JP2005097032A - Apparatus for growing semiconductor single crystal and heater for the same - Google Patents

Apparatus for growing semiconductor single crystal and heater for the same Download PDF

Info

Publication number
JP2005097032A
JP2005097032A JP2003331755A JP2003331755A JP2005097032A JP 2005097032 A JP2005097032 A JP 2005097032A JP 2003331755 A JP2003331755 A JP 2003331755A JP 2003331755 A JP2003331755 A JP 2003331755A JP 2005097032 A JP2005097032 A JP 2005097032A
Authority
JP
Japan
Prior art keywords
heater
single crystal
crucible
raw material
liquid sealant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003331755A
Other languages
Japanese (ja)
Inventor
Takahiro Minagawa
貴裕 皆川
Shinji Yabuki
伸司 矢吹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2003331755A priority Critical patent/JP2005097032A/en
Publication of JP2005097032A publication Critical patent/JP2005097032A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for growing a semiconductor single crystal, which has a heater structure, enabling reduction of the quantity of radiation to the single crystal exposed in an inert gas without using a shielding body, and further enabling the heat insulation of the single crystal located in a liquid encapsulating agent from a raw material melt. <P>SOLUTION: In the apparatus, the quantity of radiation to the single crystal exposed in the inert gas is reduced by partitioning an area in the up-and-down direction of a heater 6 into an upper heater part 62 and a lower heater part 61 across a part corresponding to the surface of the liquid encapsulating agent 2, and then making the heater cross sectional area of the upper heater part 62 larger than that of the lower heater part 61 so as to partially suppress the calorific value. Further, the side face of the single crystal 1 located in the liquid encapsulating agent is kept warm by inclining the inside wall of the upper heater part 62 of the heater 6 so that the inside wall approaches to the liquid encapsulating agent 2 side toward upper side. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、化合物半導体の単結晶成長装置およびそのヒータに関するものである。   The present invention relates to a compound semiconductor single crystal growth apparatus and its heater.

化合物半導体はその単結晶の高品質化により、高速集積回路、光−電子集積回路やその他の電子素子に広く用いられるようになってきた。なかでも、III−V族化合物半導体の砒化ガリウムは電子移動度がシリコンに比べて早く、107Ω・cm以上の比抵抗のウェハが製造容易という特長がある。現在では上記GaAsの単結晶は、主に液体封止チョクラルスキ法(Liquid Encapsulated Czochralski法、以下「LEC法」と記す)により製造されている。 Compound semiconductors have been widely used in high-speed integrated circuits, opto-electronic integrated circuits and other electronic devices due to the high quality of single crystals. Among these, gallium arsenide, which is a group III-V compound semiconductor, has a feature that electron mobility is faster than that of silicon, and a wafer having a specific resistance of 10 7 Ω · cm or more can be easily manufactured. At present, the single crystal of GaAs is manufactured mainly by a liquid-encapsulated Czochralski method (hereinafter referred to as “LEC method”).

このLEC法は、図2に示すように、多結晶原料を収容したPBN(Pyrolytic Boron Nitride:熱分解窒化ホウ素)製容器(るつぼ5)を、不活性ガス8で充填した耐圧容器21内に配置し、PBN製容器5を加熱して多結晶原料を原料融液3とし、種結晶4を原料融液3に接触させつつ種結晶4とPBNるつぼ5を相対的に移動させて単結晶1を成長させる方法である。そして、As(ヒ素)の様に解離圧が非常に高い材料を原料とする場合には、原料表面を、高温でも安定した材質及び単結晶の成長を妨げない流体等の特性を持った例えばB23から成る液体封止剤2で覆う。 In this LEC method, as shown in FIG. 2, a PBN (pyrolytic boron nitride) container (crucible 5) containing a polycrystalline raw material is placed in a pressure resistant container 21 filled with an inert gas 8. Then, the PBN container 5 is heated to use the polycrystalline raw material as the raw material melt 3, and the seed crystal 4 and the PBN crucible 5 are moved relative to each other while the seed crystal 4 is in contact with the raw material melt 3. It is a way to grow. When a material having a very high dissociation pressure, such as As (arsenic), is used as a raw material, the surface of the raw material is stable even at high temperatures, and has characteristics such as a fluid that does not hinder the growth of a single crystal. Cover with a liquid sealant 2 made of 2 O 3 .

具体的にGaAs単結晶の製造方法を説明する。   A method for producing a GaAs single crystal will be specifically described.

図2に示すLEC法のGaAs単結晶製造装置20は、炉体部分である耐圧容器21と、単結晶を引き上げる為の引上軸23と、原料の容器であるPBN製るつぼ5と、このPBNるつぼを受ける為のるつぼ軸24と、上記るつぼ5の周囲を取り巻いて設置された加熱手段としてのグラファイトヒータ22とを有する構造となっている。ここでヒータ22はるつぼ5より長く設計されている。   A GaAs single crystal manufacturing apparatus 20 of the LEC method shown in FIG. 2 includes a pressure vessel 21 as a furnace body portion, a pulling shaft 23 for pulling up the single crystal, a PBN crucible 5 as a raw material container, and the PBN. It has a structure having a crucible shaft 24 for receiving a crucible and a graphite heater 22 as a heating means installed around the crucible 5. Here, the heater 22 is designed to be longer than the crucible 5.

