JP2006327879A - Method for manufacturing compound semiconductor single crystal - Google Patents

Method for manufacturing compound semiconductor single crystal Download PDF

Info

Publication number
JP2006327879A
JP2006327879A JP2005154463A JP2005154463A JP2006327879A JP 2006327879 A JP2006327879 A JP 2006327879A JP 2005154463 A JP2005154463 A JP 2005154463A JP 2005154463 A JP2005154463 A JP 2005154463A JP 2006327879 A JP2006327879 A JP 2006327879A
Authority
JP
Japan
Prior art keywords
crucible
single crystal
susceptor
compound semiconductor
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005154463A
Other languages
Japanese (ja)
Inventor
Takuji Nagayama
卓司 長山
Shinji Yabuki
伸司 矢吹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2005154463A priority Critical patent/JP2006327879A/en
Publication of JP2006327879A publication Critical patent/JP2006327879A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To make it possible to reduce the defect by the contact of a solid-liquid interface with the basilar part of a crucible by that the radiant heat from a raw material melt is intercepted by a heat insulating material and the convex degree of a convex shape of a solid-liquid interface is balanced in the manufacturing method of a compound semiconductor single crystal by a LEC method. <P>SOLUTION: The radiant heat from a crucible 7 to a base section 9a of a susceptor 9 is intercepted by a heat insulating material 10 disposed inside the base section 9a of the susceptor 9, thereby the solid-liquid interface 12 of a compound semiconductor single crystal and a raw material melt is maintained in a convex shape at the side of the raw material melt and the convex shape of the solid-liquid interface 12 is balanced so that the solid-liquid interface 12 may not come into contact with the basilar part of the crucible 7 while growing. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、LEC法(Liquid Encapsulated Czochralski method:液体封止引上げ法)による化合物半導体単結晶の製造方法、特に固液界面が成長中にルツボの底部に接触しないように固液界面の凸面形状のバランスをとる技術に関するものである。   The present invention relates to a method for producing a compound semiconductor single crystal by the LEC method (Liquid Encapsulated Czochralski method), and more particularly, the convex shape of the solid-liquid interface so that the solid-liquid interface does not contact the bottom of the crucible during growth. It relates to balancing technology.

化合物半導体はその単結晶の高品質化により、高速集積回路、光−電子集積回路やその他の電子素子に広く用いられるようになってきた。なかでも、III−V族化合物半導体の砒化ガリウム(GaAs)は電子移動度がシリコンに比べて速く、107Ω・cm以上の比抵抗のウエハが製造容易という特長がある。現在では上記GaAsの単結晶は、主に液体封止引上げ法(LEC法)により製造されている。   Compound semiconductors have been widely used in high-speed integrated circuits, opto-electronic integrated circuits, and other electronic devices due to the high quality of single crystals. Among them, the III-V compound semiconductor gallium arsenide (GaAs) has a feature that the electron mobility is faster than that of silicon and a wafer having a specific resistance of 10 7 Ω · cm or more can be easily manufactured. At present, the GaAs single crystal is mainly manufactured by the liquid sealing pulling method (LEC method).

LEC法によるGaAs単結晶の製造方法を図3によって説明する。   A method for producing a GaAs single crystal by the LEC method will be described with reference to FIG.

図3に示すLEC法によるGaAs単結晶の製造装置は、耐圧容器であるチャンバー11と、結晶を引き上げる為の引上軸1、化合物半導体原料を収容する容器であるPBN(Pyrolytic Boron Nitride:熱分解窒化ホウ素)製のルツボ7と、このルツボ7を受ける為のサセプター9と、ルツボ軸8を有する構造となっている。   A GaAs single crystal manufacturing apparatus by the LEC method shown in FIG. 3 includes a chamber 11 that is a pressure vessel, a pulling shaft 1 for pulling up the crystal, and a PBN (Pyrolytic Boron Nitride) that is a container that contains a compound semiconductor material. The structure has a crucible 7 made of boron nitride, a susceptor 9 for receiving the crucible 7, and a crucible shaft 8.

ルツボ7を受けるサセプター9は、ルツボ7と相似形の有底無蓋の円筒状(カップ状)に形成され、サセプター9内にルツボ7が収容されるようになっている。サセプター9は、鉛直なルツボ軸8の上端に固定されている。このルツボ軸8の下端はチャンバー11の外部下側に設けられた回転・昇降手段(図示せず)に連結され、これによりサセプター9及びルツボ7はルツボ軸8を中心として回転、昇降自在となっている。チャンバー11内において、サセプター9の周囲には円筒状のカーボン製のヒータ5が配置されている。ヒータ5とチャンバー11の側壁との間には円筒状の熱シールド部材13、14が配置され、サセプター9とチャンバー11の底板との間には円板状の熱シールド部材15が配置されている。チャンバー11内のルツボ7の上側にはルツボ軸8と同軸に引上軸1が設けられている。引上軸1はチャンバー11の外部上側に設けられた回転・昇降手段(図示せず)により、回転、昇降自在となっている。引上軸1の下端にはホルダにより種結晶2が取り付けられる。   The susceptor 9 that receives the crucible 7 is formed in a bottomed and uncovered cylindrical shape (cup shape) similar to the crucible 7, and the crucible 7 is accommodated in the susceptor 9. The susceptor 9 is fixed to the upper end of the vertical crucible shaft 8. The lower end of the crucible shaft 8 is connected to rotation / lifting means (not shown) provided outside the chamber 11, so that the susceptor 9 and the crucible 7 can rotate and move up and down around the crucible shaft 8. ing. In the chamber 11, a cylindrical carbon heater 5 is disposed around the susceptor 9. Cylindrical heat shield members 13 and 14 are disposed between the heater 5 and the side wall of the chamber 11, and a disk-shaped heat shield member 15 is disposed between the susceptor 9 and the bottom plate of the chamber 11. . On the upper side of the crucible 7 in the chamber 11, a pull-up shaft 1 is provided coaxially with the crucible shaft 8. The pull-up shaft 1 can be rotated and moved up and down by rotation / lifting means (not shown) provided on the outside upper side of the chamber 11. A seed crystal 2 is attached to the lower end of the pull-up shaft 1 by a holder.

