes greatly convex toward the melt, the macroscopic defect density of the crystal 15 is increased by incorporating bubbles and impurities near the crystal growth interface into the crystal 15.

さらに、本発明においては、ルツボ11の内径側高さとルツボ11の内径の比(ルツボ内径側高さH/ルツボ内径D)を0.5〜1.5の範囲に設定している。ルツボ11の内径側高さとルツボ11の内径の比(ルツボ内径側高さH/ルツボD内径)が0.5未満の場合、ルツボ近傍の融液が加熱されることによって、融液表面をルツボ側面からルツボ中央部に流れる自然対流はルツボ側面の近傍に集中し、育成結晶との固液界面に蓄積する気泡や不純物が融液へと拡散され難く、結晶15に取り込まれ易い。また、結晶15を通した融液14の放熱による結晶15の融液14側への成長により、ルツボ11底部に結晶15が接触し育成が困難になる。   Furthermore, in the present invention, the ratio of the inner diameter side height of the crucible 11 to the inner diameter of the crucible 11 (crucible inner diameter side height H / crucible inner diameter D) is set in the range of 0.5 to 1.5. When the ratio between the inner diameter side of the crucible 11 and the inner diameter of the crucible 11 (crucible inner diameter side height H / crucible D inner diameter) is less than 0.5, the melt near the crucible is heated, so that the surface of the melt is crucible. Natural convection flowing from the side surface to the center of the crucible concentrates in the vicinity of the side surface of the crucible, and bubbles and impurities accumulated at the solid-liquid interface with the grown crystal are difficult to diffuse into the melt and are easily taken into the crystal 15. Further, the crystal 15 is brought into contact with the bottom of the crucible 11 by the growth of the crystal 15 toward the melt 14 due to the heat radiation of the melt 14 through the crystal 15, so that the growth becomes difficult.

一方、ルツボ11の内径側高さとルツボ11の内径の比(ルツボ内径側高さH/ルツボ内径D)が1.5より大きい場合、ルツボ11内融液14の上部と下部の温度差による自然対流の影響が大きくなり、ルツボ11底部の融液14下部がより高温の場合は、ルツボ11底部から育成結晶15方向に上昇する自然対流となり、育成結晶15との固液界面に蓄積する気泡や不純物を融液14へと拡散する対流が起こり難い。また、ルツボ11底部の融液がより低温の場合や温度差が無い場合は、対流そのものが起こり難く、育成結晶15との固液界面に蓄積する気泡や不純物を融液14へと拡散する効果が無いため、育成結晶15に気泡や不純物が取り込まれやすく、結晶の品質を低下させる。   On the other hand, if the ratio between the inner diameter side height of the crucible 11 and the inner diameter of the crucible 11 (crucible inner diameter side height H / crucible inner diameter D) is greater than 1.5, the natural temperature due to the temperature difference between the upper and lower portions of the melt 14 in the crucible 11 When the influence of the convection increases and the lower part of the melt 14 at the bottom of the crucible 11 has a higher temperature, natural convection rises from the bottom of the crucible 11 toward the grown crystal 15, and bubbles accumulated at the solid-liquid interface with the grown crystal 15 Convection that diffuses impurities into the melt 14 is unlikely to occur. Further, when the melt at the bottom of the crucible 11 is at a lower temperature or when there is no temperature difference, convection itself hardly occurs, and the effect of diffusing bubbles and impurities accumulated at the solid-liquid interface with the grown crystal 15 into the melt 14 is achieved. Therefore, bubbles and impurities are easily taken into the grown crystal 15 and the quality of the crystal is lowered.

また、ルツボ11の材質としては、イリジウム、モリブデン、タングステン、レニウムのうち少なくとも一種類を含有することが好ましい。これは、融液との反応がなく酸素を含む雰囲気や不活性雰囲気などの種々の雰囲気において結晶の育成が可能となることによるものであり、これらの材質の中でイリジウムおよびモリブデンは、ルツボの加工性やコストという観点から特に好ましい。   The material of the crucible 11 preferably contains at least one of iridium, molybdenum, tungsten, and rhenium. This is because there is no reaction with the melt and it is possible to grow crystals in various atmospheres such as an oxygen-containing atmosphere and an inert atmosphere. Among these materials, iridium and molybdenum are made of crucibles. This is particularly preferable from the viewpoint of processability and cost.

