JP4940610B2 - Sapphire single crystal growth method - Google Patents

Sapphire single crystal growth method Download PDF

Info

Publication number
JP4940610B2
JP4940610B2 JP2005283898A JP2005283898A JP4940610B2 JP 4940610 B2 JP4940610 B2 JP 4940610B2 JP 2005283898 A JP2005283898 A JP 2005283898A JP 2005283898 A JP2005283898 A JP 2005283898A JP 4940610 B2 JP4940610 B2 JP 4940610B2
Authority
JP
Japan
Prior art keywords
single crystal
crystal
sapphire single
shoulder
melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005283898A
Other languages
Japanese (ja)
Other versions
JP2007091540A (en
Inventor
貴幸 飯野
利行 小見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2005283898A priority Critical patent/JP4940610B2/en
Publication of JP2007091540A publication Critical patent/JP2007091540A/en
Application granted granted Critical
Publication of JP4940610B2 publication Critical patent/JP4940610B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、サファイア単結晶を育成するための方法、特に高周波加熱型チョクラルスキー法によるサファイア単結晶の育成法に関するものである。   The present invention relates to a method for growing a sapphire single crystal, and more particularly to a method for growing a sapphire single crystal by a high-frequency heating type Czochralski method.

近年開発された青色発光素子等の主要構成部である窒化物発光膜はサファイア基板の上に当該窒化物をエピタキシャル成長させて得られている。こうしたエピタキシャル用に用いられるサファイア基板としては、サファイア単結晶をウエハー状に切断し、表面を鏡面研磨したものが用いられている。   A nitride light-emitting film, which is a main component of a blue light-emitting element developed in recent years, is obtained by epitaxially growing the nitride on a sapphire substrate. As a sapphire substrate used for such an epitaxial, a sapphire single crystal cut into a wafer and having a mirror-polished surface is used.

ところで、サファイア等の酸化物単結晶を得る方法の一つとしてチョクラルスキー法(以下、単に「CZ法」と記す。)がある。CZ法により酸化物単結晶を得るには、例えば、金属イリジウム製の坩堝内に原料となる酸化物を充填し、坩堝外周部に設けたワークコイルに高周波を流し、この高周波によりイリジウム坩堝を発熱させ、この熱により坩堝内の酸化物を融解する。   Incidentally, there is a Czochralski method (hereinafter, simply referred to as “CZ method”) as one method for obtaining an oxide single crystal such as sapphire. In order to obtain an oxide single crystal by the CZ method, for example, a metal iridium crucible is filled with an oxide as a raw material, a high frequency is passed through a work coil provided on the outer periphery of the crucible, and the iridium crucible is heated by this high frequency. The oxide in the crucible is melted by this heat.

その後、種結晶を坩堝内の酸化物融液に付け、融液温度をコントロールしながら種結晶を回転させつつ引き上げて目標径まで結晶径を拡げて肩部を形成し、次いで直胴部を形成して酸化物単結晶を育成する。育成中、育成中の結晶重量を測定して得られた結晶重量の変化より、直径や育成速度などを計算によって導き出し、この計算結果をワークコイル投入電力にフィードバックし、融液温度をコントロールして良好な形状の酸化物単結晶を得る。   After that, attach the seed crystal to the oxide melt in the crucible, pull up the seed crystal while rotating the melt temperature, and expand the crystal diameter to the target diameter to form the shoulder, then form the straight body Then, an oxide single crystal is grown. During growth, the diameter and growth rate are derived from the change in crystal weight obtained by measuring the crystal weight during growth, and the calculation results are fed back to the work coil input power to control the melt temperature. An oxide single crystal having a good shape is obtained.