LEC法によるGaAs単結晶の製造方法については、図2において、先ず原料の容器となるPBNるつぼ5に、化合物半導体原料のGa及びAsと、Asの揮発防止材である三酸化硼素(B23)を入れ、これを耐圧容器21内にセットする。又、引上軸23の先端に単結晶の元となる種結晶4を取り付ける。原料をセットした後、高圧容器21内を真空にし、不活性ガスを充填(真空・ガス置換)する。 The preparation method of the GaAs single crystal by LEC method, in FIG. 2, the PBN crucible 5 which is a container of raw material, the Ga and As compound semiconductor material, boron trioxide is volatile prevention material of As (B 2 O 3 ) is put and set in the pressure vessel 21. Further, the seed crystal 4 that is the base of the single crystal is attached to the tip of the pulling shaft 23. After setting the raw materials, the high-pressure vessel 21 is evacuated and filled with an inert gas (vacuum / gas replacement).

その後、高圧容器21内にるつぼ5を取り巻いて設置してあるヒータ22に通電し、高圧容器21内の温度を昇温させ、GaとAsを合成し融液化させて、GaAs融液3とする。   Thereafter, the heater 22 installed around the crucible 5 in the high-pressure vessel 21 is energized, the temperature in the high-pressure vessel 21 is raised, and Ga and As are synthesized and melted to obtain a GaAs melt 3. .

次に、PBNるつぼ5を移動させ、GaAs融液3の最上面の位置を、ヒータ22の発熱する部分の中心位置と一致させる。   Next, the PBN crucible 5 is moved so that the position of the uppermost surface of the GaAs melt 3 coincides with the center position of the heat generating portion of the heater 22.

次いで、引上軸23、るつぼ軸を回転方向が逆になるように回転させつつ、引上軸23を、先端に取り付けてある種結晶4がGaAs融液3に接触するまで下降させる。続いて、ヒータ22の出力の調整により高圧容器21内の温度を徐々に下げつつ、引上軸23を一定の速度で上昇させることで、種結晶4(種付け部)から徐々に直胴部まで太く単結晶を成長させる。目標とする結晶直径となったならば、直径を一定に保つため、直胴部の外形を制御しつつGaAs単結晶1を製造する。   Next, while rotating the pulling shaft 23 and the crucible shaft so that the rotation directions are reversed, the pulling shaft 23 is lowered until the seed crystal 4 attached to the tip contacts the GaAs melt 3. Subsequently, by gradually lowering the temperature in the high-pressure vessel 21 by adjusting the output of the heater 22, the pull-up shaft 23 is raised at a constant speed, so that the seed crystal 4 (seeding part) gradually goes to the straight body part. Grow thick single crystals. When the target crystal diameter is reached, the GaAs single crystal 1 is manufactured while controlling the outer shape of the straight body portion in order to keep the diameter constant.

ところで、上記のLEC法によってGaAs単結晶を製造するに際しては、結晶が多結晶化するのを防止して単結晶部分をできるだけ長くすることが好ましい。単結晶部分が長ければ、1本の材料からより多くのウェハをスライスすることができ、また引上げ炉の準備時間と準備回数を削減でき、さらには特性評価の回数も減らすことができる。また、引き上げに用いる消耗品(るつぼ、液体封止剤)費用の原価に対する割合を下げることができる。   By the way, when manufacturing a GaAs single crystal by the above LEC method, it is preferable to prevent the crystal from being polycrystallized and make the single crystal portion as long as possible. If the single crystal portion is long, more wafers can be sliced from one material, the preparation time and the number of preparations of the pulling furnace can be reduced, and the number of characterizations can be reduced. Moreover, the ratio with respect to the cost of the consumables (crucible, liquid sealing agent) used for raising can be lowered.

上記の多結晶化の原因は主として2つあり、一つは固液界面形状が凹凸になり、その部分に熱応力が集中して転位が発生して起こるものであり、他の一つは結晶の表面荒れ、つまり結晶表面が輻射熱を受けて高温となり、As(砒素)が解離して残されたGa(ガリウム)が表面を伝って固液界面に達して起こるものである。   There are mainly two causes of the above-mentioned polycrystallization. One is that the solid-liquid interface shape is uneven, and thermal stress is concentrated on that part, resulting in dislocations. The other is crystal Surface roughness of the crystal, that is, the crystal surface is heated to a high temperature due to radiant heat, and As (arsenic) is dissociated and left Ga (gallium) reaches the solid-liquid interface through the surface.

前者の原因を解消すべく、ヒータの発熱量の制御、ヒータやホットゾーンの形状等を改良する試みがなされている。例えば、シリコン単結晶引上炉において、ヒータの上部スリットと下部スリットの縦方向の重複した部分の長さと、ヒータの内径との関係に着目し、一定の条件下でシリコン単結晶を成長させるもの(例えば、特許文献1参照)がある。   In order to eliminate the former cause, attempts have been made to improve the amount of heat generated by the heater and the shape of the heater and hot zone. For example, in a silicon single crystal pulling furnace, paying attention to the relationship between the length of the vertical overlap of the upper and lower slits of the heater and the inner diameter of the heater, the silicon single crystal is grown under certain conditions (For example, see Patent Document 1).