結晶製造方法については、先ず原料の容器となるルツボ7にGaとAs及び液体封止剤である三酸化硼素4を入れ、これをチャンバー11内にセットする。又、引上軸1の先端に目的の方位を持った種結晶2を取りつける。   Regarding the crystal manufacturing method, first, Ga and As and boron trioxide 4 which is a liquid sealant are put in a crucible 7 which is a raw material container, and this is set in a chamber 11. A seed crystal 2 having a target orientation is attached to the tip of the pulling shaft 1.

チャンバー11に原料をセットした後、チャンバー11内を真空にし、不活性ガスを充填する。その後、チャンバー11内に設置してあるヒータ5に通電しチャンバー11内の温度を昇温させ、GaとAsを合成しGaAs多結晶を作成する。その後、更に昇温させGaAsを融液化させ、GaAs融液(原料融液)6とする。   After setting the raw material in the chamber 11, the inside of the chamber 11 is evacuated and filled with an inert gas. Thereafter, the heater 5 installed in the chamber 11 is energized to raise the temperature in the chamber 11, and Ga and As are synthesized to produce a GaAs polycrystal. Thereafter, the temperature is further raised to melt GaAs to obtain a GaAs melt (raw material melt) 6.

続いて、引上軸1、ルツボ軸8を相対的に回転させる。この状態で引上軸1の先端に取り付けてある種結晶2がGaAs融液6に接触するまで引上軸1を下降させる。その後、この種結晶2を回転させながらゆっくりと引き上げることでGaAs単結晶3を成長する。   Subsequently, the pull-up shaft 1 and the crucible shaft 8 are relatively rotated. In this state, the pulling shaft 1 is lowered until the seed crystal 2 attached to the tip of the pulling shaft 1 comes into contact with the GaAs melt 6. Thereafter, the seed crystal 2 is slowly pulled up while rotating to grow a GaAs single crystal 3.

GaAs単結晶の成長中は、GaAs単結晶の外径を一定に保つ外径制御を行う。また、GaAs単結晶の成長によりGaAs融液6の液面が減少した分だけルツボ軸8を上昇させて、GaAs融液の液面が常に一定の位置になるようにする制御を行う。   During the growth of the GaAs single crystal, the outer diameter control is performed to keep the outer diameter of the GaAs single crystal constant. Further, the crucible shaft 8 is raised by the amount corresponding to the decrease in the liquid level of the GaAs melt 6 due to the growth of the GaAs single crystal so that the liquid level of the GaAs melt is always at a fixed position.

GaAs単結晶の製造においては、固液界面の凹面化が進むと、GaAs単結晶が成長する過程において結晶格子がずれ、多結晶化が促進される為、固液界面を融液側に凸面にしてGaAs単結晶を成長する必要がある。   In the manufacture of GaAs single crystals, as the solid-liquid interface becomes concave, the crystal lattice shifts during the growth of the GaAs single crystal, and polycrystallization is promoted. Therefore, the solid-liquid interface is made convex on the melt side. It is necessary to grow a GaAs single crystal.

従来、PBN製の直径15.24cm(6インチ径)のルツボを用いたGaAs単結晶の製造方法において、GaAs融液の温度が高いときは固液界面形状が融液に対して凹状になるので多結晶が発生するとの見地から、ヒータの上下部スリットの重複長さとルツボ内の融液深さを考慮した一定温度範囲内に、GaAs融液の温度(即ちルツボ底部の温度)が入るようにヒータの発熱量を制御し、固液界面の形状を融液に対して凸状にすることが知られている(例えば、特許文献1参照。)。
特公平6−88873号公報
Conventionally, in a method for producing a GaAs single crystal using a PBN crucible having a diameter of 15.24 cm (6 inches), when the temperature of the GaAs melt is high, the solid-liquid interface shape becomes concave with respect to the melt. From the standpoint that polycrystals are generated, the temperature of the GaAs melt (that is, the temperature at the bottom of the crucible) should be within a certain temperature range in consideration of the overlapping length of the upper and lower slits of the heater and the melt depth in the crucible. It is known to control the amount of heat generated by the heater so that the shape of the solid-liquid interface is convex with respect to the melt (see, for example, Patent Document 1).
Japanese Patent Publication No. 6-88873

しかしながら、成長させる結晶径が100mm以上の大口径の単結晶の場合には、固液界面の凸面化が進んで、固液界面がルツボ底部に接触することがある。特許文献1には、このように固液界面の凸面化が進んだ場合の不都合については、何ら言及するところがない。   However, in the case of a single crystal having a large diameter of 100 mm or more to be grown, the solid-liquid interface may become convex, and the solid-liquid interface may come into contact with the crucible bottom. Patent Document 1 does not mention any inconvenience when the convexity of the solid-liquid interface progresses in this way.

すなわち、100mm以上の大口径の単結晶を製造する場合には、当然ながら固液界面の重要性が小口径の単結晶よりも増し、原料融液側に凸面であることが必要とされるが、図3の公知例を適用すると、固液界面の凸面化が進み、つまり凸度が大きくなり、成長中に固液界面がルツボ底部に接触するという事象(不良)が多発する問題が発生する。   That is, in the case of producing a single crystal having a large diameter of 100 mm or more, the importance of the solid-liquid interface is naturally increased as compared with the single crystal having a small diameter, and a convex surface is required on the raw material melt side. When the known example in FIG. 3 is applied, the solid-liquid interface becomes convex, that is, the degree of convexity increases, and there is a problem that the phenomenon (defect) that the solid-liquid interface contacts the crucible bottom during growth frequently occurs. .