原料をアルミナとするサファイア単結晶を得るためにこのCZ法を適用すると、サファイア単結晶固液界面逆円錐状に突き出した(以下、本明細書では円錐状の部分の高さを「凸度」として表記する。)形状のサファイア単結晶が得られる。サファイア単結晶下部が逆円錐状に成長すると、その先端がルツボ底に到達して前記結晶重量の変化が正確に得られなくなるばかりか、甚だしい場合には測定不能となり、安定した形状のサファイア単結晶が得られなくなる。   When this CZ method is applied to obtain a sapphire single crystal whose raw material is alumina, the sapphire single crystal solid-liquid interface protrudes into an inverted conical shape (hereinafter, the height of the conical portion is referred to as “convexity” in this specification). A sapphire single crystal having a shape is obtained. If the lower part of the sapphire single crystal grows in an inverted conical shape, the tip reaches the crucible bottom, and the change in the crystal weight cannot be obtained accurately. Cannot be obtained.

また、凸度が大きいと、結晶育成終了後にサファイア単結晶を融液から切り離すためのストローク(サファイア単結晶の引き上げ距離)が長くなり、引き上げたサファイア単結晶が加熱領域から離れすぎ、サファイア単結晶が急激に冷却されて、該単結晶が割れてしまうという問題が起こる。
加えて、凸度の大きい結晶から切り出した基板は歪みが大きいという問題もある。
Also, if the convexity is large, the stroke for separating the sapphire single crystal from the melt after the crystal growth is finished (the pulling distance of the sapphire single crystal) becomes long, the pulled sapphire single crystal is too far from the heating region, and the sapphire single crystal Is rapidly cooled and the single crystal breaks.
In addition, there is a problem that a substrate cut out from a crystal having a high degree of convexity has a large distortion.

結晶下部が逆円錐状に突き出した単結晶が得られる傾向は、サファイア単結晶の育成のみに限られず、他の酸化物結晶や化合物半導体結晶の育成においても見られる。というのは、単結晶下部が逆円錐状になるのは、融液の加熱が坩堝側面から主として行われることによるからである。即ち、坩堝の側面から融液を加熱するため、融液に、坩堝側面から融液中心部に向かって融液温度が低下するという温度分布が発生する。この結果、坩堝中心部での結晶成長速度が速くなり、外周部での結晶成長速度が遅くなる。これにより単結晶の底部が逆円錐状となる。   The tendency to obtain a single crystal in which the lower part of the crystal protrudes in an inverted conical shape is not limited to the growth of sapphire single crystals, but also in the growth of other oxide crystals and compound semiconductor crystals. This is because the lower part of the single crystal has an inverted conical shape because the melt is heated mainly from the side of the crucible. That is, since the melt is heated from the side surface of the crucible, a temperature distribution is generated in the melt such that the melt temperature decreases from the side surface of the crucible toward the center of the melt. As a result, the crystal growth rate at the center of the crucible increases and the crystal growth rate at the outer periphery decreases. As a result, the bottom of the single crystal has an inverted conical shape.

これを防止するために、通常、単結晶の回転数を速くして融液の対流を大きくして融液温度の均一化を図り、結晶育成界面を平面化するインバージョンという方法や、ワークコイルとルツボの相対位置を調整することにより前記温度分布を平坦化させて凸度の小さな単結晶を得ている。   In order to prevent this, the inversion method or the work coil, which usually flattens the crystal growth interface by increasing the convection of the melt by increasing the number of revolutions of the single crystal to make the melt temperature uniform. By adjusting the relative positions of the crucible and the crucible, the temperature distribution is flattened to obtain a single crystal having a small convexity.

しかしながら、これらの方法をサファイア単結晶の育成に適用しても十分な効果は見られない。というのは、アルミナ融液の熱伝導度が大きいため、例えば、単結晶の回転により融液温度の均一化を図ろうとすれば、単結晶の回転数を大幅に上げなければならず、そうすると気泡の巻き込みが起こり、必要とされる透明度のサファイア単結晶が得られないという問題を生じる。   However, even if these methods are applied to the growth of a sapphire single crystal, sufficient effects are not seen. This is because the alumina melt has a high thermal conductivity. For example, if the temperature of the melt is made uniform by rotating the single crystal, the rotation speed of the single crystal must be greatly increased. This causes a problem that a sapphire single crystal having the required transparency cannot be obtained.