さらに、本製造方法により育成されるサファイア単結晶が1%を超える不純物を含んでいる場合は、不純物による光の吸収や析出物による散乱により、透明性基板としての品質が低下する。   Furthermore, when the sapphire single crystal grown by this manufacturing method contains impurities exceeding 1%, the quality as a transparent substrate falls by the light absorption by an impurity, or the scattering by a precipitate.

(実施例1)
図1に示す装置によりサファイア結晶の成長を行なった。目的とする結晶の直径を65mmとし、ルツボは内径100mm深さ100mmのイリジウム製のものを用いた。ルツボ内に純度99.99%のアルミナ原料を2200g充填し、ルツボ全体を加熱溶融した後にサファイア結晶の種結晶を融液に浸漬して回転引き上げを行なった。
Example 1
A sapphire crystal was grown by the apparatus shown in FIG. The diameter of the target crystal was 65 mm, and a crucible made of iridium having an inner diameter of 100 mm and a depth of 100 mm was used. The crucible was charged with 2200 g of an alumina raw material having a purity of 99.99%, and the whole crucible was heated and melted, and then a seed crystal of sapphire crystal was immersed in the melt and rotated up.

種結晶先端から30mm引き上げたところで結晶の直径が65mmとなるように円錐状の結晶肩部を形成した後に直径を65mmとなるように温度制御を行なう結晶育成方法を用いた。   A crystal growth method was used in which the conical crystal shoulder was formed so that the diameter of the crystal was 65 mm when it was pulled 30 mm from the tip of the seed crystal, and then the temperature was controlled so that the diameter became 65 mm.

その結果、実施例1による結晶育成方法では結晶の直径制御が容易であった。育成されたサファイア結晶の直径変動を調べたところ、直胴部の長さ100mmの部分で直径65mm±1mmであった。また、結晶に混入した気泡や内包物などの径は最大で10μmであった。   As a result, the crystal growth method according to Example 1 made it easy to control the crystal diameter. When the diameter variation of the grown sapphire crystal was examined, it was 65 mm ± 1 mm in diameter at the length of the straight body portion of 100 mm. The diameter of bubbles and inclusions mixed in the crystal was 10 μm at the maximum.

(実施例2)
図1に示す装置によりサファイア結晶の成長を行なった。目的とする結晶の直径を68mmとし、ルツボは内径150mm深さ150mmのモリブデン製のものを用いた。ルツボ内に純度99.99%のアルミナ原料を8500g充填し、ルツボ全体を加熱溶融した後にサファイア結晶の種結晶を融液に浸漬して回転引き上げを行なった。
(Example 2)
A sapphire crystal was grown by the apparatus shown in FIG. The diameter of the target crystal was 68 mm, and the crucible made of molybdenum having an inner diameter of 150 mm and a depth of 150 mm was used. The crucible was filled with 8500 g of a 99.99% purity alumina raw material, and the whole crucible was heated and melted, and then the seed crystal of sapphire crystal was immersed in the melt, and then rotated up.

種結晶先端から40mm引き上げたところで結晶の直径が68mmとなるように円錐状の結晶肩部を形成した後に直径を68mmとなるように温度制御を行なう結晶育成方法を用いた。 A crystal growth method was used in which the conical crystal shoulder was formed so that the diameter of the crystal was 68 mm when the seed crystal was lifted 40 mm from the tip, and then the temperature was controlled so that the diameter became 68 mm.

その結果、実施例2による結晶育成方法では結晶の直径制御が容易であった。育成されたサファイア結晶の直径変動を調べたところ、直胴部の長さ150mmの部分で直径68mm±1mmであった。また、結晶に混入した気泡や内包物などの径は最大で10μmであった。   As a result, the crystal growth method according to Example 2 made it easy to control the crystal diameter. When the diameter variation of the grown sapphire crystal was examined, it was 68 mm ± 1 mm in diameter at the portion of the straight body portion of 150 mm in length. The diameter of bubbles and inclusions mixed in the crystal was 10 μm at the maximum.