また後者の原因の解消策としては、単結晶の周りに筒や板を設けて輻射熱を遮ったり、筒や板或いは単結晶にガスを吹き付けることが試みられている。例えば、特開平9−52790号公報(特許文献2)では、図4に示すように、るつぼ5の内面と成長した単結晶1の側面との間に遮蔽体30を設け、その筒部31で単結晶1を囲繞してるつぼ5から単結晶1へ向かう輻射熱を遮り、また通気孔32から上方へ高温ガスを逃がすように構成している。
特開平11−116390号公報 特開平9−52790号公報
As a solution to the latter cause, attempts have been made to provide a cylinder or plate around the single crystal to block radiant heat, or to blow a gas onto the cylinder, plate or single crystal. For example, in Japanese Patent Laid-Open No. 9-52790 (Patent Document 2), as shown in FIG. 4, a shield 30 is provided between the inner surface of the crucible 5 and the side surface of the grown single crystal 1. The single crystal 1 is surrounded so as to block radiant heat from the crucible 5 toward the single crystal 1, and the high temperature gas is allowed to escape upward from the vent hole 32.
JP 11-116390 A JP-A-9-52790

しかしながら、従来の技術では次のような課題がある。   However, the conventional techniques have the following problems.

上記したように、従来のヒータ22は、るつぼ5中の原料融液の加熱及び、単結晶側面からの放熱を抑制する目的で、原料融液から液体封止剤中の単結晶側面を保温する為に、るつぼ5より長く設計されている。この為、図3に示すように、成長した単結晶1の液体封止剤2から不活性ガス8中に露出した部分が、ヒータ22からの熱輻射7で加熱され、結晶中よりAs(砒素)9が解離し、それによりGa(ガリウム)10が溶け出して多結晶11を生じさせる多結晶化の起点となることが問題となっている。   As described above, the conventional heater 22 retains the single crystal side surface in the liquid sealant from the raw material melt for the purpose of suppressing the heating of the raw material melt in the crucible 5 and the heat dissipation from the single crystal side surface. Therefore, it is designed longer than the crucible 5. Therefore, as shown in FIG. 3, the portion of the grown single crystal 1 exposed from the liquid sealant 2 in the inert gas 8 is heated by the heat radiation 7 from the heater 22, and As (arsenic) from the crystal. ) 9 is dissociated, whereby Ga (gallium) 10 is melted and polycrystal 11 is formed, which is a starting point for polycrystallization.

これに対して特許文献1では、単結晶1の露出部分への熱輻射7の量を低減するための仕切りとして、図4の如く遮蔽体30を単結晶・ヒータ間に設けるという対策を行っているが、このような遮蔽体によりヒータからの熱の輻射を遮る効果には限界があり、完全な遮蔽効果を得ることはできない。   On the other hand, in Patent Document 1, as a partition for reducing the amount of heat radiation 7 to the exposed portion of the single crystal 1, a measure is taken to provide a shield 30 between the single crystal and the heater as shown in FIG. However, there is a limit to the effect of shielding heat radiation from the heater by such a shield, and a complete shielding effect cannot be obtained.

そこで、本発明の目的は、上記課題を解決し、遮蔽体を用いないで不活性ガス中に露出した単結晶への熱輻射量を低減し、更には原料融液から液体封止剤中に位置する単結晶の保温を可能とするヒータ構造を有する半導体単結晶成長装置およびそのヒータを提供することにある。   Therefore, the object of the present invention is to solve the above problems, reduce the amount of heat radiation to the single crystal exposed in the inert gas without using a shield, and further from the raw material melt into the liquid sealant. It is an object of the present invention to provide a semiconductor single crystal growth apparatus having a heater structure capable of keeping a single crystal positioned and a heater thereof.

上記目的を達成するため、本発明は、次のように構成して、不活性ガス中に露出した単結晶への熱の輻射量を低減するものである。   In order to achieve the above object, the present invention is configured as follows to reduce the amount of heat radiation to a single crystal exposed in an inert gas.

請求項1の発明に係る半導体単結晶成長装置は、多結晶原料及び液体封止剤を収容したるつぼと、このるつぼを収容し不活性ガスを充填した耐圧容器と、るつぼ内の多結晶原料及び液体封止剤を加熱して融液とすべく、るつぼの外周に該るつぼを囲んで設けられた筒形のグラファイトヒータと、この原料融液に接触させた種結晶を支持し、原料融液から成長する単結晶を引き上げる引上軸とを有する半導体単結晶成長装置において、上記ヒータの上下方向の領域を、液体封止剤の表面からるつぼ上端面までの任意の位置に対応する箇所を境として上部ヒータ部分と下部ヒータ部分に区分し、その上部ヒータ部分のヒータ断面積を下部ヒータ部分よりも大きくし、部分的に発熱量を抑えて、不活性ガス中に露出した単結晶への熱の輻射量を低減したことを特徴とする。   A semiconductor single crystal growth apparatus according to the invention of claim 1 includes a crucible containing a polycrystalline raw material and a liquid sealant, a pressure vessel containing the crucible and filled with an inert gas, a polycrystalline raw material in the crucible, In order to heat the liquid sealant into a melt, a cylindrical graphite heater provided on the outer periphery of the crucible so as to surround the crucible, and a seed crystal brought into contact with the raw material melt are supported, and the raw material melt In the semiconductor single crystal growth apparatus having a pull-up axis for pulling up the single crystal grown from the upper and lower regions of the heater, the region corresponding to an arbitrary position from the surface of the liquid sealant to the upper end surface of the crucible is defined as a boundary. The upper heater part is divided into the lower heater part, the heater cross-sectional area of the upper heater part is made larger than that of the lower heater part, and the heat to the single crystal exposed in the inert gas is suppressed by partially suppressing the heat generation amount. Reduce the amount of radiation Characterized in that was.