凸度の小さいサファイア単結晶を得るべく、本発明者らはチャンバー内に設けられた装置要部が、高周波誘導コイルと、耐火性坩堝と、イリジウム坩堝と、断熱材と、耐火性坩堝支持筒と、筒状ヒーターとからなり、耐火性坩堝内にイリジウム坩堝が断熱材を介して納められており、この耐火性坩堝の底部に、その内部に筒状ヒーターが設けられた耐火性坩堝支持筒が、前記筒状ヒーターの上面が前記耐火性坩堝の底面に接するように設けられており、これらが高周波誘導コイル内の空間部に収納されている構造を採ることを特徴とするサファイア単結晶育成装置を提案した(特許文献1)。そして、この装置を用いれば融液直上の温度勾配を最適化でき、凸度の低い結晶を得ることが可能であることを示した。   In order to obtain a sapphire single crystal having a small convexity, the present inventors provided that the main part of the apparatus provided in the chamber is a high-frequency induction coil, a refractory crucible, an iridium crucible, a heat insulating material, and a refractory crucible support cylinder. And a cylindrical heater, and an iridium crucible is housed in a refractory crucible via a heat insulating material, and a refractory crucible support cylinder in which a cylindrical heater is provided at the bottom of the refractory crucible However, the sapphire single crystal growth is characterized by adopting a structure in which the upper surface of the cylindrical heater is provided so as to be in contact with the bottom surface of the refractory crucible, and these are accommodated in a space portion in the high frequency induction coil. An apparatus was proposed (Patent Document 1). And it was shown that the temperature gradient just above the melt can be optimized by using this apparatus, and crystals with low convexity can be obtained.

その後の検討の結果、該装置については以下の問題があることがわかった。
(1)このような装置は特殊な装置とならざるを得ないため、高価なものとなり、コストア ップにつながる。
(2)このような装置を用いても、成長中の結晶内部の温度勾配はきわめて不安定であるた めに、成長後に得られた結晶を焼鈍す工程が必要となる。そして、この焼き鈍し行程は 複雑なものとなり易い。従って、このような装置を用いて凸度の小さなサファイア単結 晶を安価、かつ簡便に得るには問題がある。
特願 2004−044508号公報
Subsequent examination revealed that the apparatus had the following problems.
(1) Since such a device must be a special device, it becomes expensive and increases costs.
(2) Even if such an apparatus is used, the temperature gradient inside the growing crystal is extremely unstable, and thus a step of annealing the crystal obtained after the growth is required. And this annealing process tends to be complicated. Therefore, there is a problem in obtaining a sapphire single crystal having a small convexity inexpensively and easily using such an apparatus.
Japanese Patent Application No. 2004-044508

本発明は、前記した問題点に鑑みてなされたものであり、その目的とするところは、凸度の小さいサファイア単結晶を安価で且つ簡便に育成する方法の提供にある。   The present invention has been made in view of the above-described problems, and an object of the present invention is to provide an inexpensive and simple method for growing a sapphire single crystal having a low convexity.

本発明者らは前記課題を解決すべく種々の検討を試みた。そして、得られた多くの結果を解析した結果、サファイア単結晶育成時に形成する肩部の形状と凸度とに相関が見られることを見いだし、本発明に至った。
即ち、前記課題を解決する本発明の方法は、CZ法によるサファイア単結晶育成に際して、種結晶部から直胴までの肩部の長さ、すなわち肩部と直胴部との交線で構成される面と種結晶中心を通り引き上げ方向に引いた直線との交点と、前記種結晶中心との距離Aと、直胴部の平均直径Bとの比(B/A)を制御することにより得られるサファイア単結晶固液界面の凸形状の高さを制御するものであり、前記B/Aを2.29以上に制御するものである。
そして、本発明の別の態様は前記B/Aを2.29〜4.5とするものである。
The present inventors tried various studies to solve the above problems. And as a result of analyzing many obtained results, it was found that there was a correlation between the shape of the shoulder formed during the sapphire single crystal growth and the degree of convexity, and the present invention was achieved.
That is, the method of the present invention that solves the above-described problems comprises the length of the shoulder portion from the seed crystal portion to the straight body, that is, the intersection line of the shoulder portion and the straight body portion, when the sapphire single crystal is grown by the CZ method. This is obtained by controlling the ratio (B / A) of the distance A between the intersection of the surface to be passed through the seed crystal center and the straight line drawn in the pulling direction, and the distance A between the seed crystal center and the average diameter B of the straight body portion. The height of the convex shape of the sapphire single crystal solid-liquid interface is controlled, and the B / A is controlled to 2.29 or more.
Then, another aspect of the present invention is to the B / A and from 2.29 to 4.5.