そこで、本発明の目的は、上記課題を解決し、LEC法による化合物半導体単結晶の製造方法において、原料融液からの輻射熱を断熱材で遮断することで、固液界面の凸面形状の凸度のバランスをとり、固液界面とルツボ底部との接触による不良を低減することが出来る化合物半導体単結晶の製造方法を提供することにある。   Accordingly, an object of the present invention is to solve the above-mentioned problems and to block the radiant heat from the raw material melt with a heat insulating material in the method for producing a compound semiconductor single crystal by the LEC method, thereby increasing the convexity of the convex shape of the solid-liquid interface. It is an object of the present invention to provide a method for producing a compound semiconductor single crystal capable of reducing the defects caused by contact between the solid-liquid interface and the crucible bottom.

上記目的を達成するため、本発明は、次のように構成したものである。   In order to achieve the above object, the present invention is configured as follows.

請求項1の発明に係る化合物半導体単結晶の製造方法は、ルツボをサセプターに乗せ、これを不活性ガスで充填された耐圧容器内に収容して加熱し、その加熱されたルツボ内に原料融液と液体封止剤を収納し、種結晶を原料融液に接触させつつ種結晶とルツボとを相対的に移動させて、化合物半導体単結晶を成長させるLEC法による化合物半導体単結晶の製造方法において、上記ルツボからサセプターのベース部への輻射熱を、サセプターのベース部の内側に設けた断熱材で遮断することにより、化合物半導体単結晶と原料融液の固液界面を原料融液側に凸面形状に維持し、かつ、その固液界面が成長中にルツボの底部に接触しないようにすることを特徴とする。   In the method for producing a compound semiconductor single crystal according to the first aspect of the present invention, a crucible is placed on a susceptor, accommodated in a pressure-resistant container filled with an inert gas, heated, and the raw material melted in the heated crucible. A method for producing a compound semiconductor single crystal by the LEC method, in which a liquid and a liquid sealant are accommodated, and the seed crystal is brought into contact with the raw material melt while the seed crystal and the crucible are moved relatively to grow the compound semiconductor single crystal The solid-liquid interface between the compound semiconductor single crystal and the raw material melt is convex on the raw material melt side by blocking the radiant heat from the crucible to the base portion of the susceptor with a heat insulating material provided inside the base portion of the susceptor. It is characterized by maintaining its shape and preventing its solid-liquid interface from touching the bottom of the crucible during growth.

この特徴によれば、固液界面の凸面形状のバランスをとり、固液界面の凸度を適正に維持して、固液界面が成長中にルツボの底部に接触する事象の発生率を激減させることができる。   According to this feature, the convex shape of the solid-liquid interface is balanced, the convexity of the solid-liquid interface is properly maintained, and the incidence of the event that the solid-liquid interface contacts the bottom of the crucible during growth is drastically reduced. be able to.

断熱材は、サセプターのベース部の内側に設ければ足りるが、事情によってはベース部及び周壁部からなる有底無蓋の円筒状(カップ状)のサセプターにおいて、そのベース部の内側だけでなく周壁部の内側にも部分的に設けることができる。すなわち、周壁部の上下方向の領域のうちの下部領域(ベース部の周縁から上方向に続く領域)にも、断熱材を設けることができる。このように周壁部の下領域に断熱材を設けると、原料融液が減少してルツボ及びサセプターが上昇した場合に、ルツボ及びサセプターの下部がヒータに過度に加熱されて、熱流のバランスが崩れるという不都合な事態の発生を緩和することができる。   It is sufficient that the heat insulating material is provided inside the base portion of the susceptor. However, depending on the circumstances, the bottomed and uncovered cylindrical (cup-shaped) susceptor includes not only the inside of the base portion but also the peripheral wall. It can also be partially provided inside the part. That is, a heat insulating material can be provided also in a lower region (a region continuing upward from the periphery of the base portion) in the vertical region of the peripheral wall portion. When the heat insulating material is provided in the lower region of the peripheral wall as described above, when the raw material melt decreases and the crucible and the susceptor rise, the lower part of the crucible and the susceptor is excessively heated by the heater, and the balance of the heat flow is lost. The occurrence of such an inconvenient situation can be alleviated.

請求項2の発明は、請求項1記載の化合物半導体単結晶の製造方法において、上記サセプターを、上記ルツボの底面と接するベース部及びルツボの周面と接する周壁部からなる有底無蓋の円筒状とし、そのベース部にのみ内側に上記断熱材を設けて、上記ルツボからサセプターのベース部への輻射熱を遮断することを特徴とする。   According to a second aspect of the present invention, there is provided a method for producing a compound semiconductor single crystal according to the first aspect, wherein the susceptor comprises a base portion in contact with the bottom surface of the crucible and a bottomed, uncovered cylindrical shape comprising a peripheral wall portion in contact with the peripheral surface of the crucible. In addition, the heat insulating material is provided on the inner side only in the base portion, and radiant heat from the crucible to the base portion of the susceptor is blocked.

この特徴によれば、断熱材を、有底無蓋の円筒状のサセプタのベース部(底部)にのみ設けるという比較的簡易な手段でありながら、固液界面の凸度を適正に維持するように、固液界面の凸面形状のバランスを容易にとることができる。   According to this feature, the convexity of the solid-liquid interface is properly maintained while being a relatively simple means of providing the heat insulating material only on the base portion (bottom portion) of the bottomed and uncovered cylindrical susceptor. It is possible to easily balance the convex shape of the solid-liquid interface.

請求項3の発明は、請求項2記載の化合物半導体単結晶の製造方法において、上記サセプターのベース部の断熱材の平面的に見た大きさ及び形状を、上記ルツボ底面の大きさ及び形状とほぼ同一にすることを特徴とする。   A third aspect of the present invention is the method for producing a compound semiconductor single crystal according to the second aspect, wherein the size and shape of the heat insulating material of the base portion of the susceptor as viewed in plan are the size and shape of the bottom surface of the crucible. It is characterized by being almost identical.

この特徴によれば、固液界面が成長中にルツボの底部に接触する事象の発生率を最小にすることができる。この請求項3には、上記サセプターのベース部の断熱材の直径dをルツボの直径Dとほぼ同一にする形態が含まれる。   This feature minimizes the incidence of events where the solid-liquid interface contacts the bottom of the crucible during growth. The third aspect includes a mode in which the diameter d of the heat insulating material of the base portion of the susceptor is substantially the same as the diameter D of the crucible.

