JP2004123444A - Apparatus for manufacturing compound semiconductor single crystal - Google Patents

Apparatus for manufacturing compound semiconductor single crystal Download PDF

Info

Publication number
JP2004123444A
JP2004123444A JP2002289554A JP2002289554A JP2004123444A JP 2004123444 A JP2004123444 A JP 2004123444A JP 2002289554 A JP2002289554 A JP 2002289554A JP 2002289554 A JP2002289554 A JP 2002289554A JP 2004123444 A JP2004123444 A JP 2004123444A
Authority
JP
Japan
Prior art keywords
single crystal
crucible
compound semiconductor
crystal
semiconductor single
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002289554A
Other languages
Japanese (ja)
Inventor
Takuji Nagayama
長山 卓司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2002289554A priority Critical patent/JP2004123444A/en
Publication of JP2004123444A publication Critical patent/JP2004123444A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent the dislocation aggregation generated in a crystal by most adequately controlling a solid-liquid interface shape with an apparatus for manufacturing a compound semiconductor single crystal by an LEC process. <P>SOLUTION: The apparatus for manufacturing the compound semiconductor single crystal by the LEC process supports a heated crucible 7 within a pressure resistant vessel by a crucible shaft 8, houses a raw material melt 6 and liquid sealant 4 into the crucible 7, and grows the compound semiconductor single crystal 3 by relatively moving a seed crystal 2 and the crucible 7 while bringing the seed crystal 2 into contact with the raw material melt 6. The diameter of the crucible shaft 8 is specified to ≥1/2 or nearly 1/2 the diameter of the compound semiconductor single crystal 3 to be grown. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、GaAs単結晶を成長するのに適したLEC法による化合物半導体単結晶製造装置、特にそのルツボ軸に関するものである。
【0002】
【従来の技術】
化合物半導体はその単結晶の高品質化により、高速集積回路、光−電子集積回路やその他の電子素子に広く用いられるようになってきた。なかでも、III−V族化合物半導体の砒化ガリウム(GaAs)は電子移動度がシリコンに比べて早く、10Ω・cm以上の比抵抗のウエハが製造容易という特徴がある。現在では上記GaAsの単結晶は、主に液体封止引き上げ法(LEC法)により製造されている。
【0003】
LEC法によるGaAs単結晶の製造方法を図1によって説明する。
【0004】
図1に示すLEC法GaAs単結晶製造装置は、耐圧容器であるチャンバー9と、結晶を引き上げる為の引上軸1と、化合物半導体原料を収容する容器であるPBNルツボ7と、ルツボを支持受ける為のルツボ軸8を有する構造となっている。
【0005】
結晶製造方法については、先ず原料の容器となるPBNルツボ7に、GaとAs、及びAsの揮発を防止する液体封止材である三酸化硼素4を入れ、これをチャンバー9内にセットする。又、引上軸1の先端に目的の方位を持った種結晶2を取り付ける。
【0006】