(比較例1)
図1に示す装置によりサファイア結晶の成長を行なった。目的とする結晶の直径を60mmとし、ルツボは内径150mm深さ150mmのイリジウム製のものを用いた。ルツボ内に純度99.99%のアルミナ原料を8500g充填し、ルツボ全体を加熱溶融した後にサファイア結晶の種結晶を融液に浸漬して回転引き上げを行なった。
(Comparative Example 1)
A sapphire crystal was grown by the apparatus shown in FIG. The diameter of the target crystal was 60 mm, and the crucible made of iridium having an inner diameter of 150 mm and a depth of 150 mm was used. The crucible was filled with 8500 g of a 99.99% purity alumina raw material, and the whole crucible was heated and melted, and then the seed crystal of sapphire crystal was immersed in the melt, and then rotated up.

種結晶先端から30mm引き上げたところで結晶の直径が60mmとなるように円錐状の結晶肩部を形成した後に直径を60mmとなるように温度制御を行なう結晶育成方法を用いた。 A crystal growth method was used in which the conical crystal shoulder was formed so that the diameter of the crystal was 60 mm when it was pulled 30 mm from the tip of the seed crystal, and then the temperature was controlled so that the diameter became 60 mm.

その結果、比較例1による結晶育成方法では結晶の直径制御ができなかった。育成されたサファイア結晶の直径変動を調べたところ、直胴部の長さ150mmの部分で直径60mm±5mmであった。また、結晶に混入した気泡や内包物などの径は最大で10μmであった。   As a result, the crystal growth method according to Comparative Example 1 could not control the crystal diameter. When the diameter variation of the grown sapphire crystal was examined, it was 60 mm ± 5 mm in diameter at the portion of the length of the straight body portion of 150 mm. The diameter of bubbles and inclusions mixed in the crystal was 10 μm at the maximum.

(比較例2)
図1に示す装置によりサファイア結晶の成長を行なった。目的とする結晶の直径を70mmとし、ルツボは内径100mm深さ100mmのモリブデン製のものを用いた。ルツボ内に純度99.99%のアルミナ原料を2200g充填し、ルツボ全体を加熱溶融した後にサファイア結晶の種結晶を融液に浸漬して回転引き上げを行なった。
(Comparative Example 2)
A sapphire crystal was grown by the apparatus shown in FIG. The target crystal had a diameter of 70 mm, and a crucible made of molybdenum having an inner diameter of 100 mm and a depth of 100 mm was used. The crucible was filled with 2200 g of a 99.99% purity alumina raw material, and the entire crucible was heated and melted, and then the seed crystal of sapphire crystal was immersed in the melt and pulled up.

種結晶先端から40mm引き上げたところで結晶の直径が70mmとなるように円錐状の結晶肩部を形成した後に直径を70mmとなるように温度制御を行なう結晶育成方法を用いた。 A crystal growth method was used in which the conical crystal shoulder was formed so that the diameter of the crystal was 70 mm when the seed crystal was pulled 40 mm from the tip, and then the temperature was controlled so that the diameter became 70 mm.

その結果、比較例2による結晶育成方法では、長さ80mmまでは直径制御が容易であったが、その後結晶下部の融液が固化し、育成できなくなった。育成されたサファイア結晶の直径変動を調べたところ、長さ80mmまでは直径70mm±1mmであった。また、長さ80mmまでの結晶に混入した気泡や内包物などの径は最大で10μmであり、その個数も実施例1,2よりは多いものであった。   As a result, in the crystal growth method according to Comparative Example 2, the diameter was easily controlled up to a length of 80 mm, but the melt below the crystal was solidified and could not be grown. When the diameter variation of the grown sapphire crystal was examined, the diameter was 70 mm ± 1 mm up to 80 mm. Further, the diameter of bubbles or inclusions mixed in the crystals having a length of up to 80 mm was 10 μm at the maximum, and the number thereof was larger than those in Examples 1 and 2.