ここでヒータの上部ヒータ部分の断面積が大きいということは、この部分での発熱抵抗が小さいことを意味する。従って、ヒータのうち、例えば液体封止剤の表面よりも上部に位置する部分(上部ヒータ部分)の断面積を、それより下側の部分(下部ヒータ部分)よりも大きくすることで、ヒータのるつぼ上端面よりも上側に突出している露出部分(ヒータ露出部分)の発熱を抑制し、及び、単位長さ当りのヒータが単結晶に影響を及ぼす熱輻射量を低減することができる。   Here, a large sectional area of the upper heater portion of the heater means that the heat generation resistance in this portion is small. Accordingly, for example, by making the cross-sectional area of a portion (upper heater portion) located above the surface of the liquid sealant in the heater larger than the lower portion (lower heater portion), Heat generation at the exposed portion (heater exposed portion) protruding above the upper end surface of the crucible can be suppressed, and the amount of heat radiation that the heater per unit length has on the single crystal can be reduced.

なお本発明で扱う半導体単結晶成長装置には制約がないが、GaAs化合物単結晶のような化合物半導体の製造装置として、特に適する。   The semiconductor single crystal growth apparatus used in the present invention is not limited, but is particularly suitable as a compound semiconductor manufacturing apparatus such as a GaAs compound single crystal.

請求項2の発明は、請求項1記載の半導体単結晶成長装置において、上記ヒータの上部ヒータ部分の内側壁を上側になるほど液体封止剤側に近づくように傾けたことを特徴とする。   According to a second aspect of the present invention, in the semiconductor single crystal growth apparatus according to the first aspect, the inner wall of the upper heater portion of the heater is inclined so as to approach the liquid sealant side as it goes upward.

このように上部ヒータ部分(露出部を加熱するヒータ部分)の表面を液体封止剤側に傾けることで、単位長さ当りのヒータが不活性ガス中に露出している単結晶へ与える熱の輻射量も従来と比較して低減することができる。また、上部ヒータ部分のヒータ形状が液体封止剤側に傾いていることから、原料融液から液体封止剤中に位置する単結晶の側面を保温することが可能となる。   Thus, by tilting the surface of the upper heater part (heater part for heating the exposed part) toward the liquid sealant, the heat per unit length of the heat given to the single crystal exposed in the inert gas by the heater The amount of radiation can also be reduced as compared with the prior art. Moreover, since the heater shape of the upper heater portion is inclined toward the liquid sealant, it is possible to keep the side surfaces of the single crystal located in the liquid sealant from the raw material melt.

請求項3の発明は、請求項1又は2記載の半導体単結晶成長装置において、上記ヒータの上下方向の領域を上部ヒータ部分と下部ヒータ部分に区分する境を、液体封止剤の表面の位置に対応する箇所に定めたことを特徴とする。   According to a third aspect of the present invention, in the semiconductor single crystal growth apparatus according to the first or second aspect of the present invention, the boundary of dividing the vertical region of the heater into an upper heater portion and a lower heater portion is the position of the surface of the liquid sealant It is characterized in that it is determined at a location corresponding to.

このように設定することにより、原料融液の加熱及び液体封止剤から原料融液中の単結晶側面の保温についての条件を、従来から大幅に変えることなく、不活性ガス中に露出した単結晶への熱輻射量を従来より低減することができ、これによりAsの解離に起因した多結晶化を抑制することができる。   By setting in this way, the conditions for the heating of the raw material melt and the heat retention of the single crystal side surface in the raw material melt from the liquid sealant are not changed significantly from the conventional one, and the single unit exposed in the inert gas is not changed. The amount of heat radiation to the crystal can be reduced as compared with the prior art, thereby suppressing polycrystallization due to As dissociation.

請求項4の発明に係る半導体単結晶成長装置用のヒータは、るつぼ内の多結晶原料及び液体封止剤を加熱して融液とすべく、るつぼの外周に該るつぼを囲んで設けられる筒形のグラファイトヒータであって、その上下方向長さがるつぼより長く設計された半導体単結晶成長装置用のヒータにおいて、上記るつぼの周囲に設置したとき、そのヒータの上下方向の領域のうち、液体封止剤の表面より上側に位置する上部ヒータ部分のヒータ断面積を、それより下側に位置する下部ヒータ部分よりも大きくし、且つこの上部ヒータ部分の内側壁を、上側になるほど液体封止剤側に近づくように傾けた形状としたことを特徴とする。   A heater for a semiconductor single crystal growth apparatus according to a fourth aspect of the present invention is a cylinder provided around the crucible on the outer periphery of the crucible so as to heat the polycrystalline raw material and the liquid sealant in the crucible into a melt. In a heater for a semiconductor single crystal growth apparatus designed to be longer than the crucible in the vertical length of the graphite heater, when installed around the crucible, liquid in the vertical area of the heater The heater cross-sectional area of the upper heater part located above the surface of the sealant is made larger than that of the lower heater part located below it, and the inner wall of this upper heater part is liquid sealed toward the upper side. It is characterized by having a shape inclined so as to approach the agent side.

このように、ヒータのうち、液体封止剤表面よりから上部に位置する箇所(上部ヒータ部分)の断面積を大きくすることで、上部ヒータ部分のヒータ発熱を抑制し、単位長さ当りのヒータが単結晶に影響を及ぼす熱の熱の輻射量を低減することができる。また、その上部ヒータ部分の表面を液体封止剤側に傾けることで、原料融液から液体封止剤中に位置する単結晶の側面を保温することが可能となる。   Thus, by increasing the cross-sectional area of the heater (upper heater part) located above the liquid sealant surface, the heater heat generation in the upper heater part is suppressed, and the heater per unit length Can reduce the amount of heat radiation that affects the single crystal. In addition, by tilting the surface of the upper heater portion toward the liquid sealant, the side surface of the single crystal located in the liquid sealant from the raw material melt can be kept warm.