チャンバー9に原料をセットした後、チャンバー9内を真空にし、不活性ガスを充填する。その後、チャンバー9内に設置してあるカーボンヒータ5に通電し、チャンバー9内の温度を昇温させ、GaとAsを合成しGaAs6の多結晶を作成する。その後、更に昇温させGaAs6を融液化させる。
【0007】
続いて、引上軸1、ルツボ軸8を相対的に回転させる。この状態で引上軸1を先端に取り付けてある種結晶2がGaAs6融液に接触するまで下降させる。その後、この種結晶2を回転させながらゆっくりと引き上げることで、単結晶3を成長させる方法である。
【0008】
上記GaAsの単結晶成長に際して、ルツボ軸8の径の大きさは、従来、結晶径に関係なく、一定の値に固定されている(例えば、特許文献1参照。)。
【0009】
【特許文献1】
特開平5−56963号公報(図1)
【0010】
【発明が解決しようとする課題】
しかしながら、化合物半導体単結晶製造装置には固液界面が凹面になりやすいという課題がある。特に、成長させる結晶直径が100mm以上の大口径結晶では、当然ながら固液界面の重要性は小口径結晶よりも増し、安定的に融液側に凸であることが必要となる。
【0011】
詳述するに、結晶欠陥の発生を左右する固液界面形状は、ルツボ内の温度勾配に密接な関係があることが分かっている。メインヒータに加熱されたルツボ内の融液の温度は、内部輻射、自然対流により、ルツボ下部が高くなる為、ルツボ内の結晶成長方向の温度勾配が大きくなる。その為、固液界面が凹面になりやすい。転位は固液界面に垂直に伝播する為、固液界面が凹面の場合、そこに転位が集合し多結晶化になり、結晶の品質を悪くしているのが現状である。
【0012】
そこで、本発明の目的は、上記課題を解決し、LEC法(液体封止チョクラルスキー法)による化合物半導体の結晶成長において、ルツボ軸の径の大きさを規定することにより、ルツボ軸へ流れる熱流を大きくし、固液界面形状を最適に制御し、結晶内に発生する転位集合を防止した化合物半導体単結晶製造装置を提供することにある。
【0013】
【課題を解決するための手段】
本発明者はLEC法による化合物半導体単結晶製造に関して鋭意研究を重ねた結果、次のような知見を得た。即ち、再現性良く化合物半導体単結晶を得るための要因が、ルツボを支持する軸(ルツボ軸)の径の大小にも要因があることを発見した。そして、ルツボ軸の直径の比を、成長させる化合物半導体単結晶の径との関係で規定することにより、再現性良く化合物半導体単結晶を得ることができることを見出し、本発明に到達した。
【0014】
即ち、本発明の化合物半導体単結晶製造装置は、耐圧容器内の加熱されたルツボをルツボ軸で支え、ルツボに原料融液、液体封止剤を収納し、種結晶を原料融液に接触させつつ種結晶とルツボとを相対的に移動させて、化合物半導体単結晶を成長させるLEC法による化合物半導体単結晶製造装置において、上記ルツボ軸の径を、育成する化合物半導体単結晶の径に対して、1/2以上の径としたものである(請求項1)。
【0015】
このルツボ軸の径は、大きくなるほど装置することに費用がかかるため、請求項1記載の化合物半導体単結晶製造装置において、上記ルツボ軸の径を、育成する化合物半導体単結晶の径に対して、ほぼ1/2の径とすることが好ましい(請求項2)。
【0016】
本発明の製造装置においては、成長させる結晶の直径として100mm以上の大口径結晶を取り扱うことができる(請求項3)。
【0017】
<発明の要点>
本発明の要点は、LEC法において、ルツボ軸の径の大きさを結晶径に対して1/2倍以上又はほぼ1/2倍と設定することで、ルツボ内の原料融液の温度分布を中心部が冷えた状態の分布にし、再現性よく、且つ高収率で化合物半導体単結晶を得ることを可能にしたものである。
【0018】
例えば、直径φ4インチの結晶の場合、4×1/2=2インチか、又はそれ以上の径のルツボ軸径(すなわち2≦ルツボ軸の径)の大きさとするものである。なお、成長させる結晶直径が100mm以上の大口径結晶では、当然ながら固液界面の重要性は小口径結晶よりも増し、安定的に融液側に凸であることが必要となる。
【0019】
上記の解決手段を取った理由は、発明者の下記の知見による。
【0020】
育成する化合物半導体結晶の固液界面の形状は、ルツボ内の熱流に影響されることと、多結晶化の原因である転位の集合は、固液界面が凹面になることにより発生することが過去の研究で報告されている。本発明のように結晶径に対して、ルツボ軸の径の大きさを1/2倍以上又はほぼ1/2倍の値にすると、原料融液からルツボ軸へ流れる熱流が大きくなり、その為、ルツボ内における結晶成長方向の温度勾配が小さくなり、固液界面形状は凸面になりやすい。このことにより、単結晶を成長するのに理想的な固液界面形状を形成することが可能となる。
【0021】
また、ルツボ軸の径の大きさが1/2倍未満の場合、融液からルツボ軸へ流れる熱流が小さい為、結晶成長方向に凸面になりにくく、固液界面形状は凹面化し、そこに転位が集合して多結晶化しやすいことが分かった。
【0022】
【発明の実施の形態】
以下、本発明を図示の実施形態に基づいて説明する。
【0023】
本発明の効果を確認するため、以下のように実施例及び比較例についてGaAs単結晶成長の試作を行った。前提となる製造装置には上記した図1のものを用いた。
【0024】