以上の結果を纏めたものを下記の表1に示す。

Figure 2006151745
Table 1 below summarizes the above results.
Figure 2006151745

育成結晶15の直径と前記ルツボ11の内径の比(結晶直径d/ルツボ内径D)が、0.45〜0.65の範囲にした実施例1、2の場合、直径制御が容易で直径変動が小さい。(結晶直径d/ルツボ内径D)が0.45未満の比較例1の場合、直径制御ができなくなり直径変動が大きくなった。また、(結晶直径d/ルツボ内径D)が0.65より大きい比較例2の場合、長さ80mmまでは直径制御が容易で、直径変動も小さかったが、長さ80mm以降は育成ができなくなり、結果として直胴部の長さが短くなった。   In Examples 1 and 2 in which the ratio of the diameter of the grown crystal 15 and the inner diameter of the crucible 11 (crystal diameter d / crucible inner diameter D) is in the range of 0.45 to 0.65, diameter control is easy and the diameter varies. Is small. In the case of Comparative Example 1 where (crystal diameter d / crucible inner diameter D) is less than 0.45, the diameter cannot be controlled and the fluctuation in diameter becomes large. Further, in Comparative Example 2 where (crystal diameter d / crucible inner diameter D) is larger than 0.65, diameter control was easy up to a length of 80 mm and diameter fluctuation was small, but growth was impossible after a length of 80 mm. As a result, the length of the straight body portion was shortened.


(実施例3)
図1に示す装置によりサファイア結晶の成長を行なった。目的とする結晶の直径を60mmとし、ルツボは内径100mm深さ50mmのイリジウム製のものを用いた。ルツボ内に純度99.99%のアルミナ原料を1200g充填し、ルツボ全体を加熱溶融した後にサファイア結晶の種結晶を融液に浸漬して回転引き上げを行なった。

(Example 3)
A sapphire crystal was grown by the apparatus shown in FIG. The diameter of the target crystal was 60 mm, and the crucible made of iridium having an inner diameter of 100 mm and a depth of 50 mm was used. The crucible was charged with 1,200 g of a 99.99% purity alumina raw material, and the entire crucible was heated and melted, and then the seed crystal of sapphire crystal was immersed in the melt and pulled up.

種結晶先端から30mm引き上げたところで結晶の直径が60mmとなるように円錐状の結晶肩部を形成した後に直径を60mmとなるように温度制御を行なう結晶育成方法を用いた。   A crystal growth method was used in which the conical crystal shoulder was formed so that the diameter of the crystal was 60 mm when it was pulled 30 mm from the tip of the seed crystal, and then the temperature was controlled so that the diameter became 60 mm.

その結果、実施例3による結晶育成方法では結晶の直径制御が容易であった。育成されたサファイア結晶の直径変動を調べたところ、直胴部の長さ60mmの部分で直径60mm±1mmであった。また、結晶に混入した気泡や内包物などの径は最大で10μmであった。   As a result, the crystal growth method according to Example 3 made it easy to control the crystal diameter. When the diameter variation of the grown sapphire crystal was examined, it was 60 mm ± 1 mm in diameter at the portion of the length of the straight body portion of 60 mm. The diameter of bubbles and inclusions mixed in the crystal was 10 μm at the maximum.

(実施例4)
図1に示す装置によりサファイア結晶の成長を行なった。目的とする結晶の直径を60mmとし、ルツボは内径100mm深さ150mmのモリブデン製のものを用いた。ルツボ内に純度99.99%のアルミナ原料を4300g充填し、ルツボ全体を加熱溶融した後にサファイア結晶の種結晶を融液に浸漬して回転引き上げを行なった。
Example 4
A sapphire crystal was grown by the apparatus shown in FIG. The target crystal had a diameter of 60 mm, and a crucible made of molybdenum having an inner diameter of 100 mm and a depth of 150 mm was used. The crucible was filled with 4300 g of an alumina raw material having a purity of 99.99%, and the whole crucible was heated and melted, and then a seed crystal of sapphire crystal was immersed in the melt and rotated up.