<発明の要点>
GaAs単結晶を成長する際における問題点の一つとして、転位の集合による結晶の多結晶化がある。転位は、GaAs単結晶と融液の境界面である固液界面に垂直に伝播する性質があり、固液界面が融液側に凹面形状を成していると、転位の集合が生じる。よって、転位の集合を防止するため、GaAs単結晶の成長中、常に融液側に凸となるように固液界面の形状を制御する。
<Key points of the invention>
One of the problems in growing a GaAs single crystal is polycrystallization of crystals due to dislocation aggregation. Dislocations have the property of propagating perpendicularly to the solid-liquid interface, which is the boundary surface between the GaAs single crystal and the melt. If the solid-liquid interface has a concave shape on the melt side, a set of dislocations occurs. Therefore, in order to prevent dislocation aggregation, the shape of the solid-liquid interface is controlled so that it always protrudes toward the melt during the growth of the GaAs single crystal.

ところが、100mm以上の大口径の単結晶を製造する場合においては、固液界面の凸面化が進み過ぎることがある。つまり、図3の公知例を適用した場合に、固液界面の凸度が大きくなり、成長中に固液界面がルツボ底部に接触するという事象(不良)が多発する。   However, in the case of producing a single crystal having a large diameter of 100 mm or more, the solid-liquid interface may become too convex. That is, when the known example of FIG. 3 is applied, the degree of convexity of the solid-liquid interface increases, and an event (defect) that the solid-liquid interface contacts the crucible bottom during growth frequently occurs.

本発明者が鋭意研究した結果、その原因は、上記図3の引上げ法において、GaAs融液からの輻射熱が、PBN製のルツボを通して、グラファイト製のサセプターのベース部へ逃げる為、成長中に固液界面がルツボ底部に接触しない最適な凸度とするように固液界面の凸面のバランスをとることが困難であることに起因することが分かった。   As a result of intensive studies by the present inventors, the cause is that in the pulling method shown in FIG. 3, the radiant heat from the GaAs melt escapes through the PBN crucible to the base portion of the graphite susceptor. It was found that it was difficult to balance the convex surface of the solid-liquid interface so that the liquid interface did not contact the crucible bottom.

そこで、本発明では、LEC法による化合物半導体単結晶の製造方法において、GaAs融液からの輻射熱を断熱材で遮断することで、固液界面の凸面形状のバランスをとる、つまり固液界面の凸度を適正に維持することを容易にして、固液界面とルツボ底部との接触による不良を低減する。   Therefore, in the present invention, in the method for producing a compound semiconductor single crystal by the LEC method, the radiant heat from the GaAs melt is shielded by a heat insulating material to balance the convex shape of the solid-liquid interface, that is, the convexity of the solid-liquid interface. It is easy to maintain the degree appropriately, and defects due to contact between the solid-liquid interface and the crucible bottom are reduced.

本発明によれば、ルツボからサセプターのベース部への輻射熱を、サセプターのベース部の内側に設けた断熱材で遮断するので、これにより、化合物半導体単結晶と原料融液の固液界面が原料融液側に凸面形状に維持された状態において、その固液界面の凸面形状のバランスをとること、つまり固液界面の凸度を適正に維持することが容易となり、固液界面が成長中にルツボの底部に接触する事象の発生率を激減させることができる。   According to the present invention, the radiant heat from the crucible to the base portion of the susceptor is blocked by the heat insulating material provided inside the base portion of the susceptor, so that the solid-liquid interface between the compound semiconductor single crystal and the raw material melt is formed as a raw material. While maintaining the convex shape on the melt side, it becomes easy to balance the convex shape of the solid-liquid interface, that is, maintain the convexity of the solid-liquid interface properly, and the solid-liquid interface is growing. The incidence of events that touch the bottom of the crucible can be drastically reduced.

従って、本発明の効果として、理想的な固液界面形状を形成することが可能となり、高品質の単結晶を得ることができる。   Therefore, as an effect of the present invention, an ideal solid-liquid interface shape can be formed, and a high-quality single crystal can be obtained.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

この実施形態は、PBN製のルツボ内に封止剤と共に入れた化合物半導体の原料を加熱して、液体封止剤で覆われた化合物半導体の融液に種結晶を接触させ、この種結晶を引上げることにより化合物半導体の単結晶を成長させる化合物半導体単結晶の製造方法において、PBN製のルツボからグラファイト製のサセプターのベース部への輻射熱を断熱材で遮断し、これにより固液界面がPBN製のルツボ底部と接触する不都合を防止し、良質な単結晶を引上げるものである。   In this embodiment, a raw material of a compound semiconductor placed together with a sealant in a PBN crucible is heated to bring the seed crystal into contact with the melt of the compound semiconductor covered with the liquid sealant. In a method of manufacturing a compound semiconductor single crystal by growing a single crystal of a compound semiconductor by pulling up, radiation heat from a PBN crucible to a base of a graphite susceptor is shielded by a heat insulating material, so that a solid-liquid interface is PBN. This prevents the inconvenience of contact with the bottom of the crucible made of metal and pulls up a good quality single crystal.

図1は、本発明の実施の形態に係る化合物半導体単結晶の製造装置の構成を示す。   FIG. 1 shows a configuration of a compound semiconductor single crystal manufacturing apparatus according to an embodiment of the present invention.