すなわち、不活性ガスを充填した耐圧容器(高温炉)たるチャンバー9内には、下側からルツボ軸8(下軸)が挿入され、このルツボ軸8の先端にPBNルツボ7が支持されている。PBN製ルツボ7の周囲にはカーボンヒータ5が設けられており、ルツボ7を周囲から加熱できるようになっている。ルツボ軸8は図示しない回転機構に接続されており、一定の回転速度で回転されるようになっている。また、チャンバー9の上側からはルツボ軸8と同軸的に引上軸(上軸)1が挿入され、その下端に所望の方位を持った種結晶2(通常、方位として(100)が用いられる)が取り付けられる。この引上軸1は、図示しない回転・昇降機構によってPBN製ルツボ7とは逆向きに軸回転されると共に、昇降移動されるようになっている。
【0025】
そして、チャンバー9内に収容され加熱されたルツボ7にGaAs6の原料融液、液体封止剤の三酸化硼素(B)4を収納し、種結晶2を原料融液に接触させつつ種結晶2とルツボ7とを相対的に移動させて、LEC法により化合物半導体単結晶を成長した。
【0026】
ここでは、試作例として、4インチ、5インチ、6インチのGaAs単結晶成長を実施した。そして、ルツボ軸の径を、GaAs単結晶の径の1/5倍(比較例1)、1/4倍(比較例2)、1/3倍(比較例3)、1/2倍(実施例1)、1/2倍以上(実施例2)と変化させて成長した。このときのルツボ軸の径の大きさにおける固液界面の結晶凸度は、表1に示す通りである。
【0027】
【表1】

Figure 2004123444
【0028】
ここで、固液界面の結晶凸度とは、図2に示す量である。すなわち、固液界面の直径方向両端間を結ぶ直線の距離をD(mm)、その直線から垂直に固液界面の最下端までの距離(深さ)をA(mm)としたとき、A/Dで定義される値を、固液界面の結晶凸度という。
【0029】
表1に示す通り、固液界面の結晶凸度(A/D)は、ルツボ軸の径が大きくなるにつれて徐々に上がり始め、1/2倍あたりから結晶凸度が一定になることが分かった。
【0030】
ルツボ軸の径の大きさを、4インチ、5インチ、6インチのGaAs単結晶の結晶径に対して1/2倍(実施例1)又は1/2倍以上(実施例2)と設定することで、固液界面の結晶凸度(A/D)を、23%、20%、20%とすることができ、固液界面を単結晶を成長するのに理想的な凸面にすることができることが判る。またルツボ軸の製造及び装置費用を考慮すると、ルツボ軸の径は、GaAs単結晶の結晶径に対してほぼ1/2倍と設定することが有利であることが判る。
【0031】
上記の実施例ではLEC法によりGaAs単結晶を製造する場合について述べたが、本発明はGaAsに限定されるものではなく、GaAs以外の他の材料を用いたLEC法による化合物半導体単結晶の製造についても適用することが可能である。
【0032】
【発明の効果】
以上説明したように本発明によれば、LEC法による化合物半導体単結晶製造装置において、ルツボ軸の径の大きさを化合物半導体単結晶の結晶径に対して1/2倍以上又はほぼ1/2と設定したので、原料融液からルツボ軸へ流れる熱流が大きくなり、理想的な固液界面形状を形成することが可能となり、高品質の化合物半導体単結晶を製造することができる。
【図面の簡単な説明】
【図1】本発明のLEC法によるGaAs単結晶製造装置を示した概略図である。
【図2】本発明における固液界面の結晶凸度(A/D)の定義の説明に供する図である。
【符号の説明】
1 引上軸
2 種結晶
3 単結晶
4 三酸化硼素
5 カーボンヒータ
6 GaAs
7 PBNルツボ
8 ルツボ軸
9 チャンバー[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an apparatus for producing a compound semiconductor single crystal by the LEC method suitable for growing a GaAs single crystal, and more particularly to a crucible shaft thereof.
[0002]
[Prior art]
Compound semiconductors have been widely used in high-speed integrated circuits, opto-electronic integrated circuits, and other electronic devices due to the high quality of single crystals. Above all, gallium arsenide (GaAs), a III-V compound semiconductor, has a feature that electron mobility is faster than that of silicon and that a wafer having a specific resistance of 10 7 Ω · cm or more can be easily manufactured. At present, the GaAs single crystal is mainly manufactured by a liquid sealing and pulling method (LEC method).
