JP2006290641A - Production method of compound single crystal - Google Patents

Production method of compound single crystal Download PDF

Info

Publication number
JP2006290641A
JP2006290641A JP2005110189A JP2005110189A JP2006290641A JP 2006290641 A JP2006290641 A JP 2006290641A JP 2005110189 A JP2005110189 A JP 2005110189A JP 2005110189 A JP2005110189 A JP 2005110189A JP 2006290641 A JP2006290641 A JP 2006290641A
Authority
JP
Japan
Prior art keywords
crucible
single crystal
heater
melt
gaas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005110189A
Other languages
Japanese (ja)
Inventor
Takuji Nagayama
卓司 長山
Shinji Yabuki
伸司 矢吹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2005110189A priority Critical patent/JP2006290641A/en
Publication of JP2006290641A publication Critical patent/JP2006290641A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a compound single crystal through an LEC (liquid encapsulated Czochralski) method, whereby a solid-liquid interface can be controlled to be convexly curved toward a melt, even when growing a large-diameter single crystal. <P>SOLUTION: A ring-shaped under-crucible heater 10 is placed below the peripheral side of a bottom wall of a crucible 7, and its heater surface is slanted off the horizontal plane so that it faces the bottom side of a crucible sidewall 7a. The crucible side wall is heated by the under-crucible heater 10 via the crucible bottom wall to form a large natural convection S of a GaAs melt 6 that rises near the crucible wall and flows toward a growing GaAs single crystal 3. The natural convection S overcomes a forced convection formed near the solid-liquid interface by a relative rotation of the GaAs single crystal 3 and the crucible 7 and becomes the dominant convection in the GaAs melt 6, which enables the solid-liquid interface to be convexly curved toward the GaAs melt 6. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、液体封止引上げ法(LEC法)により化合物単結晶を製造する方法に係り、特に、加熱手段によって融液内対流の改善を図った化合物単結晶の製造方法に関する。   The present invention relates to a method for producing a compound single crystal by a liquid sealing pulling method (LEC method), and more particularly to a method for producing a compound single crystal in which convection in a melt is improved by a heating means.

化合物半導体は、その単結晶の高品質化により、高速集積回路、光−電子集積回路やその他の電子素子に広く用いられるようになってきた。なかでも、III‐V族化合物半導体の砒化ガリウム(GaAs)は電子移動度がシリコンに比べて早く、107Ω・cm以上の比抵抗のウエハが製造容易という特徴がある。現在では、GaAsの単結晶は、主に液体封止引上げ法(LEC法)により製造されている。   Compound semiconductors have been widely used in high-speed integrated circuits, opto-electronic integrated circuits, and other electronic devices due to the high quality of single crystals. Among these, gallium arsenide (GaAs), a group III-V compound semiconductor, has a feature that the electron mobility is faster than that of silicon, and a wafer having a specific resistance of 10 7 Ω · cm or more is easy to manufacture. At present, GaAs single crystals are mainly manufactured by the liquid sealing pulling method (LEC method).

LEC法によるGaAs単結晶の製造方法を図5によって説明する。
図5に示すLEC法によるGaAs単結晶の製造装置(引上げ炉)は、耐圧容器であるチャンバー9と、結晶を引き上げるための引上軸1と、化合物半導体原料を収容する容器であるPBN(Pyrolytic Boron Nitride)製のルツボ7と、このルツボ7を支持するルツボ軸8と、ルツボ7の周囲を取り巻いて設置された加熱手段としてのカーボン製のヒータ5とを有する。
A method for producing a GaAs single crystal by the LEC method will be described with reference to FIG.
The GaAs single crystal manufacturing apparatus (pulling furnace) by the LEC method shown in FIG. 5 is a chamber 9 which is a pressure vessel, a pulling shaft 1 for pulling up the crystal, and a PBN (Pyrolytic) which is a container for containing a compound semiconductor material. A crucible 7 made of Boron Nitride), a crucible shaft 8 that supports the crucible 7, and a carbon heater 5 as a heating means installed around the crucible 7.

結晶製造にあたっては、まず、Ga、As及び封止剤であるB23(三酸化硼素)をルツボ7に入れ、このルツボ7をチャンバー9内にセットする。また、引上軸1の先端に、目的の方位を持った種結晶2を取り付ける。次いで、チャンバー9内を真空にし、不活性ガスを充填した後、ヒータ5に通電し、チャンバー9内の温度を昇温させ、GaとAsを合成してGaAs多結晶を作成する。その後、更に昇温させてGaAsを融液化し、その表面がB23融液4で覆われたGaAs融液6とする。 In manufacturing the crystal, first, Ga, As, and B 2 O 3 (boron trioxide) as a sealing agent are put in the crucible 7, and the crucible 7 is set in the chamber 9. A seed crystal 2 having a target orientation is attached to the tip of the pulling shaft 1. Next, the chamber 9 is evacuated and filled with an inert gas, and then the heater 5 is energized, the temperature in the chamber 9 is increased, and Ga and As are synthesized to produce a GaAs polycrystal. Thereafter, the temperature is further raised to melt the GaAs, and the surface of the GaAs melt 6 is covered with the B 2 O 3 melt 4.