種結晶先端から30mm引き上げたところで結晶の直径が60mmとなるように円錐状の結晶肩部を形成した後に直径を60mmとなるように温度制御を行なう結晶育成方法を用いた。 A crystal growth method was used in which the conical crystal shoulder was formed so that the diameter of the crystal was 60 mm when it was pulled 30 mm from the tip of the seed crystal, and then the temperature was controlled so that the diameter became 60 mm.

その結果、実施例4による結晶育成方法では結晶の直径制御が容易であった。育成されたサファイア結晶の直径変動を調べたところ、直胴部の長さ150mmの部分で直径60mm±1mmであった。また、結晶に混入した気泡や内包物などの径は最大で10μmであった。   As a result, the crystal growth method according to Example 4 made it easy to control the crystal diameter. When the diameter variation of the grown sapphire crystal was examined, it was 60 mm ± 1 mm in diameter at the portion of the straight body portion having a length of 150 mm. The diameter of bubbles and inclusions mixed in the crystal was 10 μm at the maximum.

(実施例5)
図1に示す装置によりサファイア結晶の成長を行なった。目的とする結晶の直径を75mmとし、ルツボは内径150mm深さ60mmのイリジウム製のものを用いた。ルツボ内に純度99.99%のアルミナ原料を2800g充填し、ルツボ全体を加熱溶融した後にサファイア結晶の種結晶を融液に浸漬して回転引き上げを行なった。
(Example 5)
A sapphire crystal was grown by the apparatus shown in FIG. The diameter of the target crystal was 75 mm, and the crucible made of iridium having an inner diameter of 150 mm and a depth of 60 mm was used. The crucible was filled with 2800 g of an alumina raw material having a purity of 99.99%, and the entire crucible was heated and melted, and then a seed crystal of sapphire crystal was immersed in the melt and rotated up.

種結晶先端から40mm引き上げたところで結晶の直径が75mmとなるように円錐状の結晶肩部を形成した後に直径を75mmとなるように温度制御を行なう結晶育成方法を用いた。 A crystal growth method was used in which the conical crystal shoulder was formed so that the diameter of the crystal was 75 mm when the seed crystal was pulled 40 mm from the tip, and then the temperature was controlled so that the diameter became 75 mm.

その結果、実施例5による結晶育成方法では、直胴部の長さ70mmの部分までの結晶の直径制御は容易であった。育成されたサファイア結晶の直径変動を調べたところ、直胴部の長さ70mmの部分で直径75mm±1mmであったが、70mmを超えると結晶の底部がルツボの底部に接触し、育成しにくくまた結晶に混入した気泡や内包物などの径は最大で10μmであった。   As a result, in the crystal growth method according to Example 5, it was easy to control the diameter of the crystal up to the length of 70 mm of the straight body portion. When the diameter variation of the grown sapphire crystal was examined, the diameter of the straight body portion was 70 mm and the diameter was 75 mm ± 1 mm. However, when the diameter exceeded 70 mm, the bottom of the crystal was in contact with the bottom of the crucible and was difficult to grow. The diameter of bubbles and inclusions mixed in the crystal was 10 μm at the maximum.

(比較例6)
図1に示す装置によりサファイア結晶の成長を行なった。目的とする結晶の直径を60mmとし、ルツボは内径100mm深さ160mmのイリジウム製のものを用いた。ルツボ内に純度99.99%のアルミナ原料を4500g充填し、ルツボ全体を加熱溶融した後にサファイア結晶の種結晶を融液に浸漬して回転引き上げを行なった。
(Comparative Example 6)
A sapphire crystal was grown by the apparatus shown in FIG. The diameter of the target crystal was 60 mm, and the crucible made of iridium having an inner diameter of 100 mm and a depth of 160 mm was used. The crucible was charged with 4500 g of an alumina raw material having a purity of 99.99%, and the whole crucible was heated and melted, and then the seed crystal of the sapphire crystal was immersed in the melt and rotated up.