本発明の方法に従えば、得られるサファイア単結晶において、その凸度をCとしたときに、直胴部の平均直径BとCの比B/Cが1.4以上となる。従って、直胴部の長い結晶を育成することが可能となり、また切り離し時のストロークも短くすることができるのでクラック発生の問題も回避できる。   According to the method of the present invention, in the obtained sapphire single crystal, when the convexity is C, the ratio B / C of the average diameter B to C of the straight body portion is 1.4 or more. Accordingly, it is possible to grow a crystal having a long straight body portion, and it is possible to shorten the stroke at the time of separation, thereby avoiding the problem of crack generation.

また、副次的な効果ではあるが、本発明の方法を用いて得られたサファイア単結晶をアニール処理することなく、切断・加工して得たサファイア基板の歪みは従来のサファイア基板と比較して小さく、その結果、従来のサファイア基板よりも割れにくいものとなる。   Moreover, although it is a secondary effect, the distortion of the sapphire substrate obtained by cutting and processing the sapphire single crystal obtained by using the method of the present invention without annealing is compared with that of the conventional sapphire substrate. As a result, it is harder to break than a conventional sapphire substrate.

本発明は、一般的な結晶育成装置の構成を大きく変更することなく、結晶育成開始時の肩形状をコントロールすることにより、サファイア単結晶の育成界面の形状をコントロールするものである。   The present invention controls the shape of the growth interface of a sapphire single crystal by controlling the shoulder shape at the start of crystal growth without greatly changing the configuration of a general crystal growth apparatus.

CZ法による結晶育成では、融解したアルミナ融液に種結晶を漬け、種結晶を回転させつつ上方に徐々に引き上げながら徐々に融液温度を下げて肩部を育成する。その後、回転数、引き上げ速度、融液温度を調整して直胴部を育成する。   In crystal growth by the CZ method, a seed crystal is immersed in a melted alumina melt, and the shoulder is grown by gradually lowering the melt temperature while gradually pulling the seed crystal upward while rotating the seed crystal. Thereafter, the straight body portion is grown by adjusting the rotation speed, the pulling speed, and the melt temperature.

ここで、前記したB/Aを肩開き度と規定する。肩開き度の値が大きいほど肩の開き角度(種結晶を中心とした肩部の開き角度)が大きく、得られる単結晶上部の形状は円柱に近くなる。反対に肩開き度が小さいと肩の開き角度は小さくなり、得られる単結晶上部の形状は円錐に近づく。前記したように単結晶の回転数と引き上げ速度と融液温度とを調整することにより、この肩開き度は調整可能である。   Here, the aforementioned B / A is defined as the degree of shoulder opening. The larger the shoulder opening value, the larger the shoulder opening angle (opening angle of the shoulder centered on the seed crystal), and the shape of the obtained upper portion of the single crystal is close to a cylinder. On the other hand, if the degree of shoulder opening is small, the shoulder opening angle becomes small, and the shape of the obtained single crystal upper part approaches a cone. As described above, this shoulder opening degree can be adjusted by adjusting the number of rotations of the single crystal, the pulling speed, and the melt temperature.

本発明において、なぜ肩開き度を2.29以上とすると得られるサファイア単結晶の凸度が低下するのは数多くの実験データより得られた結果であり、その理屈は明確ではない。しかし、ながら以下のように考えることができる。 In the present invention, why the convexity of the sapphire single crystal obtained when the shoulder opening degree is 2.29 or more is a result obtained from a lot of experimental data, and the reason is not clear. However, it can be considered as follows.