以上説明したように本発明によれば、次のような優れた効果が得られる。   As described above, according to the present invention, the following excellent effects can be obtained.

請求項1の発明によれば、ヒータの上下方向の領域を、液体封止剤の表面からるつぼ上端面までの任意の位置に対応する箇所を境として上部ヒータ部分と下部ヒータ部分に区分し、その上部ヒータ部分のヒータ断面積を下部ヒータ部分よりも大きくし、部分的に発熱量を抑えて、不活性ガス中に露出した単結晶への熱の輻射量を低減したので、単結晶からの例えばAsの解離および、それに伴うGaの流れ出しによる多結晶化を防止することができると共に、熱の輻射量が低減されたことで単結晶部への冷却効果が促進されて、結晶成長界面を原料融液側に凸型となるように改善することができることから、転位の集積が少ない良質な単結晶を製造することができる。   According to the invention of claim 1, the vertical region of the heater is divided into an upper heater portion and a lower heater portion with a location corresponding to an arbitrary position from the surface of the liquid sealant to the upper end surface of the crucible as a boundary, Since the heater cross-sectional area of the upper heater part is made larger than that of the lower heater part, the amount of heat generated is partially suppressed, and the amount of heat radiation to the single crystal exposed in the inert gas is reduced. For example, it is possible to prevent dissociation of As and the resulting polycrystallization due to the flow of Ga, and the amount of heat radiation is reduced, so that the cooling effect on the single crystal part is promoted, and the crystal growth interface is used as a raw material. Since it can be improved so as to have a convex shape on the melt side, a high-quality single crystal with less dislocation accumulation can be produced.

請求項2の発明によれば、上部ヒータ部分の内側壁を液体封止剤側に傾けているので、単位長さ当りのヒータが不活性ガス中に露出している単結晶へ与える輻射量を従来と比較して低減することができ、また、原料融液から液体封止剤中に位置する単結晶の側面を保温する効果も得ることができる。   According to the invention of claim 2, since the inner wall of the upper heater portion is inclined toward the liquid sealant side, the amount of radiation given to the single crystal exposed by the heater per unit length in the inert gas is reduced. It can be reduced as compared with the prior art, and the effect of keeping the side surface of the single crystal located in the liquid sealant from the raw material melt can be obtained.

請求項3の発明によれば、ヒータの上下方向の領域を上部ヒータ部分と下部ヒータ部分に区分する境を、液体封止剤の表面の位置に対応する箇所に定めているので、原料融液の加熱及び液体封止剤から原料融液中の単結晶側面の保温についての条件を、従来から大幅に変えることなく、不活性ガス中に露出した単結晶への熱輻射量を従来より低減することができ、これにより例えばAsの解離に起因した多結晶化を抑制することができる。   According to the invention of claim 3, since the boundary for dividing the vertical region of the heater into the upper heater portion and the lower heater portion is determined at a position corresponding to the position of the surface of the liquid sealant, The amount of heat radiation from the liquid sealant to the single crystal exposed in the inert gas is reduced compared to the conventional one, without significantly changing the conditions for heat retention from the liquid sealant to the side surface of the single crystal in the raw material melt. Thus, for example, polycrystallization caused by dissociation of As can be suppressed.

請求項4の発明に係る半導体単結晶成長装置用のヒータは、ヒータの上下方向の領域のうち、液体封止剤の表面より上側に位置する上部ヒータ部分のヒータ断面積を、それより下側に位置する下部ヒータ部分よりも大きくし、且つこの上部ヒータ部分の内側壁を、上側になるほど液体封止剤側に近づくように傾けた形状としているので、上部ヒータ部分のヒータ発熱を抑制し、単位長さ当たりのヒータが単結晶に影響を及ぼす熱の輻射量を低減することができ、また、原料融液から液体封止剤中に位置する単結晶の側面を保温することが可能となる。   A heater for a semiconductor single crystal growth apparatus according to a fourth aspect of the present invention has a heater cross-sectional area of an upper heater portion located above the surface of the liquid sealant in a region in the vertical direction of the heater. Is larger than the lower heater part located at the top, and the inner wall of the upper heater part is inclined so as to approach the liquid sealant side as it is on the upper side. The amount of heat radiation that the heater per unit length has on the single crystal can be reduced, and the side surface of the single crystal located in the liquid sealant can be kept warm from the raw material melt. .

以上要するに、本発明の効果として、不活性ガス中に露出した単結晶への熱の輻射量を低減することにより、例えばGaAs単結晶の製造に関し、
(1)単結晶からのAsの解離および、それに伴うGaの流れ出しによる多結晶化を防止することができ、
(2)熱の輻射量が低減され結晶部への冷却効果が促進されて、結晶成長界面が融液側に凸型に改善され、転位の集積が少ない良質な単結晶を製造することができる。
In short, as an effect of the present invention, by reducing the amount of heat radiation to a single crystal exposed in an inert gas, for example, for producing a GaAs single crystal,
(1) It is possible to prevent dissociation of As from the single crystal and polycrystallization due to the accompanying Ga flow-out,
(2) The amount of heat radiation is reduced, the cooling effect on the crystal part is promoted, the crystal growth interface is improved to a convex shape on the melt side, and a high-quality single crystal with less dislocation accumulation can be manufactured. .

以下、本発明を図示の実施形態に基づいて説明する。   Hereinafter, the present invention will be described based on the illustrated embodiments.