この化合物半導体単結晶の製造装置は、従来の図3の装置の場合と同様に、円筒状のチャンバー11を有しており、このチャンバー11内に、原料容器としてのPBN製のルツボ7と、このルツボ7を受けるグラファイト製のサセプター9とを有し、このサセプター9は、鉛直なルツボ軸8の上端に固定されている。このルツボ軸8の下端はチャンバー11の外部下側に設けられた回転・昇降手段(図示せず)に連結され、これによりルツボ7及びサセプター9はルツボ軸8を中心として回転、昇降自在となっている。   This compound semiconductor single crystal manufacturing apparatus has a cylindrical chamber 11 as in the case of the conventional apparatus of FIG. 3, and a PBN crucible 7 serving as a raw material container in the chamber 11, A graphite susceptor 9 for receiving the crucible 7 is provided, and the susceptor 9 is fixed to the upper end of the vertical crucible shaft 8. The lower end of the crucible shaft 8 is connected to rotation / lifting means (not shown) provided on the outside lower side of the chamber 11, so that the crucible 7 and the susceptor 9 can be rotated and raised / lowered about the crucible shaft 8. ing.

チャンバー11内において、サセプター9の周囲にはこれを取り巻いて電磁誘導加熱用のコイル部からなるヒータ又はカーボン製のヒータ5が配置される。ヒータ5とチャンバー11の側壁との間には円筒状の熱シールド部材13、14が配置され、サセプター9とチャンバー11の底板との間には円板状の熱シールド部材15が配置されている。チャンバー11内のルツボ7の上側にはルツボ軸8と同軸に引上軸1が設けられている。引上軸1はチャンバー11の外部上側に設けられた回転・昇降手段(図示せず)により、回転、昇降自在となっている。引上軸1の下端にはホルダにより種結晶2が取り付けられる。   In the chamber 11, a heater made of a coil portion for electromagnetic induction heating or a carbon heater 5 is disposed around the susceptor 9. Cylindrical heat shield members 13 and 14 are disposed between the heater 5 and the side wall of the chamber 11, and a disk-shaped heat shield member 15 is disposed between the susceptor 9 and the bottom plate of the chamber 11. . On the upper side of the crucible 7 in the chamber 11, a pull-up shaft 1 is provided coaxially with the crucible shaft 8. The pull-up shaft 1 can be rotated and moved up and down by rotation / lifting means (not shown) provided on the outside upper side of the chamber 11. A seed crystal 2 is attached to the lower end of the pull-up shaft 1 by a holder.

図1において、ルツボ7を支える上記サセプター9は、ルツボ7と相似形の有底無蓋の円筒状(カップ状)に形成され、サセプター9内にルツボ7が収容されるようになっている。すなわち、サセプター9は、ルツボ7の底面と接するベース部(底面部)9aと、その外周縁に立設され且つルツボ7の周壁と接する周壁部9bとからなる有底無蓋の円筒状(カップ状)に形成されている。   In FIG. 1, the susceptor 9 that supports the crucible 7 is formed in a bottomed and uncovered cylindrical shape (cup shape) similar to the crucible 7, and the crucible 7 is accommodated in the susceptor 9. That is, the susceptor 9 has a bottomed and uncovered cylindrical shape (cup shape) composed of a base portion (bottom surface portion) 9a that contacts the bottom surface of the crucible 7 and a peripheral wall portion 9b that stands on the outer peripheral edge and contacts the peripheral wall of the crucible 7. ).

このルツボ7には、化合物半導体を成長させる原料融液であるGaAs融液6と、このGaAs融液6の上面を覆う液体封止剤(封止剤融液)である三酸化硼素4が収容される。このGaAs融液6及び三酸化硼素4は、ルツボ7に多結晶原料及び封止剤を収容し、加熱溶融させることで形成される。この目的で、ルツボ7の外周には、電磁誘導加熱用のコイル部からなるヒータ又はカーボン製のヒータ5が設けられる。ルツボ7の底部中央に連結した回転軸8によりルツボ7を回転させ、ルツボ7内の多結晶原料や封止剤の状態を周方向に均一にする。   The crucible 7 contains a GaAs melt 6 that is a raw material melt for growing a compound semiconductor, and boron trioxide 4 that is a liquid sealing agent (sealing agent melt) that covers the upper surface of the GaAs melt 6. Is done. The GaAs melt 6 and boron trioxide 4 are formed by containing a polycrystalline raw material and a sealing agent in a crucible 7 and melting them by heating. For this purpose, a heater composed of a coil portion for electromagnetic induction heating or a carbon heater 5 is provided on the outer periphery of the crucible 7. The crucible 7 is rotated by the rotating shaft 8 connected to the center of the bottom of the crucible 7, and the state of the polycrystalline raw material and the sealing agent in the crucible 7 is made uniform in the circumferential direction.

上記した部分の構成は従来と同じである。しかし、図1に示した製造装置において、サセプター9のベース部9aの内側には、本発明に従い、熱遮蔽特性に優れる材料、例えば、グラファイトから成る断熱材10が設けてあり、この断熱材10により、ルツボ7からサセプター9のベース部9aへの輻射熱を遮断する構成となっている。換言すれば、PBN製のルツボ7を乗せる保持治具であるサセプター9は、グラファイト製のサセプター本体(図のサセプター9)とそのベース部9aの内側に設置した断熱材10から成る二重構造となっている。また見方を変えれば、サセプター9はグラファイトから成り、そのベース部9aの肉厚を周壁部9bの肉厚よりも厚くした構成となっている。   The configuration of the above-described part is the same as the conventional one. However, in the manufacturing apparatus shown in FIG. 1, a heat insulating material 10 made of a material having excellent heat shielding characteristics, for example, graphite, is provided inside the base portion 9 a of the susceptor 9 according to the present invention. Thus, the radiant heat from the crucible 7 to the base portion 9a of the susceptor 9 is blocked. In other words, the susceptor 9, which is a holding jig for placing the PBN crucible 7, has a double structure comprising a graphite susceptor body (susceptor 9 in the figure) and a heat insulating material 10 installed inside the base portion 9a. It has become. In other words, the susceptor 9 is made of graphite, and the base portion 9a is thicker than the peripheral wall portion 9b.