一般に、単結晶成長界面の形状は、固液界面の熱の出入りで決まる。固液界面の熱流は結晶が育成するためには融液側から結晶側に向かう。この熱流が成長面で均一であれば固液界面の形状は平坦な形状となるが、不均一な場合は凸形状となったり凹形状となったりする。Si、GaAsなどの半導体結晶においては、前記熱流は、融液温度と結晶の温度差と結晶内部の熱伝導率で決まる。つまり、高温である融液の熱が熱伝導により結晶内部を伝わり外に放出される。しかしながら、サファイア単結晶のような透明度の高い単結晶育成においては、結晶内部を伝わる熱伝導に加え、結晶内部を輻射熱が伝わることで融液から熱が放出される。サファイア単結晶の場合輻射により放出される熱量と、熱伝導により放出される熱量を比べた場合、前者が圧倒的に大きいと考えられる。本発明で提案した肩開き度にてサファイア単結晶を育成した場合、肩部を含めた単結晶上部がより円筒状に近い形状となり、その結果、輻射熱が、固液界面近傍の温度分布がより均一化される方向に結晶内部から結晶外部に放射されると考えられる。これにより、固液界面形状は、小さな肩開き度の場合より平坦な形状に近づくと考えられる。   In general, the shape of the single crystal growth interface is determined by the heat input and output at the solid-liquid interface. The heat flow at the solid-liquid interface goes from the melt side to the crystal side in order for the crystal to grow. If this heat flow is uniform on the growth surface, the shape of the solid-liquid interface is flat, but if it is not uniform, it becomes a convex shape or a concave shape. In semiconductor crystals such as Si and GaAs, the heat flow is determined by the melt temperature, the temperature difference between the crystals, and the thermal conductivity inside the crystals. That is, the heat of the high-temperature melt is transmitted through the inside of the crystal by heat conduction and released outside. However, in single crystal growth such as sapphire single crystal with high transparency, heat is released from the melt by transmitting radiant heat in the crystal in addition to heat conduction in the crystal. In the case of a sapphire single crystal, when comparing the amount of heat released by radiation with the amount of heat released by heat conduction, the former is considered to be overwhelmingly large. When the sapphire single crystal is grown with the shoulder opening degree proposed in the present invention, the upper portion of the single crystal including the shoulder becomes a more cylindrical shape, and as a result, the radiant heat has a higher temperature distribution near the solid-liquid interface. It is considered that the light is radiated from the inside of the crystal to the outside of the crystal in a uniform direction. Thereby, it is considered that the solid-liquid interface shape is closer to a flat shape than in the case of a small degree of shoulder opening.

以下実施例を用いて本発明をさらに説明する。     The present invention will be further described below using examples.

図1に示した市販の装置(第一機電社製)を用いて直径約50mmと80mmとのサファイア単結晶を育成した。用いたイリジウム坩堝は外径160mm、内径156mm、高さ160mmのものである。   Sapphire single crystals having a diameter of about 50 mm and 80 mm were grown using a commercially available apparatus (Daiichi Kiden Co., Ltd.) shown in FIG. The iridium crucible used has an outer diameter of 160 mm, an inner diameter of 156 mm, and a height of 160 mm.

イリジウム坩堝内に必要量のアルミナを充填し、高周波誘導加熱によりこのアルミナを溶融して融液を得た。サファイア単結晶を用いて作成した種結晶をこの融液に接触させ、種結晶を回転しつつ引き上げ、サファイア単結晶を得た。この際、サファイア単結晶の回転速度と引き上げ速度と融液温度を調節して肩の開き度を変化させた。表1に得られた結晶の肩の開き度と直胴部直径と凸度、及び直胴部直径/凸度との関係を示した。   The iridium crucible was filled with a necessary amount of alumina, and the alumina was melted by high frequency induction heating to obtain a melt. A seed crystal prepared using a sapphire single crystal was brought into contact with this melt, and the seed crystal was pulled up while rotating to obtain a sapphire single crystal. At this time, the opening degree of the shoulder was changed by adjusting the rotation speed, pulling speed and melt temperature of the sapphire single crystal. Table 1 shows the relationship between the degree of shoulder opening, straight body diameter and convexity, and straight body diameter / convexity of the crystals obtained.