図1に示すLEC法のGaAs単結晶製造装置は、ヒータの形状を除き、図2及び図3について上述したところと同一とした。すなわち、このGaAs単結晶製造装置は、化合物半導体原料のGa及びAs(多結晶原料)とAsの揮発防止材である三酸化硼素(液体封止剤)を収容した原料容器たるPBN製のるつぼ5と、このるつぼ5を収容し不活性ガス8を充填した炉体部分である耐圧容器21と、この耐圧容器21内においてPBNるつぼ5を受ける為のるつぼ軸24と、るつぼ5内の多結晶原料及び液体封止剤を加熱して融液とすべく、上記るつぼ5の周囲を取り巻いて設置された加熱手段としてのグラファイトヒータ6と、この原料融液3に接触させた種結晶4を支持し、原料融液3から成長する単結晶1を引き上げる引上軸23とを有する構造となっている。ここでヒータ6は従来のヒータ22と同様にるつぼ5より長く設計されている。   The LEC GaAs single crystal manufacturing apparatus shown in FIG. 1 is the same as that described above with reference to FIGS. 2 and 3 except for the shape of the heater. That is, this GaAs single crystal manufacturing apparatus is made of a PBN crucible 5 which is a raw material container containing Ga and As (polycrystalline raw material) as compound semiconductor raw materials and boron trioxide (liquid sealant) as a volatilization preventive material for As. A pressure vessel 21 which is a furnace body portion containing the crucible 5 and filled with the inert gas 8, a crucible shaft 24 for receiving the PBN crucible 5 in the pressure vessel 21, and a polycrystalline raw material in the crucible 5 In order to heat the liquid sealant and make it into a melt, a graphite heater 6 as a heating means installed around the crucible 5 and a seed crystal 4 brought into contact with the raw material melt 3 are supported. The structure has a pulling shaft 23 for pulling up the single crystal 1 grown from the raw material melt 3. Here, the heater 6 is designed to be longer than the crucible 5 like the conventional heater 22.

ヒータ6は、全体として円筒形(略円筒形の場合を含む)であり、液体封止剤2の表面を境として、それより下部に位置するヒータ部分(下部ヒータ部分)61と、それよりも上部に位置するヒータ部分(上部ヒータ部分)62とから構成されている。   The heater 6 has a cylindrical shape as a whole (including a case of a substantially cylindrical shape), and a heater portion (lower heater portion) 61 positioned below the surface of the liquid sealant 2 is used as a boundary. The heater part (upper heater part) 62 located in the upper part is comprised.

図1から分かるように、縦断面で見て、ヒータ6のうち、下部ヒータ部分61の肉厚は上下方向に変化がなく、上下方向に同一の肉厚となっているが、ヒータ6の上部ヒータ部分62の肉厚は、上部になるほど厚くなり、ヒータ断面積が大きくなっている。この実施例の場合、液体封止剤2の表面よりも上側の上部ヒータ部分62については、その内側の壁面62aが、液体封止剤2の表面に対応する高さ位置から徐々に内側に迫り出すオーバハング壁として液体封止剤側に傾いており、これにより単結晶の成長中において、液体封止剤2及び単結晶1の側方に近づくように形成されている。上部ヒータ部分62の外側壁は、下部ヒータ部分61と同じ垂直壁となっている。   As can be seen from FIG. 1, in the heater 6, the thickness of the lower heater portion 61 of the heater 6 does not change in the vertical direction and is the same thickness in the vertical direction. The thickness of the heater portion 62 becomes thicker toward the upper portion, and the heater cross-sectional area becomes larger. In the case of this embodiment, for the upper heater portion 62 above the surface of the liquid sealing agent 2, the inner wall surface 62 a gradually approaches the inner side from the height position corresponding to the surface of the liquid sealing agent 2. The overhanging wall is inclined toward the liquid sealant side so as to approach the side of the liquid sealant 2 and the single crystal 1 during the growth of the single crystal. The outer wall of the upper heater portion 62 is the same vertical wall as the lower heater portion 61.

原料融液3側の下部ヒータ部分61はヒータ断面が従来と同一形状であることから、原料融液3への加熱は従来のヒータ22と同一条件である。液体封止剤2より上部に位置する上部ヒータ部分62のヒータ形状は、その断面積が下部ヒータ部分61よりも大きくなっていることから、ヒータ単位長さ当りの抵抗が低くなり、図1に矢印の太さの違いとして示すように、原料融液側の熱輻射量7に比べて、液体封止剤2より上部からの熱輻射量7aが低減する。   The lower heater portion 61 on the side of the raw material melt 3 has the same cross section as that of the conventional heater, so that the heating of the raw material melt 3 is under the same conditions as the conventional heater 22. The heater shape of the upper heater portion 62 located above the liquid sealant 2 has a cross-sectional area larger than that of the lower heater portion 61. Therefore, the resistance per unit length of the heater is reduced, and FIG. As shown by the difference in thickness of the arrows, the amount of heat radiation 7a from above the liquid sealant 2 is reduced compared to the amount of heat radiation 7 on the raw material melt side.

これにより、原料融液の加熱及び液体封止剤2から原料融液中の結晶側面の保温については従来条件から大幅に変わることなく、不活性ガス中に露出した単結晶への熱輻射量を従来より低減することができ、これによりAsの解離に起因した多結晶化を抑制することができる。   As a result, the heat radiation amount to the single crystal exposed in the inert gas can be reduced without significantly changing from the conventional conditions for the heating of the raw material melt and the heat retention of the crystal side surface in the raw material melt from the liquid sealant 2. This can be reduced as compared with the prior art, thereby suppressing polycrystallization due to As dissociation.