上記サセプター9のベース部9aの断熱材10の平面的に見た大きさ及び形状は、ルツボ7の底面の大きさ及び形状とほぼ同一になっている。ここではサセプター9のベース部9a上における断熱材10の直径dをルツボ7の直径Dとほぼ同一にしてある。また、ルツボ7の中心と断熱材10の中心とは同心軸上に位置している。これらはGaAs融液6のルツボ底面内における熱の分布を均一にするためである。   The size and shape of the heat insulating material 10 of the base portion 9 a of the susceptor 9 as viewed in plan are substantially the same as the size and shape of the bottom surface of the crucible 7. Here, the diameter d of the heat insulating material 10 on the base portion 9 a of the susceptor 9 is made substantially the same as the diameter D of the crucible 7. Further, the center of the crucible 7 and the center of the heat insulating material 10 are located on a concentric axis. These are for making the distribution of heat uniform in the bottom of the crucible of the GaAs melt 6.

このようにサセプター9のベース部9aの内側に断熱材10を設け、上記ルツボ7からサセプター9のベース部9aへの輻射熱を断熱材10で遮断することにより、GaAs単結晶3とGaAs融液(原料融液)6の固液界面12をGaAs融液側に凸面形状に維持し、かつ、その固液界面12が成長中にルツボ7の底部に接触しないように、固液界面12の凸面形状のバランスをとることができる。   In this way, the heat insulating material 10 is provided inside the base portion 9a of the susceptor 9, and the radiant heat from the crucible 7 to the base portion 9a of the susceptor 9 is shielded by the heat insulating material 10, whereby the GaAs single crystal 3 and the GaAs melt ( Convex shape of the solid-liquid interface 12 is maintained so that the solid-liquid interface 12 of the raw material melt 6) is convex on the GaAs melt side and the solid-liquid interface 12 does not contact the bottom of the crucible 7 during growth. Can be balanced.

この効果は、断熱材10の直径dがルツボ7の直径Dとほぼ同一である場合に顕著となり、GaAs融液6からの輻射熱が断熱材10で均一に遮断され、固液界面12の凸面形状のバランスが容易にとれ、固液界面12の適正な凸度が維持される。このことにより、固液界面12がルツボ7の底部に接触せず、単結晶を成長するのに理想な固液界面12を形成することが可能となる。また、断熱材10の直径dがルツボ7の直径Dよりも小さい場合はGaAs融液からサセプター9のベース部9aへ流れる輻射熱を十分に遮断することが出来ない為、固液界面12がルツボ7の底部に接触する不良が発生する。   This effect becomes remarkable when the diameter d of the heat insulating material 10 is substantially the same as the diameter D of the crucible 7, and the radiant heat from the GaAs melt 6 is uniformly blocked by the heat insulating material 10, and the convex shape of the solid-liquid interface 12 is obtained. Is easily balanced, and the appropriate convexity of the solid-liquid interface 12 is maintained. As a result, the solid-liquid interface 12 does not come into contact with the bottom of the crucible 7, and an ideal solid-liquid interface 12 for growing a single crystal can be formed. In addition, when the diameter d of the heat insulating material 10 is smaller than the diameter D of the crucible 7, the radiant heat flowing from the GaAs melt to the base portion 9 a of the susceptor 9 cannot be sufficiently blocked. Defects that come into contact with the bottom of the garment occur.

次に、本発明の実施例について説明する。ここでは、図1の構成の化合物半導体単結晶製造装置を用いて、LEC法により直径約15.24cm(6インチ)のGaAs単結晶3を試作した。この直径約15.24cm(6インチ)のGaAs単結晶を育成する為に、使用したPBNルツボの直径Dは350mmとした。   Next, examples of the present invention will be described. Here, a GaAs single crystal 3 having a diameter of about 15.24 cm (6 inches) was prototyped by the LEC method using the compound semiconductor single crystal manufacturing apparatus having the configuration shown in FIG. In order to grow this GaAs single crystal having a diameter of about 15.24 cm (6 inches), the diameter D of the PBN crucible used was 350 mm.

ルツボ7に原料であるGaを12,000g、Asを13,000g、及びAsの揮発防止剤である三酸化硼素4を2,000g入れた。また、結晶の元となる種結晶2を引上軸1の先端の種ホルダに取りつけた。なお、この種結晶2は、融液化したGaAs融液6と接する面を(100)面とした。   Crucible 7 was charged with 12,000 g of Ga as a raw material, 13,000 g of As, and 2,000 g of boron trioxide 4 as an As volatilization inhibitor. Further, the seed crystal 2 which is the base of the crystal was attached to the seed holder at the tip of the pulling shaft 1. The seed crystal 2 has a (100) plane in contact with the melted GaAs melt 6.

チャンバー11内に上記ルツボ7をセットした後、チャンバー11内を真空にし、更に不活性ガスを充填し、その後、ヒータ5に通電を行ってチャンバー11内の温度を昇温させ、GaとAsを合成し、GaAsを作製し、更に昇温を続けてGaAsを融液化させた。続いて、引上軸1を10rpmで回転させると共に、ルツボ軸8を引上軸1とは逆方向に20rpmで回転させた。この状態で、種結晶2が融液化したGaAsに接触するまで引上軸1を下降させ、続いて、ヒータ5の設定温度を徐々に下げつつ引上軸を10mm/hの速度で上昇させ、GaAs単結晶3の成長を行った。   After the crucible 7 is set in the chamber 11, the inside of the chamber 11 is evacuated and filled with an inert gas, and then the heater 5 is energized to raise the temperature in the chamber 11, thereby increasing Ga and As. Then, GaAs was synthesized, and the temperature was further raised to melt GaAs. Subsequently, the pull-up shaft 1 was rotated at 10 rpm, and the crucible shaft 8 was rotated at 20 rpm in the direction opposite to the pull-up shaft 1. In this state, the pulling shaft 1 is lowered until the seed crystal 2 comes into contact with the melted GaAs, and then the pulling shaft is raised at a speed of 10 mm / h while gradually lowering the set temperature of the heater 5. A GaAs single crystal 3 was grown.