種結晶先端から30mm引き上げたところで結晶の直径が60mmとなるように円錐状の結晶肩部を形成した後に直径を60mmとなるように温度制御を行なう結晶育成方法を用いた。 A crystal growth method was used in which the conical crystal shoulder was formed so that the diameter of the crystal was 60 mm when it was pulled 30 mm from the tip of the seed crystal, and then the temperature was controlled so that the diameter became 60 mm.

その結果、実施例6による結晶育成方法では結晶の直径制御が容易であった。育成されたサファイア結晶の直径変動を調べたところ、直胴部の長さ150mmの部分で直径60mm±1mmであった。また、直胴部長さ100mmから結晶底部までの結晶に混入した気泡や内包物などの径は30μm〜100μmであった。   As a result, the crystal growth method according to Example 6 made it easy to control the crystal diameter. When the diameter variation of the grown sapphire crystal was examined, it was 60 mm ± 1 mm in diameter at the portion of the straight body portion having a length of 150 mm. Moreover, the diameters of the bubbles and inclusions mixed in the crystal from the length of the straight body portion of 100 mm to the bottom of the crystal were 30 μm to 100 μm.

以上の結果を纏めたものを下記の表2に示す。

Figure 2006151745
Table 2 below summarizes the above results.
Figure 2006151745

ルツボ11の内径側高さとルツボ11の内径の比(ルツボ内径側高さH/ルツボ内径D)が0.5〜1.5の範囲にした実施例3,4の場合、育成結晶に混入した気泡の径は最大でも10μmと小さく、高品質な結晶が得られた。   In the case of Examples 3 and 4 where the ratio of the inner diameter side height of the crucible 11 to the inner diameter of the crucible 11 (crucible inner diameter side height H / crucible inner diameter D) was in the range of 0.5 to 1.5, it mixed into the grown crystal. The bubble diameter was as small as 10 μm at the maximum, and high quality crystals were obtained.

また、(ルツボ内径側高さH/ルツボ内径D)が0.5未満の実施例5の場合、ルツボ底部に結晶底部が接触し育成の継続が困難になった。一方、(ルツボ内径側高さH/ルツボ内径D)が1.5より大きい実施例6の場合、育成結晶に混入した気泡の径は最大で100μmと大きく、実施例3,4にて育成された結晶と比較すると品質の劣る結晶が得られた。   Further, in Example 5 where (crucible inner diameter side height H / crucible inner diameter D) was less than 0.5, the crystal bottom contacted the crucible bottom, making it difficult to continue the growth. On the other hand, in the case of Example 6 where (crucible inner diameter side height H / crucible inner diameter D) is larger than 1.5, the diameter of the bubbles mixed in the grown crystal is as large as 100 μm at the maximum, and is grown in Examples 3 and 4. A crystal with poor quality was obtained as compared with the crystal.

本発明の方法による単結晶製造装置の一実施例を示す断面図である。It is sectional drawing which shows one Example of the single-crystal manufacturing apparatus by the method of this invention. チョクラルスキー法による従来の単結晶製造装置を示す断面図である。It is sectional drawing which shows the conventional single crystal manufacturing apparatus by the Czochralski method.

符号の説明Explanation of symbols

10:炉内
11:本発明のルツボ
12:引き上げ軸
13:種結晶
14:原料融液
15:結晶
16:ルツボ保持容器
17:保温材
18:断熱保温円板
19:外側断熱材
20:ワークコイル
21:従来のルツボ
10: Inside of furnace 11: Crucible 12 of the present invention: Pulling shaft 13: Seed crystal 14: Raw material melt 15: Crystal 16: Crucible holding container 17: Insulating material 18: Insulating heat insulating disc 19: Outer insulating material 20: Work coil 21: Conventional crucible

Claims (5)