続いて、引上軸1、ルツボ軸8を相対的に回転させる。この状態で、引上軸1を、その先端に取り付けてある種結晶2がGaAs融液6に接触するまで下降させる。その後、この種結晶2を回転させながらゆっくりと引き上げることで、GaAs単結晶3を成長させる。   Subsequently, the pull-up shaft 1 and the crucible shaft 8 are relatively rotated. In this state, the pulling shaft 1 is lowered until the seed crystal 2 attached to the tip of the pulling shaft 1 comes into contact with the GaAs melt 6. Thereafter, the seed crystal 2 is slowly pulled up while rotating to grow a GaAs single crystal 3.

ところで、LEC法による化合物単結晶の製造においては、固液界面が融液側に凹面形状になりやすく、その部分から多結晶化するという問題がある。特に、成長させる結晶径が100mm以上の大口径結晶では、固液界面の重要性は小口径結晶よりも増し、安定的に融液側に凸面形状であることが必要となる。   Incidentally, in the production of a compound single crystal by the LEC method, there is a problem that the solid-liquid interface tends to be concave on the melt side and polycrystallizes from that portion. In particular, in a large-diameter crystal having a crystal diameter of 100 mm or more to be grown, the importance of the solid-liquid interface is more important than that of a small-diameter crystal, and it is necessary to have a convex surface stably on the melt side.

そこで、固液界面の形状を融液側に凸状にするために、ヒータの発熱量の制御、ヒータやホットゾーンの形状等を改良する試みがなされている。例えば、初期原料融液のルツボ内深さと、ヒータの上部スリットと下部スリットの縦方向の重複した部分の長さと、ルツボ底部の温度との関係に着目し、これらを一定の条件下で成長させるもの(特許文献1参照)などがある。
特公平6−88873号公報
Therefore, in order to make the shape of the solid-liquid interface convex toward the melt side, attempts have been made to control the amount of heat generated by the heater and improve the shape of the heater and hot zone. For example, paying attention to the relationship between the depth of the initial raw material melt in the crucible, the length of the overlapping portion of the upper and lower slits of the heater, and the temperature at the bottom of the crucible, these are grown under certain conditions. (Refer to Patent Document 1).
Japanese Patent Publication No. 6-88873

しかしながら、上記従来の技術では、大口径の単結晶を成長させる場合、固液界面形状を、安定的に融液側に凸面に制御するのは難しかった。
このことを更に述べると、結晶欠陥の発生を左右する固液界面形状は、原料融液(GaAs融液)の融液内対流に密接な関係がある。この融液内対流は、融液内温度差に起因してルツボ壁近傍から上昇し成長結晶に向かう自然対流と、結晶・ルツボの相対回転に起因して固液界面付近で渦巻く強制対流とがある。結晶が大口径になるにつれて、回転に起因する固液界面付近の強制対流が支配的になってくる。このため、固液界面形状は融液側に凹面になり易い。転位は固液界面に垂直に伝播するので、固液界面が融液側に凹面の場合、そこに転位が集合して多結晶化することになり、結晶の品質を悪くしているのが現状である。
However, in the conventional technique described above, when growing a large-diameter single crystal, it is difficult to stably control the solid-liquid interface shape to be convex toward the melt side.
More specifically, the solid-liquid interface shape that affects the generation of crystal defects is closely related to the convection in the melt of the raw material melt (GaAs melt). This convection in the melt consists of natural convection that rises from the vicinity of the crucible wall due to the temperature difference in the melt and moves toward the growing crystal, and forced convection that swirls near the solid-liquid interface due to the relative rotation of the crystal and crucible. is there. As the crystal diameter increases, forced convection near the solid-liquid interface due to rotation becomes dominant. For this reason, the solid-liquid interface shape tends to be concave on the melt side. Since dislocations propagate perpendicularly to the solid-liquid interface, if the solid-liquid interface is concave on the melt side, the dislocations will collect and polycrystallize, resulting in poor crystal quality. It is.

本発明は、上記課題を解決し、大口径の単結晶を育成する際にも、固液界面形状を融液側に凸面に制御可能とした化合物単結晶の製造方法を提供する。   The present invention solves the above-described problems and provides a method for producing a compound single crystal that allows the solid-liquid interface shape to be controlled to a convex surface on the melt side even when growing a large-diameter single crystal.