また、上部ヒータ部分62のヒータ形状(内側壁面62a)が液体封止剤2の側に傾いていることから、単位長さ当りのヒータ6が、不活性ガス中に露出している単結晶1へ与える熱輻射量も、従来と比較して低減することができる。そして、上部ヒータ部分62の表面(内側壁面62a)を液体封止剤2側に傾けることで、原料融液3から液体封止剤2中に位置する単結晶1の側面を保温することが可能となる。   Further, since the heater shape (inner wall surface 62a) of the upper heater portion 62 is inclined toward the liquid sealing agent 2, the heater 6 per unit length is exposed in the inert gas 1 The amount of heat radiation given to can also be reduced as compared with the prior art. Then, the side surface of the single crystal 1 located in the liquid sealant 2 from the raw material melt 3 can be kept warm by inclining the surface (inner wall surface 62a) of the upper heater portion 62 toward the liquid sealant 2 side. It becomes.

すなわち、上記実施形態によれば、不活性ガス8中に露出した単結晶1への熱の輻射量の低減と、原料融液3から液体封止剤2中に位置する単結晶1の保温とを両立させるヒータ構造を構築することができる。   That is, according to the above embodiment, the amount of heat radiation to the single crystal 1 exposed in the inert gas 8 is reduced, and the temperature of the single crystal 1 located in the liquid sealant 2 from the raw material melt 3 is maintained. It is possible to construct a heater structure that achieves both.

上記実施形態では、下部ヒータ部分61と上部ヒータ部分62のとの境界つまり上部ヒータ部分62としてヒータ6の断面積を増大させる始端部分を、液体封止剤2の表面に対応する箇所としたが、本発明はこれに限定されるものではなく、液体封止剤2の表面からるつぼ5の上端部までの任意の点に対応する箇所で下部ヒータ部分61と上部ヒータ部分62に区分けし、そこから上部ヒータ部分62としてヒータ6の断面積を増大させることができる。例えば、るつぼ5の上端面より上方に延在しているヒータ部分63のみを、それより下方のヒータ部分より断面積を増大させ、またその内側壁62aを上側になるほど内側に位置するように傾けることができる。   In the above embodiment, the boundary between the lower heater portion 61 and the upper heater portion 62, that is, the starting end portion that increases the cross-sectional area of the heater 6 as the upper heater portion 62 is a location corresponding to the surface of the liquid sealant 2. The present invention is not limited to this, and is divided into a lower heater portion 61 and an upper heater portion 62 at a location corresponding to an arbitrary point from the surface of the liquid sealant 2 to the upper end portion of the crucible 5. Thus, the cross-sectional area of the heater 6 can be increased as the upper heater portion 62. For example, only the heater portion 63 extending upward from the upper end surface of the crucible 5 is inclined so that the cross-sectional area is increased more than the heater portion below it, and the inner wall 62a is located on the inner side toward the upper side. be able to.

本発明における単結晶製造装置とそのヒータの形状及び位置関係を示した概略図である。It is the schematic which showed the shape and positional relationship of the single crystal manufacturing apparatus in this invention, and its heater. 従来の単結晶製造装置を示した概略図である。It is the schematic which showed the conventional single crystal manufacturing apparatus. 従来の単結晶製造装置とそのヒータ形状及び位置関係を示した概略図である。It is the schematic which showed the conventional single crystal manufacturing apparatus, its heater shape, and positional relationship. 従来の単結晶製造装置を示した図である。It is the figure which showed the conventional single crystal manufacturing apparatus.

符号の説明Explanation of symbols

1 単結晶
2 液体封止剤
3 原料融液
4 種結晶
5 るつぼ
6 ヒータ
8 不活性ガス
10 Ga
11 多結晶
21 耐圧容器
23 引上軸
24 るつぼ軸
61 下部ヒータ部分
62 上部ヒータ部分
62a 内側の壁面
DESCRIPTION OF SYMBOLS 1 Single crystal 2 Liquid sealing agent 3 Raw material melt 4 Seed crystal 5 Crucible 6 Heater 8 Inert gas 10 Ga
11 Polycrystalline 21 Pressure vessel 23 Pulling shaft 24 Crucible shaft 61 Lower heater portion 62 Upper heater portion 62a Inner wall surface

Claims (4)