チョクラルスキー法での単結晶の製造方法において、育成結晶の直径と前記単結晶製造用ルツボの内径の比(結晶直径d/ルツボ内径D)を、0.45〜0.65の範囲に設定したことを特徴とする単結晶の製造方法。 In the method for producing a single crystal by the Czochralski method, the ratio of the diameter of the grown crystal to the inner diameter of the crucible for producing the single crystal (crystal diameter d / crucible inner diameter D) is set in the range of 0.45 to 0.65. A method for producing a single crystal, characterized by comprising: 前記単結晶製造用ルツボの内径側高さと内径の比(ルツボ内径側高さH/ルツボ内径D)を0.5〜1.5の範囲に設定したことを特徴とする請求項1に記載の単結晶の製造方法。 The ratio between the inner diameter side height and the inner diameter of the single crystal manufacturing crucible (crucible inner diameter side height H / crucible inner diameter D) is set in a range of 0.5 to 1.5. A method for producing a single crystal. 前記単結晶製造用ルツボは、イリジウム、モリブデン、タングステン、レニウムのうち少なくとも一種類を含有することを特徴とする請求項1または2に記載の単結晶の製造方法。 The method for producing a single crystal according to claim 1, wherein the crucible for producing the single crystal contains at least one of iridium, molybdenum, tungsten, and rhenium. 請求項1乃至3のいずれかに記載の単結晶の製造方法を用いて酸化物単結晶を製造したことを特徴とする酸化物単結晶。 An oxide single crystal produced by using the method for producing a single crystal according to any one of claims 1 to 3. 不純物の含有量が1%以下であることを特徴とする請求項4に記載の酸化物単結晶。 The oxide single crystal according to claim 4, wherein the content of impurities is 1% or less.
JP2004344207A 2004-11-29 2004-11-29 Method for producing single crystal and oxide single crystal obtained by using the same Pending JP2006151745A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004344207A JP2006151745A (en) 2004-11-29 2004-11-29 Method for producing single crystal and oxide single crystal obtained by using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004344207A JP2006151745A (en) 2004-11-29 2004-11-29 Method for producing single crystal and oxide single crystal obtained by using the same

Publications (1)

Publication Number Publication Date
JP2006151745A true JP2006151745A (en) 2006-06-15

Family

ID=36630481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004344207A Pending JP2006151745A (en) 2004-11-29 2004-11-29 Method for producing single crystal and oxide single crystal obtained by using the same

Country Status (1)

Country Link
JP (1) JP2006151745A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007091540A (en) * 2005-09-29 2007-04-12 Sumitomo Metal Mining Co Ltd Method for growing sapphire single crystal
JP2011127839A (en) * 2009-12-17 2011-06-30 Toshiba Corp Crucible made of tungsten, method of manufacturing the same and method of manufacturing sapphire single crystal
JP2012107782A (en) * 2010-11-15 2012-06-07 Toshiba Corp Crucible, manufacturing method of sapphire single crystal using the same, and manufacturing method of the crucible
JP2013091601A (en) * 2013-02-05 2013-05-16 Oxide Corp Crystal of terbium oxide for magneto-optical element
CN103361727A (en) * 2012-03-30 2013-10-23 胜高股份有限公司 Sapphire single crystal and making method thereof
CN103806101A (en) * 2012-11-15 2014-05-21 上海中电振华晶体技术有限公司 Growth method and equipment of square sapphire crystal
JP2014201471A (en) * 2013-04-03 2014-10-27 シンフォニアテクノロジー株式会社 Induction heating dissolution device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4889896A (en) * 1972-02-18 1973-11-24
JPS5118999A (en) * 1974-06-28 1976-02-14 Union Carbide Corp Rr mentanketsusho arufua aruminaoseizosuruhoho
JPS52138095A (en) * 1976-05-14 1977-11-17 Hitachi Ltd Growth of sapphire single crystal
JPH06199597A (en) * 1992-10-15 1994-07-19 Natl Inst For Res In Inorg Mater Production of aluminum oxide single crystal
JPH09278592A (en) * 1996-04-18 1997-10-28 Mitsubishi Heavy Ind Ltd Production of aluminum oxide single crystal containing titanium
JP2003192498A (en) * 2001-12-19 2003-07-09 Sumitomo Metal Mining Co Ltd Method of manufacturing gallium phosphide single crystal
JP2005231958A (en) * 2004-02-20 2005-09-02 Sumitomo Metal Mining Co Ltd Apparatus for growing sapphire single crystal