第1の発明は、ルツボに原料及び封止剤を収納し、上記ルツボの周囲に設けた加熱手段により上記ルツボ内を加熱して原料及び封止剤を融解し、融解した原料融液に種結晶を接触させ、上記種結晶を上記ルツボに対して相対的に回転させながら引き上げることにより、化合物単結晶を成長させる液体封止引上げ法を用いた化合物単結晶の製造方法において、上記ルツボの底壁外周部側の下方に底部加熱手段を設け、この底部加熱手段により上記ルツボ底壁を介してルツボ側壁を加熱して、上記ルツボ壁の近傍から上昇して育成中の化合物単結晶に向かう大きな原料融液の自然対流を形成するようにしたことを特徴とする化合物単結晶の製造方法である。   According to a first aspect of the present invention, a raw material and a sealing agent are housed in a crucible, the inside of the crucible is heated by a heating means provided around the crucible to melt the raw material and the sealing agent, and a seed is added to the molten raw material melt. In the method for producing a compound single crystal using a liquid-sealed pulling method for growing a compound single crystal by bringing the seed crystal into contact with the crystal and pulling the seed crystal while rotating relative to the crucible, the bottom of the crucible A bottom heating means is provided below the wall outer peripheral side. The bottom heating means heats the crucible side wall through the crucible bottom wall, and rises from the vicinity of the crucible wall toward the growing compound single crystal. A method for producing a compound single crystal characterized by forming natural convection of a raw material melt.

このように、底部加熱手段によりルツボ底壁を介してルツボ側壁を加熱して、ルツボ壁の近傍から上昇して育成中の化合物単結晶に向かう大きな原料融液の自然対流を形成するように構成しているので、単結晶とルツボとの相対回転に起因する固液界面付近の強制対流に打ち勝って、原料融液内の対流は自然対流が支配的な状態となり、固液界面形状を融液側に凸面に制御可能となる。   In this manner, the crucible side wall is heated through the bottom wall of the crucible by the bottom heating means, and the natural convection of the large raw material melt rising from the vicinity of the crucible wall toward the growing compound single crystal is formed. Therefore, overcoming the forced convection near the solid-liquid interface caused by the relative rotation of the single crystal and the crucible, natural convection is dominant in the convection in the raw material melt, and the solid-liquid interface shape is It becomes controllable to the convex side.

第2の発明は、第1の発明において、上記底部加熱手段は、上記ルツボ底壁外周部に沿ったリング状のヒータであって、そのヒータ面は内周側が外周側よりも高くなって水平面に対して傾斜して形成され、且つ、上記ヒータの内周縁部及び外周縁部から半径方向に切り込まれたスリットを交互に有すると共に、上記スリットの長さBを育成する化合物単結晶の径Aで割った値α(α=B/A)が、0.1≦α≦0.45を満たし、且つ上記ヒータ面の水平面に対する傾斜角θが、30°≦θ≦40°を満たすことを特徴とする化合物単結晶の製造方法である。   According to a second invention, in the first invention, the bottom heating means is a ring-shaped heater along the outer peripheral portion of the crucible bottom wall, and the heater surface has a horizontal surface whose inner peripheral side is higher than the outer peripheral side. The diameter of the compound single crystal that is formed so as to be inclined with respect to the heater and alternately has slits cut in the radial direction from the inner peripheral edge and the outer peripheral edge of the heater and grows the length B of the slit. The value α (α = B / A) divided by A satisfies 0.1 ≦ α ≦ 0.45, and the inclination angle θ of the heater surface with respect to the horizontal plane satisfies 30 ° ≦ θ ≦ 40 °. It is a manufacturing method of the compound single crystal characterized.

本発明によれば、ルツボ壁の近傍から上昇して育成中の化合物単結晶に向かう大きな原料融液の自然対流を形成するようにしたので、単結晶を成長するのに理想的な、融液側に凸面である固液界面形状を形成することが可能となる。よって、高品質の化合物単結晶を歩留りよく製造することができる。   According to the present invention, natural convection of a large raw material melt rising from the vicinity of the crucible wall toward the growing compound single crystal is formed, so that the melt is ideal for growing a single crystal. It is possible to form a solid-liquid interface shape that is convex on the side. Therefore, a high-quality compound single crystal can be produced with a high yield.

以下に、本発明の実施の形態を図面を用いて説明する。
図1は、本実施形態に使用される化合物単結晶の製造装置である。この単結晶製造装置は、原料のGaおよびAsとAsの揮発防止用の封止剤であるB23とを収容するPBN製のルツボ7と、このルツボ7が設置され不活性ガスが充填される炉体部分であるチャンバー(耐圧容器)9と、種結晶2がその下端に取り付けられ、回転・昇降移動可能にチャンバー9内に設けられた引上軸1と、チャンバー9内のルツボ7を回転・昇降移動可能に支持するルツボ軸8と、ルツボ側壁7aの外周を取り巻くように設けられた加熱手段としてのメインヒータ15と、ルツボ底壁7bの外周部側の下方に設けられた底部加熱手段としてのルツボ下ヒータ10と、これらヒータ15,10の周囲に配設された保温部材16とを有している。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 shows an apparatus for producing a compound single crystal used in this embodiment. This single crystal manufacturing apparatus is made of PBN crucible 7 containing raw materials Ga and As and B 2 O 3 which is a sealing agent for preventing volatilization of As, and this crucible 7 is installed and filled with an inert gas. A chamber (pressure vessel) 9 which is a furnace body to be operated, a seed crystal 2 is attached to the lower end thereof, a pulling shaft 1 provided in the chamber 9 so as to be able to rotate and move up and down, and a crucible 7 in the chamber 9 A crucible shaft 8 that can be rotated and moved up and down, a main heater 15 as a heating means provided so as to surround the outer periphery of the crucible side wall 7a, and a bottom portion provided below the outer peripheral side of the crucible bottom wall 7b. It has a crucible lower heater 10 as a heating means, and a heat retaining member 16 disposed around the heaters 15 and 10.