[0003]
A method for manufacturing a GaAs single crystal by the LEC method will be described with reference to FIG.
[0004]
The LEC GaAs single crystal manufacturing apparatus shown in FIG. 1 supports a chamber 9 as a pressure-resistant container, a pulling shaft 1 for pulling up a crystal, a PBN crucible 7 as a container for accommodating a compound semiconductor material, and a crucible. It has a crucible shaft 8 for it.
[0005]
Regarding the crystal production method, first, Ga, As, and boron trioxide 4 which is a liquid sealing material for preventing volatilization of As are put in a PBN crucible 7 serving as a material container, and set in a chamber 9. A seed crystal 2 having a desired orientation is attached to the tip of the pulling shaft 1.
[0006]
After setting the raw material in the chamber 9, the inside of the chamber 9 is evacuated and filled with an inert gas. After that, the carbon heater 5 installed in the chamber 9 is energized to raise the temperature in the chamber 9 to synthesize Ga and As to form a GaAs 6 polycrystal. Thereafter, the temperature is further raised to melt the GaAs 6.
[0007]
Subsequently, the pulling shaft 1 and the crucible shaft 8 are relatively rotated. In this state, the pull-up shaft 1 is attached to the tip and lowered until a certain seed crystal 2 comes into contact with the GaAs 6 melt. Thereafter, the single crystal 3 is grown by slowly pulling the seed crystal 2 while rotating it.
[0008]
Conventionally, when growing a single crystal of GaAs, the size of the diameter of the crucible shaft 8 is fixed to a constant value regardless of the crystal diameter (for example, see Patent Document 1).
[0009]
[Patent Document 1]
JP-A-5-56963 (FIG. 1)
[0010]
[Problems to be solved by the invention]
However, the compound semiconductor single crystal manufacturing apparatus has a problem that the solid-liquid interface tends to be concave. Particularly, in the case of a large-diameter crystal having a crystal diameter of 100 mm or more to be grown, the importance of the solid-liquid interface is naturally larger than that of the small-diameter crystal, and it is necessary that the solid-liquid interface be stably convex toward the melt.
[0011]
More specifically, it has been found that the shape of the solid-liquid interface that affects the generation of crystal defects is closely related to the temperature gradient in the crucible. The temperature of the melt in the crucible heated by the main heater becomes higher in the lower portion of the crucible due to internal radiation and natural convection, so that the temperature gradient in the crystal growth direction in the crucible increases. Therefore, the solid-liquid interface tends to be concave. Since the dislocation propagates perpendicularly to the solid-liquid interface, if the solid-liquid interface is concave, the dislocations gather there and polycrystallize, thus deteriorating the crystal quality.
[0012]
In view of the above, an object of the present invention is to solve the above-mentioned problem and to specify the size of the diameter of the crucible shaft in the crystal growth of the compound semiconductor by the LEC method (liquid-sealed Czochralski method) so that the crystal flows to the crucible shaft. An object of the present invention is to provide a compound semiconductor single crystal manufacturing apparatus in which a heat flow is increased, a shape of a solid-liquid interface is optimally controlled, and dislocation aggregation generated in a crystal is prevented.
[0013]
[Means for Solving the Problems]
The present inventor has conducted intensive studies on the production of a compound semiconductor single crystal by the LEC method, and has obtained the following findings. That is, it has been found that factors for obtaining a compound semiconductor single crystal with good reproducibility also depend on the size of the diameter of a shaft supporting the crucible (crucible shaft). Then, they have found that a compound semiconductor single crystal can be obtained with good reproducibility by defining the ratio of the diameter of the crucible axis to the diameter of the compound semiconductor single crystal to be grown, and have reached the present invention.
[0014]
That is, the compound semiconductor single crystal manufacturing apparatus of the present invention supports a heated crucible in a pressure vessel with a crucible shaft, stores a raw material melt and a liquid sealant in the crucible, and brings the seed crystal into contact with the raw material melt. In the compound semiconductor single crystal manufacturing apparatus by the LEC method in which the seed crystal and the crucible are relatively moved while growing the compound semiconductor single crystal, the diameter of the crucible axis is set with respect to the diameter of the compound semiconductor single crystal to be grown. , 1/2 or more in diameter (claim 1).