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4889896A (en) * 1972-02-18 1973-11-24
JPS5118999A (en) * 1974-06-28 1976-02-14 Union Carbide Corp Rr mentanketsusho arufua aruminaoseizosuruhoho
JPS52138095A (en) * 1976-05-14 1977-11-17 Hitachi Ltd Growth of sapphire single crystal
JPH06199597A (en) * 1992-10-15 1994-07-19 Natl Inst For Res In Inorg Mater Production of aluminum oxide single crystal
JPH09278592A (en) * 1996-04-18 1997-10-28 Mitsubishi Heavy Ind Ltd Production of aluminum oxide single crystal containing titanium
JP2003192498A (en) * 2001-12-19 2003-07-09 Sumitomo Metal Mining Co Ltd Method of manufacturing gallium phosphide single crystal
JP2005231958A (en) * 2004-02-20 2005-09-02 Sumitomo Metal Mining Co Ltd Apparatus for growing sapphire single crystal

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007091540A (en) * 2005-09-29 2007-04-12 Sumitomo Metal Mining Co Ltd Method for growing sapphire single crystal
JP2011127839A (en) * 2009-12-17 2011-06-30 Toshiba Corp Crucible made of tungsten, method of manufacturing the same and method of manufacturing sapphire single crystal
JP2012107782A (en) * 2010-11-15 2012-06-07 Toshiba Corp Crucible, manufacturing method of sapphire single crystal using the same, and manufacturing method of the crucible
CN103361727A (en) * 2012-03-30 2013-10-23 胜高股份有限公司 Sapphire single crystal and making method thereof
CN103806101A (en) * 2012-11-15 2014-05-21 上海中电振华晶体技术有限公司 Growth method and equipment of square sapphire crystal
JP2013091601A (en) * 2013-02-05 2013-05-16 Oxide Corp Crystal of terbium oxide for magneto-optical element
JP2014201471A (en) * 2013-04-03 2014-10-27 シンフォニアテクノロジー株式会社 Induction heating dissolution device

Similar Documents

Publication Publication Date Title
JP4810346B2 (en) Method for producing sapphire single crystal
TWI555886B (en) Equipment for growing sapphire single crystal
JP5464429B2 (en) Method for growing single crystal silicon having a square cross section
JP4844428B2 (en) Method for producing sapphire single crystal
JP4830312B2 (en) Compound semiconductor single crystal and manufacturing method thereof
JP2012513950A (en) Method and pull assembly for pulling a polycrystalline silicon ingot from a silicon melt
CN101040068A (en) Single-crystal production apparatus
KR20130111253A (en) Sapphire single crystal and process for manufacturing the same
JP2006151745A (en) Method for producing single crystal and oxide single crystal obtained by using the same
JP2011006314A (en) Single crystal pulling device
JP2010155726A (en) Method for growing single crystal and single crystal grown by the same
JP2010059031A (en) Aluminum oxide single crystal and method for manufacturing the same
JP4844429B2 (en) Method for producing sapphire single crystal
KR101105547B1 (en) Heater used for manufacturing single crystal, Apparatus and Method of manufacturing single crystal using the same
JP2008260641A (en) Method of manufacturing aluminum oxide single crystal
US20090293802A1 (en) Method of growing silicon single crystals
JP2007186356A (en) Apparatus and method for producing single crystal
JPH09221380A (en) Device for producing crystal by czochralski method, production of crystal and crystal produced thereby
JP4940610B2 (en) Sapphire single crystal growth method
JP2007284324A (en) Manufacturing device and manufacturing method for semiconductor single crystal
JP4899608B2 (en) Semiconductor single crystal manufacturing apparatus and manufacturing method
CN105401211B (en) Draw C axles sapphire single crystal growth furnace and method
CN110284183B (en) ScAlMgO4Single crystal substrate and method for producing same
JP6597857B1 (en) Heat shielding member, single crystal pulling apparatus and single crystal manufacturing method
JP2005231958A (en) Apparatus for growing sapphire single crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070912

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20090728

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

A521 Written amendment

Effective date: 20091019

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A521 Written amendment

Effective date: 20100510

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101125

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110405