メインヒータ15は、円筒体状のカーボン製ヒータであり、上部・中部・下部の三部に分割され、各部ごとに温度制御できるようになっているが、全体としてはルツボ7より上下方向の長さは長く、ルツボ7外周を包囲するように設けられている。   The main heater 15 is a cylindrical carbon heater, which is divided into three parts, an upper part, a middle part, and a lower part, so that the temperature can be controlled for each part. However, as a whole, the main heater 15 is longer in the vertical direction than the crucible 7. The length is long and is provided so as to surround the outer periphery of the crucible 7.

ルツボ下ヒータ10は、ルツボ底壁7bの外周部に沿ったリング状ないし円環状のヒータであり、メインヒータ15と同様にカーボン製ヒータである。ルツボ下ヒータ10のルツボ底壁7bに対向するヒータ面は、外周側から内周側へと次第に高くなった円錐面状となっており、ヒータ面が、ルツボ側壁7aの底部側に向くように、水平面に対して傾斜角(円錐の底角)θだけ傾斜している。   The crucible lower heater 10 is a ring-shaped or annular heater along the outer peripheral portion of the crucible bottom wall 7 b, and is a carbon heater similar to the main heater 15. The heater surface facing the crucible bottom wall 7b of the lower crucible heater 10 has a conical surface shape that gradually increases from the outer peripheral side to the inner peripheral side, and the heater surface faces the bottom side of the crucible side wall 7a. Inclined by a tilt angle (the base angle of the cone) θ with respect to the horizontal plane.

また、ルツボ下ヒータ10は、図2にこれを展開して示すように、ヒータ10の内周縁部10a及び外周縁部10bから半径方向(幅方向)に内スリット11及び外スリット12を交互に入れたもので、ヒータ線が蛇行したベルト状のヒータが円環状に配設された構造となっている。内スリット11及び外スリット12の長さBは同一であり、これらスリット11,12が円環状のルツボ下ヒータ10の周方向に沿って等間隔に形成されている。なお、上記の円筒体状のメインヒータ15にも、図2に示すようなスリットが、ヒータ上端部及びヒータ下端部から垂直方向に交互に設けられている。   In addition, the lower crucible heater 10 has inner slits 11 and outer slits 12 alternately in the radial direction (width direction) from the inner peripheral edge portion 10a and the outer peripheral edge portion 10b of the heater 10, as shown in FIG. A belt-like heater in which the heater wire meanders is arranged in an annular shape. The inner slit 11 and the outer slit 12 have the same length B, and the slits 11 and 12 are formed at equal intervals along the circumferential direction of the annular crucible lower heater 10. The cylindrical main heater 15 is also provided with slits alternately as shown in FIG. 2 in the vertical direction from the upper end of the heater and the lower end of the heater.

上記のルツボ下ヒータ10は、スリット11,12の長さBを育成する結晶径(GaAs単結晶3の直径)Aで割った値α=B/A、つまり育成する結晶径Aに対するスリットの長さBの割合αが、0.1≦α≦0.45 を満足するように設定されている。例えば、成長結晶の直径が4インチ(101.6mm)の場合には、スリットの長さB(mm)は、101.6×0.45≒45.7≧B≧101.6×0.1≒10.2の範囲にする。また、上述したルツボ下ヒータ10のヒータ面の水平面に対する傾斜角θは、30°≦θ≦40°を満たす範囲に設定されている。   The crucible lower heater 10 has a value α = B / A obtained by dividing the length B of the slits 11 and 12 by the crystal diameter (diameter of the GaAs single crystal 3) A to be grown, that is, the length of the slit with respect to the crystal diameter A to be grown. The ratio α of the thickness B is set so as to satisfy 0.1 ≦ α ≦ 0.45. For example, when the diameter of the grown crystal is 4 inches (101.6 mm), the slit length B (mm) is in the range of 101.6 × 0.45≈45.7 ≧ B ≧ 101.6 × 0.1≈10.2. Further, the inclination angle θ of the heater surface of the lower crucible heater 10 described above with respect to the horizontal plane is set in a range satisfying 30 ° ≦ θ ≦ 40 °.