[0015]
As the diameter of the crucible shaft increases, the more expensive the device, the more expensive the apparatus is. Therefore, in the compound semiconductor single crystal manufacturing apparatus according to claim 1, the diameter of the crucible shaft is determined with respect to the diameter of the compound semiconductor single crystal to be grown. It is preferable that the diameter is approximately 1/2 (claim 2).
[0016]
The manufacturing apparatus of the present invention can handle a large-diameter crystal having a diameter of 100 mm or more as a crystal to be grown (claim 3).
[0017]
<The gist of the invention>
The gist of the present invention is that in the LEC method, the temperature distribution of the raw material melt in the crucible is set by setting the size of the diameter of the crucible shaft to 以上 or more times or almost 倍 times the crystal diameter. The present invention makes it possible to obtain a compound semiconductor single crystal with good reproducibility and high yield, with a distribution in which the central part is cooled.
[0018]
For example, in the case of a crystal having a diameter of φ4 inches, the diameter of the crucible shaft should be 4 × 1 / = 2 inches or larger (that is, 2 ≦ the diameter of the crucible shaft). In the case of a large-diameter crystal having a crystal diameter of 100 mm or more to be grown, the importance of the solid-liquid interface is naturally greater than that of a small-diameter crystal, and it is necessary that the crystal be stably convex toward the melt.
[0019]
The reason for taking the above solution is based on the following knowledge of the inventor.
[0020]
In the past, the shape of the solid-liquid interface of the compound semiconductor crystal to be grown was affected by the heat flow in the crucible, and the aggregation of dislocations that caused polycrystallization was caused by the concave solid-liquid interface. Has been reported in studies. When the size of the diameter of the crucible shaft is set to 1/2 or more or almost 1/2 of the crystal diameter as in the present invention, the heat flow flowing from the raw material melt to the crucible shaft becomes large. In addition, the temperature gradient in the crystal growth direction in the crucible becomes small, and the shape of the solid-liquid interface tends to be convex. This makes it possible to form an ideal solid-liquid interface shape for growing a single crystal.
[0021]
When the diameter of the crucible shaft is less than 1/2 times, the heat flow flowing from the melt to the crucible shaft is small, so that it is difficult for the crucible shaft to have a convex surface in the crystal growth direction, and the solid-liquid interface shape is concave, and dislocations there. Were found to be easily aggregated into polycrystals.
[0022]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described based on the illustrated embodiments.
[0023]
In order to confirm the effects of the present invention, trial production of GaAs single crystal growth was performed for Examples and Comparative Examples as follows. The manufacturing apparatus used as the premise was the one shown in FIG.
[0024]
That is, a crucible shaft 8 (lower shaft) is inserted from below into a chamber 9 serving as a pressure-resistant container (high-temperature furnace) filled with an inert gas, and a PBN crucible 7 is supported at the tip of the crucible shaft 8. . A carbon heater 5 is provided around the PBN crucible 7 so that the crucible 7 can be heated from the periphery. The crucible shaft 8 is connected to a rotation mechanism (not shown), and is rotated at a constant rotation speed. A pull-up shaft (upper shaft) 1 is inserted from above the chamber 9 coaxially with the crucible shaft 8, and a seed crystal 2 having a desired orientation is provided at the lower end thereof (usually, (100) is used as the orientation). ) Is attached. The pull-up shaft 1 is rotated by a rotating / elevating mechanism (not shown) in a direction opposite to that of the PBN crucible 7 and is also moved up and down.
[0025]
Then, a raw material melt of GaAs 6 and a liquid sealant boron trioxide (B 2 O 3 ) 4 are stored in the heated crucible 7 housed in the chamber 9, and the seed crystal 2 is brought into contact with the raw material melt. By moving the seed crystal 2 and the crucible 7 relatively, a compound semiconductor single crystal was grown by the LEC method.
[0026]
Here, GaAs single crystal growth of 4 inches, 5 inches, and 6 inches was performed as a prototype example. Then, the diameter of the crucible shaft was set to 1/5 (Comparative Example 1), 1/4 (Comparative Example 2), 1/3 (Comparative Example 3), 1/2 (Comparative Example) the diameter of the GaAs single crystal. Example 1) was grown by changing it to 1/2 times or more (Example 2). At this time, the crystal convexity of the solid-liquid interface at the diameter of the crucible shaft is as shown in Table 1.