Figure 0004940610
Figure 0004940610

表1の実施例3〜22と比較例5〜8の肩の開き度と凸度との関係を図2に示した。横軸を肩の開き度とし、縦軸を凸度とした。   The relationship between the degree of opening of the shoulder and the convexity of Examples 3 to 22 and Comparative Examples 5 to 8 in Table 1 is shown in FIG. The horizontal axis is the degree of shoulder opening, and the vertical axis is the convexity.

図2より、肩の開き度が2.29前後で凸度が歴然と異なり、2.29以上では大きく低減されることが解る。 From FIG. 2, unlike convex degree evident at 2.29 before and after the shoulder of the opening degree, it is found to be significantly reduced in the 2.29 or more.

次に得られた各単結晶をアニール処理することなく切断して基板を作成し、X線ラング法トポグラフ写真を取り、歪み程度を観察した。その結果、凸度の小さいNo1〜22の単結晶から得た基板は、凸度の大きいNo23〜30の単結晶から得た基板と比較して歪みが少なくなっていることが確認できた。   Next, the obtained single crystals were cut without annealing to prepare a substrate, an X-ray Lang method topographic photograph was taken, and the degree of distortion was observed. As a result, it was confirmed that the substrate obtained from the single crystals No. 1 to 22 having a small convexity had less distortion than the substrate obtained from the single crystals No. 23 to 30 having a high convexity.

なお、得られた結晶に泡を含む部分はほとんどなく、結晶育成過程で特に問題は見られなかった。   The obtained crystal had almost no part containing bubbles, and no particular problem was found in the crystal growth process.

実施例で使用した汎用タイプの酸化物結晶育成装置の断面図である。It is sectional drawing of the general purpose type oxide crystal growth apparatus used in the Example. 実施例3〜22と比較例5〜8の肩の開き度と凸度との関係を示した図である。横軸が肩の開き度であり、縦軸が凸度である。It is the figure which showed the relationship between the opening degree of the shoulder of Examples 3-22 and Comparative Examples 5-8, and convexity. The horizontal axis is the degree of shoulder opening, and the vertical axis is the convexity.

符号の説明Explanation of symbols

1―――耐火性ルツボ
2―――耐火ルツボ支持筒
3―――ルツボ台
4―――断熱材
5―――結晶原料融液
6―――単結晶
7―――種結晶
8―――ワークコイル
9―――ルツボ



1 --- Refractory crucible 2 --- Refractory crucible support cylinder 3 --- Crucible base 4 --- Insulating material 5 --- Crystal raw material melt 6 --- Single crystal 7 --- Seed crystal 8- ―Work coil 9 ――― Crucible



Claims (2)

引き上げ法によりサファイア単結晶を育成するに際して、種結晶部から直胴までの肩部の長さ、すなわち肩部と直胴部との交線で構成される面と種結晶中心を通り引き上げ方向に引いた直線との交点と、前記種結晶中心との距離Aと、直胴部の平均直径Bとの比(B/A)を制御することにより得られるサファイア単結晶固液界面の凸形状の高さを制御するものであり、前記B/Aを2.29以上に制御することを特徴とするサファイア単結晶の育成方法。 When growing a sapphire single crystal by the pulling method, the length of the shoulder from the seed crystal part to the straight body, that is, the surface formed by the intersection of the shoulder part and the straight body part and the center of the seed crystal in the pulling direction The convex shape of the sapphire single crystal solid-liquid interface obtained by controlling the ratio (B / A) of the distance A between the intersection with the drawn straight line and the center of the seed crystal and the average diameter B of the straight body portion A method for growing a sapphire single crystal, wherein the height is controlled and the B / A is controlled to be 2.29 or more. 請求項1記載の発明において前記B/Aを2.29〜4.5に制御することを特徴とするサファイア単結晶の育成方法。 2. The method for growing a sapphire single crystal according to claim 1, wherein the B / A is controlled to 2.29 to 4.5.
JP2005283898A 2005-09-29 2005-09-29 Sapphire single crystal growth method Active JP4940610B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005283898A JP4940610B2 (en) 2005-09-29 2005-09-29 Sapphire single crystal growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005283898A JP4940610B2 (en) 2005-09-29 2005-09-29 Sapphire single crystal growth method