上記製造装置を用いたGaAs単結晶の製造方法は、基本的には従来技術で説明したLEC法のGaAs単結晶の製造方法と同様である。すなわち、図1において、Ga、As及びB23を充填したルツボ7をチャンバー9内のルツボ軸8上に設置し、チャンバー9内を真空引きした後、不活性ガスで置換し、チャンバー9内を加圧された不活性ガスの雰囲気とする。次いで、ルツボ7内をメインヒータ15及びルツボ下ヒータ10により融点温度以上に加熱し、表面がB23融液4で覆われたGaAs融液6を形成する。更に、ルツボ軸8によりルツボ7を上下方向に移動させ、GaAs融液6最上面の位置をメインヒータ5の発熱する部分の中心の位置とほぼ一致させる。その後、引上軸1を下降させて種結晶2をGaAs融液6に接触させ、主にメインヒータ5の出力の調整により、チャンバー9内の温度を徐々に下げつつ、種結晶2をルツボ7に対して相対的に回転させながら、引上軸1を一定の速度で上昇させることで、GaAs単結晶3を成長させる。 The method for producing a GaAs single crystal using the production apparatus is basically the same as the method for producing a GaAs single crystal of the LEC method described in the prior art. That is, in FIG. 1, the crucible 7 filled with Ga, As, and B 2 O 3 is placed on the crucible shaft 8 in the chamber 9, and the inside of the chamber 9 is evacuated and then replaced with an inert gas. The inside is a pressurized inert gas atmosphere. Next, the inside of the crucible 7 is heated to the melting point temperature or higher by the main heater 15 and the lower crucible heater 10 to form a GaAs melt 6 whose surface is covered with the B 2 O 3 melt 4. Further, the crucible 7 is moved in the vertical direction by the crucible shaft 8 so that the position of the uppermost surface of the GaAs melt 6 is substantially coincident with the position of the center of the heat generating portion of the main heater 5. Thereafter, the pulling-up shaft 1 is lowered to bring the seed crystal 2 into contact with the GaAs melt 6, and the seed crystal 2 is put into the crucible 7 while gradually decreasing the temperature in the chamber 9 mainly by adjusting the output of the main heater 5. The GaAs single crystal 3 is grown by raising the pull-up shaft 1 at a constant speed while rotating relative to the.

本実施の形態において、特徴とするところは、LEC法を用いたGaAs単結晶の製造において、GaAs融液6内の対流を単結晶成長に好適な流れに改善すべく、メインヒータ15だけでなく、更にルツボ底壁7bの外周部側の下方にルツボ下ヒータ10を設け、このルツボ下ヒータ10によりルツボ底壁7bを介してルツボ側壁7aを加熱するように構成したことにある。   The present embodiment is characterized by not only the main heater 15 but also the main heater 15 in order to improve the convection in the GaAs melt 6 to a flow suitable for single crystal growth in the manufacture of a GaAs single crystal using the LEC method. Further, the lower crucible heater 10 is provided below the outer peripheral side of the crucible bottom wall 7b, and the crucible side wall 7a is heated by the lower crucible heater 10 through the crucible bottom wall 7b.

即ち、主にルツボ底壁7b外周部を通じてルツボ側壁7aの底部側を加熱するために、ルツボ下ヒータ10を、ルツボ底壁7bの外周部側の下方に、ルツボ底壁7b外周部に沿ったリング状に形成し、且つ、ルツボ下ヒータ10の内・外スリット11,12の長さB(ルツボ下ヒータ10の幅方向の有効発熱部長さに対応する)を育成するGaAs単結晶3の直径Aで割った値α(=B/A)を、0.1〜0.45に設定している。更に、ルツボ下ヒータ10のヒータ面を、ルツボ側壁7aの底部側に向けるために、水平面に対して傾斜角θ(30度〜40度)だけ傾斜させている。   That is, in order to heat the bottom side of the crucible side wall 7a mainly through the outer peripheral part of the crucible bottom wall 7b, the lower crucible heater 10 is placed below the outer peripheral part side of the crucible bottom wall 7b and along the outer peripheral part of the crucible bottom wall 7b. The diameter of the GaAs single crystal 3 that is formed in a ring shape and grows the length B of the inner and outer slits 11 and 12 of the lower crucible heater 10 (corresponding to the effective heat generating portion length in the width direction of the lower crucible heater 10). A value α (= B / A) divided by A is set to 0.1 to 0.45. Further, the heater surface of the lower crucible heater 10 is inclined by an inclination angle θ (30 ° to 40 °) with respect to the horizontal plane in order to face the bottom side of the crucible side wall 7a.

このようにルツボ下ヒータ10を設定することにより、ルツボ下ヒータ10から放射される熱線Rは、図1に示すように、主にルツボ底壁7b外周部を通過してルツボ側壁7aの底部側に照射され、ルツボ底壁7b外周部およびルツボ側壁7aの底部側を加熱する。(ルツボ下ヒータ10のヒータ面を水平面に対して傾斜角θだけ傾斜させているので、熱線Rは、θ=0のときの垂直上方向からルツボ7の半径方向外方に角度θだけ傾いた方向に進み、ルツボ側壁7aに対して角度θをなして斜めに入射する。)この加熱により、GaAs融液6内の対流は、図1に示すように、ルツボ7壁近傍から上昇し成長結晶に向かう流れ(自然対流S)が大きくなり、自然対流Sが支配的となって、固液界面形状はGaAs融液6側に凸面になりやすい。このことにより、GaAs単結晶3を成長するのに理想的な固液界面形状を形成することが可能となる。   By setting the lower crucible heater 10 in this way, the heat rays R radiated from the lower crucible heater 10 mainly pass through the outer peripheral portion of the crucible bottom wall 7b as shown in FIG. 1, and the bottom side of the crucible side wall 7a. Is applied to heat the outer periphery of the crucible bottom wall 7b and the bottom side of the crucible side wall 7a. (Because the heater surface of the lower crucible heater 10 is inclined with respect to the horizontal plane by the inclination angle θ, the heat ray R is inclined by the angle θ from the vertical upward direction when θ = 0 to the radially outward direction of the crucible 7. The convection in the GaAs melt 6 rises from the vicinity of the crucible 7 wall as shown in FIG. 1, and grows as a result of this heating. The flow toward the surface (natural convection S) becomes larger, the natural convection S becomes dominant, and the solid-liquid interface shape tends to be convex on the GaAs melt 6 side. This makes it possible to form an ideal solid-liquid interface shape for growing the GaAs single crystal 3.