多結晶原料及び液体封止剤を収容したるつぼと、このるつぼを収容し不活性ガスを充填した耐圧容器と、るつぼ内の多結晶原料及び液体封止剤を加熱して融液とすべく、るつぼの外周に該るつぼを囲んで設けられた筒形のグラファイトヒータと、この原料融液に接触させた種結晶を支持し、原料融液から成長する単結晶を引き上げる引上軸とを有する半導体単結晶成長装置において、
上記ヒータの上下方向の領域を、液体封止剤の表面からるつぼ上端面までの任意の位置に対応する箇所を境として上部ヒータ部分と下部ヒータ部分に区分し、
その上部ヒータ部分のヒータ断面積を下部ヒータ部分よりも大きくし、部分的に発熱量を抑えて、不活性ガス中に露出した単結晶への熱の輻射量を低減した
ことを特徴とする半導体単結晶成長装置。
A crucible containing a polycrystalline raw material and a liquid sealing agent, a pressure vessel containing this crucible and filled with an inert gas, and heating the polycrystalline raw material and the liquid sealing agent in the crucible into a melt, A semiconductor having a cylindrical graphite heater provided on the outer periphery of a crucible so as to surround the crucible, and a pulling shaft for supporting a seed crystal brought into contact with the raw material melt and pulling up a single crystal grown from the raw material melt In single crystal growth equipment,
The vertical region of the heater is divided into an upper heater portion and a lower heater portion with a location corresponding to an arbitrary position from the surface of the liquid sealant to the upper end surface of the crucible as a boundary,
The semiconductor is characterized in that the heater sectional area of the upper heater part is made larger than that of the lower heater part, the amount of heat generated is partially suppressed, and the amount of heat radiation to the single crystal exposed in the inert gas is reduced. Single crystal growth equipment.
請求項1記載の半導体単結晶成長装置において、
上記ヒータの上部ヒータ部分の内側壁を上側になるほど液体封止剤側に近づくように傾けたことを特徴とする半導体単結晶成長装置。
The semiconductor single crystal growth apparatus according to claim 1.
An apparatus for growing a semiconductor single crystal, wherein the inner wall of the upper heater portion of the heater is inclined so as to approach the liquid sealant side as it goes upward.
請求項1又は2記載の半導体単結晶成長装置において、
上記ヒータの上下方向の領域を上部ヒータ部分と下部ヒータ部分に区分する境を、液体封止剤の表面の位置に対応する箇所に定めたことを特徴とする半導体単結晶成長装置。
The semiconductor single crystal growth apparatus according to claim 1 or 2,
A semiconductor single crystal growth apparatus characterized in that a boundary for dividing a vertical region of the heater into an upper heater portion and a lower heater portion is set at a position corresponding to the position of the surface of the liquid sealant.
るつぼ内の多結晶原料及び液体封止剤を加熱して融液とすべく、るつぼの外周に該るつぼを囲んで設けられる筒形のグラファイトヒータであって、その上下方向長さがるつぼより長く設計された半導体単結晶成長装置用のヒータにおいて、
上記るつぼの周囲に設置したとき、そのヒータの上下方向の領域のうち、液体封止剤の表面より上側に位置する上部ヒータ部分のヒータ断面積を、それより下側に位置する下部ヒータ部分よりも大きくし、且つこの上部ヒータ部分の内側壁を、上側になるほど液体封止剤側に近づくように傾けた形状としたことを特徴とする半導体単結晶成長装置用のヒータ。
A cylindrical graphite heater provided around the crucible on the outer periphery of the crucible to heat the polycrystalline raw material and liquid sealant in the crucible to form a melt, whose vertical length is longer than that of the crucible In the heater for the designed semiconductor single crystal growth equipment,
When installed around the crucible, the heater cross-sectional area of the upper heater part located above the surface of the liquid sealant in the vertical area of the heater is lower than the lower heater part located below it. The heater for a semiconductor single crystal growth apparatus is characterized in that the inner wall of the upper heater portion is inclined so as to approach the liquid sealant side as it goes upward.
JP2003331755A 2003-09-24 2003-09-24 Apparatus for growing semiconductor single crystal and heater for the same Pending JP2005097032A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003331755A JP2005097032A (en) 2003-09-24 2003-09-24 Apparatus for growing semiconductor single crystal and heater for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003331755A JP2005097032A (en) 2003-09-24 2003-09-24 Apparatus for growing semiconductor single crystal and heater for the same

Publications (1)

Publication Number Publication Date
JP2005097032A true JP2005097032A (en) 2005-04-14

Family

ID=34460323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003331755A Pending JP2005097032A (en) 2003-09-24 2003-09-24 Apparatus for growing semiconductor single crystal and heater for the same

Country Status (1)

Country Link
JP (1) JP2005097032A (en)

Similar Documents

Publication Publication Date Title
KR100415860B1 (en) Single Crystal Manufacturing Equipment and Manufacturing Method
KR20040018426A (en) Method and apparatus for growing semiconductor crystals with a rigid support with carbon doping and resistivity control and thermal gradient control
JP2006327879A (en) Method for manufacturing compound semiconductor single crystal
EP0210439A1 (en) Method for growing single crystals of dissociative compound semiconductor
JP2005097032A (en) Apparatus for growing semiconductor single crystal and heater for the same
KR102124720B1 (en) Method for manufacturing semiconductor wafer of single crystal silicon, semiconductor wafer manufacturing apparatus of single crystal silicon, and semiconductor wafer of single crystal silicon
JP2006188403A (en) Compound semiconductor single crystal and its manufacturing method and apparatus
JP4155085B2 (en) Method for producing compound semiconductor single crystal
JP2005343737A (en) Apparatus for manufacturing compound semiconductor single crystal
JP3247829B2 (en) Crystal growth furnace and crystal growth method
JP2855408B2 (en) Single crystal growth equipment
KR920007335B1 (en) Manufacturing apparatus of gaas single crystalline structure
JP2010030868A (en) Production method of semiconductor single crystal
KR20030070477A (en) Crystal Growing Apparatus For Increasing GaAs Single Crystal Yield
JP2006036604A (en) Method for manufacturing compound semiconductor single crystal
JPS6251238B2 (en)
JP4161787B2 (en) Method for producing compound semiconductor single crystal
JPH0524964A (en) Production of compound semiconductor single crystal
JP2005298255A (en) Method for producing compound semiconductor single crystal
JPH05319973A (en) Single crystal production unit
JP2005298253A (en) Manufacturing method of compound semiconductor single crystal
JP2005075670A (en) Manufacturing method for compound semiconductor single crystal
JP2006219310A (en) Apparatus and method for manufacturing semiconductor single crystal
JP2005298252A (en) Apparatus for manufacturing compound semiconductor single crystal
JP2004323327A (en) Apparatus for growing compound semiconductor single crystal