GaAs単結晶の成長中は、GaAs単結晶の外径を一定に保つ外径制御を行うと共に、GaAs単結晶の成長によりGaAs融液6の液面が減少した分だけルツボ軸8を上昇させて、GaAs融液の液面が常に一定の位置になるようにする制御を行った。   During the growth of the GaAs single crystal, the outer diameter control is performed to keep the outer diameter of the GaAs single crystal constant, and the crucible shaft 8 is raised by the amount that the liquid level of the GaAs melt 6 is reduced by the growth of the GaAs single crystal. Then, control was performed so that the liquid surface of the GaAs melt was always at a fixed position.

図2に、上記製造方法において、ルツボ7の直径D(D=350mm)に対し上記断熱材10の直径dを50mm〜350mmと変化させた場合に、固液界面12がルツボ7の底部に接触する事象が発生する発生率(%)を示す。図2から分かるように、断熱材10の直径dがルツボ7の直径Dに近づくにつれて、固液界面12がルツボ7の底部に接触する事象の発生率が下がっている。そして、断熱材10の直径dがルツボ7の直径Dとほぼ同一になった時点で、固液界面12がルツボ7の底部に接触する事象の発生率が最低(ほぼゼロ)となることが分かる。   In FIG. 2, when the diameter d of the heat insulating material 10 is changed from 50 mm to 350 mm with respect to the diameter D (D = 350 mm) of the crucible 7 in the above manufacturing method, the solid-liquid interface 12 contacts the bottom of the crucible 7. Indicates the occurrence rate (%) at which events occur. As can be seen from FIG. 2, as the diameter d of the heat insulating material 10 approaches the diameter D of the crucible 7, the incidence of events in which the solid-liquid interface 12 contacts the bottom of the crucible 7 decreases. And when the diameter d of the heat insulating material 10 becomes substantially the same as the diameter D of the crucible 7, it can be seen that the occurrence rate of the event that the solid-liquid interface 12 contacts the bottom of the crucible 7 becomes the lowest (almost zero). .

[他の実施の形態]
上記実施の形態においては、LEC法によりGaAs単結晶を製造する場合を例にして説明したが、本発明は、GaAs以外の他の材料を用いたLEC法による単結晶の製造方法についても適用可能である。
[Other embodiments]
In the above embodiment, the case where a GaAs single crystal is manufactured by the LEC method has been described as an example. However, the present invention can also be applied to a method for manufacturing a single crystal by the LEC method using a material other than GaAs. It is.

上記実施の形態においては、断熱材10は、サセプター9のベース部9aの内側にのみ設けたが、事情によってはベース部9aの内側だけでなく周壁部9bの内側にも部分的に設ける形態としてもよい。すなわち、周壁部9bの上下方向の領域のうち、その下部領域(ベース部9aの周縁から上方向に続く部分領域)にも、断熱材10を設けることができる。このように周壁部9bの下領域に断熱材10を設けると、原料融液が減少し、これに応じた位置補正のためルツボ7及びサセプター9が上昇した場合に、そのルツボ7及びサセプター9の下部がヒータ5に過度に加熱されて、熱流のバランスが崩れるという不都合を緩和することができる。   In the said embodiment, although the heat insulating material 10 was provided only in the inner side of the base part 9a of the susceptor 9, as a form provided in part not only inside the base part 9a but inside the surrounding wall part 9b depending on circumstances. Also good. That is, the heat insulating material 10 can be provided also in the lower region (partial region continuing upward from the periphery of the base portion 9a) in the vertical region of the peripheral wall portion 9b. When the heat insulating material 10 is provided in the lower region of the peripheral wall portion 9b in this way, the raw material melt is reduced, and when the crucible 7 and the susceptor 9 are raised for position correction according to this, the crucible 7 and the susceptor 9 The disadvantage that the lower portion is excessively heated by the heater 5 and the balance of the heat flow is lost can be alleviated.

本発明の化合物半導体単結晶の製造方法により砒化ガリウム単結晶を成長する製造装置の概念図である。It is a conceptual diagram of the manufacturing apparatus which grows a gallium arsenide single crystal by the manufacturing method of the compound semiconductor single crystal of this invention. ルツボの直径Dに対し断熱材の直径dを変化させた場合に、固液界面がルツボ底部に接触する発生率(%)が変化する関係を示した図である。It is the figure which showed the relationship in which the incidence (%) which a solid-liquid interface contacts a crucible bottom part changes when the diameter d of a heat insulating material is changed with respect to the diameter D of a crucible. 従来の化合物半導体単結晶の製造方法により砒化ガリウム単結晶を成長する製造装置の概念図である。It is a conceptual diagram of the manufacturing apparatus which grows a gallium arsenide single crystal by the manufacturing method of the conventional compound semiconductor single crystal.

符号の説明Explanation of symbols

1 引上軸
2 種結晶
3 GaAs単結晶
4 三酸化硼素
5 ヒータ
6 GaAs融液(原料融液)
7 ルツボ
8 ルツボ軸
9 サセプター
9a ベース部(底面部)
9b 周壁部
10 断熱材
11 チャンバー
12 固液界面
13 熱シールド部材
14 熱シールド部材
15 熱シールド部材
1 Pull-up shaft 2 Seed crystal 3 GaAs single crystal 4 Boron trioxide 5 Heater 6 GaAs melt (raw material melt)
7 crucible 8 crucible shaft 9 susceptor 9a base (bottom)
9b peripheral wall part 10 heat insulating material 11 chamber 12 solid-liquid interface 13 heat shield member 14 heat shield member 15 heat shield member

Claims (3)