これに対し、上記範囲をはずれて、α値が0.45を超えた場合や、ヒータ面の傾斜角θが25度以下の場合には、ルツボ下軸8がルツボ下ヒータ10により熱せられることにより、GaAs融液6内の対流は、GaAs単結晶3の回転により固液界面付近で渦巻く強制対流が支配的となって、固液界面形状がGaAs融液6側に凹面になりやすい。また、ルツボ下ヒータ10のヒータ面の傾斜角θが45度以上の場合は、ルツボ側壁7aが熱せられず、ルツボ壁近傍から上昇する自然対流Sが小さくなるため、固液界面形状は凸面になりにくい。   On the other hand, the crucible lower shaft 8 is heated by the crucible lower heater 10 when the α value exceeds 0.45 outside the above range or when the inclination angle θ of the heater surface is 25 degrees or less. Therefore, in the convection in the GaAs melt 6, forced convection swirling in the vicinity of the solid-liquid interface is dominant due to the rotation of the GaAs single crystal 3, and the solid-liquid interface shape tends to be concave on the GaAs melt 6 side. Further, when the inclination angle θ of the heater surface of the lower crucible heater 10 is 45 degrees or more, the crucible side wall 7a is not heated and the natural convection S rising from the vicinity of the crucible wall is reduced, so that the solid-liquid interface shape is convex. Hard to become.

次に、本発明の具体的な実施例を説明する。この実施例では、上記実施形態の効果を確認するために、直径6インチ(15.24cm)のGaAs単結晶の成長を行った。ここでは、ルツボ下ヒータ10のスリットの長さBを変更することにより、育成する結晶径(GaAs単結晶3の直径)Aに対するスリット長さBの割合であるα値を0.01〜0.50まで変化させて成長を行った。ルツボ下ヒータ10の傾斜角θは一定(θ=35度)とした。   Next, specific examples of the present invention will be described. In this example, in order to confirm the effect of the above embodiment, a GaAs single crystal having a diameter of 6 inches (15.24 cm) was grown. Here, by changing the slit length B of the lower crucible heater 10, the α value, which is the ratio of the slit length B to the crystal diameter (diameter of the GaAs single crystal 3) A to be grown, is set to 0.01 to 0.00. The growth was carried out by changing to 50. The inclination angle θ of the lower crucible heater 10 is constant (θ = 35 degrees).

図3に、この場合のα値に対する全域単結晶の生産歩留り(単結晶歩留り)の関係を示す。図3に示す通り、単結晶歩留りはα値が大きくなるにつれて徐々に上がり始め、0.1位から単結晶歩留りが80%以上、0.22位から85%以上、0.36位から90%以上となり、0.45を超えたあたりで急激に下がることが分かった。よって単結晶歩留りを高く維持するα値としては、結晶径Aに対してスリット長さBが0.1〜0.45の割合、好ましくは0.22〜0.45の割合、更に好ましくは0.36〜0.45の割合のルツボ下ヒータ10を使用するのが良い。   FIG. 3 shows the relationship of the production yield (single crystal yield) of the whole area single crystal to the α value in this case. As shown in FIG. 3, the single crystal yield starts to gradually increase as the α value increases, and the single crystal yield is 80% or higher from the 0.1th position, from 0.22 to 85%, from the 0.36th position to 90%. It became the above, and it turned out that it falls rapidly around 0.45. Accordingly, the α value for maintaining a high single crystal yield is a ratio of the slit length B to the crystal diameter A of 0.1 to 0.45, preferably 0.22 to 0.45, and more preferably 0. It is preferable to use the lower crucible heater 10 in a ratio of .36 to 0.45.

次に、ルツボ下ヒータ10のヒータ面の傾斜角θを0〜55度の範囲で変えて成長を行った。育成する結晶径Aに対するスリット長さBの割合であるα値は、一定(α=0.40)とした。   Next, growth was performed by changing the inclination angle θ of the heater surface of the lower crucible heater 10 in the range of 0 to 55 degrees. The α value, which is the ratio of the slit length B to the crystal diameter A to be grown, was constant (α = 0.40).