Publications (2)

Publication Number Publication Date
JP2007091540A JP2007091540A (en) 2007-04-12
JP4940610B2 true JP4940610B2 (en) 2012-05-30

Family

ID=37977670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005283898A Active JP4940610B2 (en) 2005-09-29 2005-09-29 Sapphire single crystal growth method

Country Status (1)

Country Link
JP (1) JP4940610B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011011950A (en) * 2009-07-03 2011-01-20 Showa Denko Kk Method for producing sapphire single crystal, sapphire single crystal prepared by the method, and method for processing sapphire single crystal
CN102560623B (en) * 2012-02-09 2015-06-24 常州亿晶光电科技有限公司 Preparation method of large-size sapphire single crystal
JP5953884B2 (en) * 2012-03-30 2016-07-20 株式会社Sumco Method for producing sapphire single crystal

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0483790A (en) * 1990-07-24 1992-03-17 Mitsubishi Kasei Corp Growing method for lanthanum aluminate single crystal
JPH07277893A (en) * 1994-04-05 1995-10-24 Mitsubishi Heavy Ind Ltd Production of alumina single crystal
JP2001158693A (en) * 1999-11-29 2001-06-12 Murata Mfg Co Ltd Method for producing oxide single crystal
JP2006151745A (en) * 2004-11-29 2006-06-15 Kyocera Corp Method for producing single crystal and oxide single crystal obtained by using the same

Also Published As

Publication number Publication date
JP2007091540A (en) 2007-04-12

Similar Documents

Publication Publication Date Title
KR101579358B1 (en) Method for producing sic single crystals and production device
TWI632257B (en) Single crystal silicon manufacturing method
KR101501036B1 (en) Sapphire single crystal and process for manufacturing the same
JP4844428B2 (en) Method for producing sapphire single crystal
KR20100013854A (en) Manufacturing device for crystal ingot
JP4940610B2 (en) Sapphire single crystal growth method
JP2017043515A (en) N-type silicon single crystal ingot manufacturing method, n-type silicon wafer manufacturing method, and n-type silicon wafer
JP4844429B2 (en) Method for producing sapphire single crystal
JP5888198B2 (en) Sapphire single crystal manufacturing equipment
CN106048723A (en) Solid-liquid interface control method for growing gallium oxide crystal by utilization of pulling method
JP2008260641A (en) Method of manufacturing aluminum oxide single crystal
JP2006151745A (en) Method for producing single crystal and oxide single crystal obtained by using the same
JP6692846B2 (en) ScAlMgO4 single crystal substrate and method for manufacturing the same
JP2006232570A (en) METHOD FOR PRODUCING GaAs SINGLE CRYSTAL
JP2006327879A (en) Method for manufacturing compound semiconductor single crystal
JP2005231958A (en) Apparatus for growing sapphire single crystal
JP2006044962A (en) Silicon single crystal pulling apparatus
JP2005343737A (en) Apparatus for manufacturing compound semiconductor single crystal
JP2006290641A (en) Production method of compound single crystal
JP2020037499A (en) Heat shield member, apparatus for pulling single crystal and method for manufacturing single crystal
KR100869218B1 (en) Method for Determining Distance of Heat Shield and Manufacturing Apparatus of Silicon Single Crystal Ingot Using the Same
JP2017193469A (en) After-heater and sapphire single crystal production apparatus
JP2006160552A (en) Method for manufacturing silicon single crystal
JP2005298255A (en) Method for producing compound semiconductor single crystal
JP2019178066A (en) METHOD OF MANUFACTURING n-TYPE SILICON SINGLE CRYSTAL INGOT, METHOD OF MANUFACTURING n-TYPE SILICON WAFER, AND n-TYPE SILICON WAFER

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120131

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120213

R150 Certificate of patent or registration of utility model

Ref document number: 4940610

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3