ルツボをサセプターに乗せ、これを不活性ガスで充填された耐圧容器内に収容して加熱し、その加熱されたルツボ内に原料融液と液体封止剤を収納し、種結晶を原料融液に接触させつつ種結晶とルツボとを相対的に移動させて、化合物半導体単結晶を成長させるLEC法による化合物半導体単結晶の製造方法において、
上記ルツボからサセプターのベース部への輻射熱を、サセプターのベース部の内側に設けた断熱材で遮断することにより、化合物半導体単結晶と原料融液の固液界面を原料融液側に凸面形状に維持し、かつ、その固液界面が成長中にルツボの底部に接触しないようにすることを特徴とする化合物半導体単結晶の製造方法。
Place the crucible on the susceptor, place it in a pressure-resistant container filled with inert gas, heat it, store the raw material melt and the liquid sealant in the heated crucible, and seed the raw material melt. In the method of manufacturing a compound semiconductor single crystal by the LEC method in which the seed crystal and the crucible are relatively moved while being in contact with each other to grow a compound semiconductor single crystal,
By blocking the radiant heat from the crucible to the base part of the susceptor with a heat insulating material provided inside the base part of the susceptor, the solid-liquid interface between the compound semiconductor single crystal and the raw material melt has a convex shape on the raw material melt side. A method for producing a compound semiconductor single crystal, characterized by maintaining and preventing the solid-liquid interface from contacting the bottom of a crucible during growth.
請求項1記載の化合物半導体単結晶の製造方法において、
上記サセプターを、上記ルツボの底面と接するベース部及びルツボの周面と接する周壁部からなる有底無蓋の円筒状とし、そのベース部にのみ内側に上記断熱材を設けて、上記ルツボからサセプターのベース部への輻射熱を遮断することを特徴とする化合物半導体単結晶の製造方法。
In the manufacturing method of the compound semiconductor single crystal of Claim 1,
The susceptor has a bottomed and uncovered cylindrical shape composed of a base portion in contact with the bottom surface of the crucible and a peripheral wall portion in contact with the peripheral surface of the crucible, and the heat insulating material is provided only inside the base portion to A method for producing a compound semiconductor single crystal, wherein radiant heat to a base portion is blocked.
請求項2記載の化合物半導体単結晶の製造方法において、
上記サセプターのベース部の断熱材の平面的に見た大きさ及び形状を、上記ルツボ底面の大きさ及び形状とほぼ同一にすることを特徴とする化合物半導体単結晶の製造方法。
In the manufacturing method of the compound semiconductor single crystal of Claim 2,
A method for producing a compound semiconductor single crystal, wherein the size and shape of the heat insulating material of the base portion of the susceptor as viewed in plan are substantially the same as the size and shape of the bottom surface of the crucible.
JP2005154463A 2005-05-26 2005-05-26 Method for manufacturing compound semiconductor single crystal Pending JP2006327879A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005154463A JP2006327879A (en) 2005-05-26 2005-05-26 Method for manufacturing compound semiconductor single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005154463A JP2006327879A (en) 2005-05-26 2005-05-26 Method for manufacturing compound semiconductor single crystal

Publications (1)

Publication Number Publication Date
JP2006327879A true JP2006327879A (en) 2006-12-07

Family

ID=37549962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005154463A Pending JP2006327879A (en) 2005-05-26 2005-05-26 Method for manufacturing compound semiconductor single crystal

Country Status (1)

Country Link
JP (1) JP2006327879A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100980822B1 (en) 2007-12-17 2010-09-10 (주)아이블포토닉스 The growing method of piezoelectric single crystal
JP2011046573A (en) * 2009-08-28 2011-03-10 Hitachi Cable Ltd Method for producing compound semiconductor crystal
JP2012236750A (en) * 2011-05-13 2012-12-06 Hitachi Cable Ltd GaAs SINGLE CRYSTAL WAFER, AND METHOD FOR MANUFACTURING THE SAME
KR101303130B1 (en) * 2011-02-15 2013-09-09 관동대학교산학협력단 Apparatus of manufacturing GaAs ingot

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100980822B1 (en) 2007-12-17 2010-09-10 (주)아이블포토닉스 The growing method of piezoelectric single crystal
JP2011046573A (en) * 2009-08-28 2011-03-10 Hitachi Cable Ltd Method for producing compound semiconductor crystal
KR101303130B1 (en) * 2011-02-15 2013-09-09 관동대학교산학협력단 Apparatus of manufacturing GaAs ingot
JP2012236750A (en) * 2011-05-13 2012-12-06 Hitachi Cable Ltd GaAs SINGLE CRYSTAL WAFER, AND METHOD FOR MANUFACTURING THE SAME

Similar Documents

Publication Publication Date Title
JP3961750B2 (en) Single crystal growth apparatus and growth method
JP2006327879A (en) Method for manufacturing compound semiconductor single crystal
JP2007077017A (en) Growth apparatus and growth method for single crystal
JP2011079693A (en) Apparatus for producing semiconductor single crystal
JP2006290641A (en) Production method of compound single crystal
JP2005343737A (en) Apparatus for manufacturing compound semiconductor single crystal
JP2009161395A (en) Method for manufacturing compound semiconductor single crystal
JP2005298256A (en) Crucible and apparatus and method for manufacturing compound semiconductor single crystal
JP2855408B2 (en) Single crystal growth equipment
JP2005200228A (en) Growth method for compound semiconductor single crystal
KR20100092174A (en) Method for manufacturing single crystal with uniform distribution of resistivity characteristics and single crystal manufactured thereof
JP2005298252A (en) Apparatus for manufacturing compound semiconductor single crystal
JP4155085B2 (en) Method for producing compound semiconductor single crystal
KR101625431B1 (en) Method for growing a silicon single crystal using czochralski method and silicon single crystal ingot
JPH05319973A (en) Single crystal production unit
JP2005097032A (en) Apparatus for growing semiconductor single crystal and heater for the same
JP2006219310A (en) Apparatus and method for manufacturing semiconductor single crystal
KR20030070477A (en) Crystal Growing Apparatus For Increasing GaAs Single Crystal Yield
JP2004123444A (en) Apparatus for manufacturing compound semiconductor single crystal
JPH03193689A (en) Production of compound semiconductor crystal
JP2004323327A (en) Apparatus for growing compound semiconductor single crystal
JP4207783B2 (en) Method for producing compound semiconductor single crystal
JP4161787B2 (en) Method for producing compound semiconductor single crystal
JP2004269273A (en) Method for manufacturing compound semiconductor single crystal
JP2005298255A (en) Method for producing compound semiconductor single crystal