図4に、この場合のヒータ傾斜角θに対する全域単結晶の生産歩留り(単結晶歩留り)の関係を示す。ヒータ傾斜角θが大きくなるにつれて、単結晶歩留りが徐々に上がり始め、図4に示すように、傾斜角θが30度のときには単結晶歩留りが90%に達し、傾斜角θが40度を超えた付近から単結晶歩留りが90%未満に低下する。つまりルツボ下ヒータ10は、傾斜角θが30〜40度の範囲範囲で高い歩留り値を示すことが分かった。よってルツボ下ヒータ10は傾斜角θが30〜40度の範囲で傾けるのが良い。   FIG. 4 shows the relationship of the production yield (single crystal yield) of the entire area single crystal to the heater inclination angle θ in this case. As the heater tilt angle θ increases, the single crystal yield begins to gradually increase. As shown in FIG. 4, when the tilt angle θ is 30 degrees, the single crystal yield reaches 90% and the tilt angle θ exceeds 40 degrees. From the vicinity, the single crystal yield is reduced to less than 90%. That is, it was found that the lower crucible heater 10 exhibits a high yield value in the range of the inclination angle θ of 30 to 40 degrees. Therefore, it is preferable that the lower crucible heater 10 is tilted in the range of the tilt angle θ of 30 to 40 degrees.

上記の実施形態・実施例では、LEC法によりGaAs単結晶を製造する場合について説明したが、本発明はGaAs単結晶だけでなく、GaP、InPなど他の材料を用いた化合物単結晶の製造方法についても、もちろん適用することができる。   In the above-described embodiments and examples, the case where a GaAs single crystal is manufactured by the LEC method has been described. However, the present invention is not limited to a GaAs single crystal but a method for manufacturing a compound single crystal using other materials such as GaP and InP. Of course, it can also be applied.

本発明の一実施形態で使用される化合物単結晶製造装置の概略構造を示す縦断面図である。It is a longitudinal cross-sectional view which shows schematic structure of the compound single crystal manufacturing apparatus used by one Embodiment of this invention. 図1のリング状のルツボ下ヒータを展開して示した平面図である。It is the top view which expand | deployed and showed the ring-shaped crucible lower heater of FIG. 本発明の実施例におけるα値と単結晶歩留りとの関係を示した図である。It is the figure which showed the relationship between (alpha) value and the single crystal yield in the Example of this invention. 本発明の実施例におけるルツボ下ヒータ面の傾斜角θと単結晶歩留りとの関係を示した図である。It is the figure which showed the relationship between the inclination | tilt angle (theta) of the lower heater surface of a crucible, and the single crystal yield in the Example of this invention. 従来の化合物単結晶の製造装置を示す概略縦断面図である。It is a schematic longitudinal cross-sectional view which shows the manufacturing apparatus of the conventional compound single crystal.

符号の説明Explanation of symbols

1 引上軸
2 種結晶
3 GaAs単結晶
4 B2O3融液
5 メインヒータ
6 GaAs融液
7 ルツボ
7a ルツボ側壁
7b ルツボ底壁
8 ルツボ軸
9 チャンバー
10 ルツボ下ヒータ
10a 内周縁部
10b 外周縁部
11 内スリット
12 外スリット
A GaAs単結晶の直径
B スリットの長さ
S 自然対流
θ ヒータ面の傾斜角
1 Pulling shaft 2 Seed crystal 3 GaAs single crystal 4 B2O3 melt 5 Main heater 6 GaAs melt 7 Crucible 7a Crucible side wall 7b Crucible bottom wall 8 Crucible shaft 9 Chamber 10 Crucible bottom heater 10a Inner peripheral edge 10b Outer peripheral edge 11 Inside Slit 12 Outer slit A Diameter of GaAs single crystal B Length of slit S Natural convection θ Angle of inclination of heater surface

Claims (2)

ルツボに原料及び封止剤を収納し、上記ルツボの周囲に設けた加熱手段により上記ルツボ内を加熱して原料及び封止剤を融解し、融解した原料融液に種結晶を接触させ、上記種結晶を上記ルツボに対して相対的に回転させながら引き上げることにより、化合物単結晶を成長させる液体封止引上げ法を用いた化合物単結晶の製造方法において、
上記ルツボの底壁外周部側の下方に底部加熱手段を設け、この底部加熱手段により上記ルツボ底壁を介してルツボ側壁を加熱して、上記ルツボ壁の近傍から上昇して育成中の化合物単結晶に向かう大きな原料融液の自然対流を形成するようにしたことを特徴とする化合物単結晶の製造方法。
The raw material and the sealing agent are stored in the crucible, the inside of the crucible is heated by heating means provided around the crucible, the raw material and the sealing agent are melted, the seed crystal is brought into contact with the molten raw material melt, and the above In the method for producing a compound single crystal using a liquid sealing pulling method for growing a compound single crystal by pulling the seed crystal while rotating it relative to the crucible,
A bottom heating means is provided below the outer peripheral portion of the bottom wall of the crucible. The bottom heating means heats the crucible side wall through the crucible bottom wall, and ascends from the vicinity of the crucible wall to raise the growing compound alone. A method for producing a compound single crystal characterized by forming a natural convection of a large raw material melt toward a crystal.
請求項1記載の化合物単結晶の製造方法において、
上記底部加熱手段は、
上記ルツボ底壁外周部に沿ったリング状のヒータであって、そのヒータ面は内周側が外周側よりも高くなって水平面に対して傾斜して形成され、且つ、上記ヒータの内周縁部及び外周縁部から半径方向に切り込まれたスリットを交互に有すると共に、
上記スリットの長さBを、育成する化合物単結晶の径Aで割った値αが、
0.1≦α≦0.45
を満たし、且つ
上記ヒータ面の水平面に対する傾斜角θが、
30°≦θ≦40°
を満たすことを特徴とする化合物単結晶の製造方法。
In the manufacturing method of the compound single crystal of Claim 1,
The bottom heating means is
A ring-shaped heater along the outer peripheral portion of the bottom wall of the crucible, the heater surface being inclined with respect to a horizontal plane such that the inner peripheral side is higher than the outer peripheral side, and the inner peripheral portion of the heater and While having alternately slits cut in the radial direction from the outer peripheral edge,
A value α obtained by dividing the length B of the slit by the diameter A of the compound single crystal to be grown is
0.1 ≦ α ≦ 0.45
And the inclination angle θ of the heater surface with respect to the horizontal plane is
30 ° ≦ θ ≦ 40 °
The manufacturing method of the compound single crystal characterized by satisfy | filling.
JP2005110189A 2005-04-06 2005-04-06 Production method of compound single crystal Pending JP2006290641A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005110189A JP2006290641A (en) 2005-04-06 2005-04-06 Production method of compound single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005110189A JP2006290641A (en) 2005-04-06 2005-04-06 Production method of compound single crystal

Publications (1)

Publication Number Publication Date
JP2006290641A true JP2006290641A (en) 2006-10-26

Family

ID=37411621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005110189A Pending JP2006290641A (en) 2005-04-06 2005-04-06 Production method of compound single crystal

Country Status (1)

Country Link
JP (1) JP2006290641A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100831809B1 (en) 2006-12-29 2008-05-28 주식회사 실트론 Heater used for growing ingot based on czochralski technology and apparatus using the same
JP2018140900A (en) * 2017-02-28 2018-09-13 住友金属鉱山株式会社 Crystal growth apparatus
CN114232078A (en) * 2021-11-16 2022-03-25 浙江大学杭州国际科创中心 Iridium crucible heating device of single crystal furnace and single crystal growth method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100831809B1 (en) 2006-12-29 2008-05-28 주식회사 실트론 Heater used for growing ingot based on czochralski technology and apparatus using the same
JP2018140900A (en) * 2017-02-28 2018-09-13 住友金属鉱山株式会社 Crystal growth apparatus
CN114232078A (en) * 2021-11-16 2022-03-25 浙江大学杭州国际科创中心 Iridium crucible heating device of single crystal furnace and single crystal growth method

Similar Documents

Publication Publication Date Title
KR101263082B1 (en) Sapphire Ingot Grower
JP2002201092A (en) Apparatus for manufacturing single crystal ingot
JP5464429B2 (en) Method for growing single crystal silicon having a square cross section
JP2022518858A (en) Semiconductor crystal growth device
JP4830312B2 (en) Compound semiconductor single crystal and manufacturing method thereof
KR101680215B1 (en) Method for manufacturing silicone single crystal ingot and silicone single crystal ingot manufactured by the method
JP2012513950A (en) Method and pull assembly for pulling a polycrystalline silicon ingot from a silicon melt
JP5169814B2 (en) Method for growing silicon single crystal and silicon single crystal grown by the method
JP2006290641A (en) Production method of compound single crystal
JP2006327879A (en) Method for manufacturing compound semiconductor single crystal
JP2011079693A (en) Apparatus for producing semiconductor single crystal
JP2006151745A (en) Method for producing single crystal and oxide single crystal obtained by using the same
JP6597857B1 (en) Heat shielding member, single crystal pulling apparatus and single crystal manufacturing method
KR102104072B1 (en) Method and apparatus for silicon single crystal growth
JP4702266B2 (en) Single crystal pulling method
KR101956754B1 (en) DEVICE FOR SINGLE CRYSTAL GROWTH OF GaAs
JP4207783B2 (en) Method for producing compound semiconductor single crystal
JP2005200228A (en) Growth method for compound semiconductor single crystal
JP2006219310A (en) Apparatus and method for manufacturing semiconductor single crystal
JP4161787B2 (en) Method for producing compound semiconductor single crystal
JP2005298255A (en) Method for producing compound semiconductor single crystal
JP2009249250A (en) Silicon single crystal pull-up apparatus and pull-up method using the same
JP2005298252A (en) Apparatus for manufacturing compound semiconductor single crystal
JP2004323269A (en) Method for producing compound semiconductor single crystal
JP2006169031A (en) Method for manufacturing compound semiconductor single crystal