[0027]
[Table 1]
Figure 2004123444
[0028]
Here, the crystal convexity of the solid-liquid interface is the amount shown in FIG. That is, when the distance of a straight line connecting both ends in the diameter direction of the solid-liquid interface is D (mm), and the distance (depth) from the straight line to the lowermost end of the solid-liquid interface is A (mm), A / mm The value defined by D is called the crystal convexity of the solid-liquid interface.
[0029]
As shown in Table 1, it was found that the crystal convexity (A / D) at the solid-liquid interface began to gradually increase as the diameter of the crucible shaft increased, and the crystal convexity became constant at about 1/2 times. .
[0030]
The size of the diameter of the crucible shaft is set to 倍 (Example 1) or 以上 or more (Example 2) of the crystal diameter of the GaAs single crystal of 4 inches, 5 inches or 6 inches. Thereby, the crystal convexity (A / D) of the solid-liquid interface can be 23%, 20%, and 20%, and the solid-liquid interface can be an ideal convex surface for growing a single crystal. You can see what you can do. Also, in view of the cost of manufacturing the crucible shaft and the cost of the apparatus, it is found that it is advantageous to set the diameter of the crucible shaft to approximately 1/2 the crystal diameter of the GaAs single crystal.
[0031]
In the above embodiment, the case where a GaAs single crystal is manufactured by the LEC method has been described. However, the present invention is not limited to GaAs, and the manufacturing of a compound semiconductor single crystal by the LEC method using a material other than GaAs. Can also be applied.
[0032]
【The invention's effect】
As described above, according to the present invention, in the compound semiconductor single crystal manufacturing apparatus by the LEC method, the size of the diameter of the crucible axis is 1 / or more times or almost 1 / of the crystal diameter of the compound semiconductor single crystal. Therefore, the heat flow flowing from the raw material melt to the crucible axis is increased, so that an ideal solid-liquid interface shape can be formed, and a high-quality compound semiconductor single crystal can be manufactured.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing an apparatus for producing a GaAs single crystal by the LEC method of the present invention.
FIG. 2 is a diagram for explaining the definition of crystal convexity (A / D) at a solid-liquid interface in the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Pull-up shaft 2 Seed crystal 3 Single crystal 4 Boron trioxide 5 Carbon heater 6 GaAs
7 PBN crucible 8 Crucible shaft 9 Chamber

Claims (3)

耐圧容器内の加熱されたルツボをルツボ軸で支え、ルツボに原料融液、液体封止剤を収納し、種結晶を原料融液に接触させつつ種結晶とルツボとを相対的に移動させて、化合物半導体単結晶を成長させるLEC法による化合物半導体単結晶製造装置において、
上記ルツボ軸の径を、育成する化合物半導体単結晶の径に対して、1/2以上の径としたことを特徴とする化合物半導体単結晶製造装置。
The heated crucible in the pressure vessel is supported by the crucible shaft, the raw material melt and the liquid sealant are stored in the crucible, and the seed crystal and the crucible are relatively moved while the seed crystal is in contact with the raw material melt. In a compound semiconductor single crystal manufacturing apparatus by the LEC method for growing a compound semiconductor single crystal,
An apparatus for manufacturing a compound semiconductor single crystal, wherein the diameter of the crucible shaft is 1/2 or more of the diameter of the compound semiconductor single crystal to be grown.
請求項1記載の化合物半導体単結晶製造装置において、
上記ルツボ軸の径を、育成する化合物半導体単結晶の径に対して、ほぼ1/2の径としたことを特徴とする化合物半導体単結晶製造装置。
The compound semiconductor single crystal manufacturing apparatus according to claim 1,
An apparatus for manufacturing a compound semiconductor single crystal, wherein the diameter of the crucible shaft is approximately half the diameter of the compound semiconductor single crystal to be grown.
請求項1又は2記載の化合物半導体単結晶製造装置において、
育成する化合物半導体単結晶の直径が100mm以上の大口径の結晶であることを特徴とする化合物半導体単結晶製造装置。
The compound semiconductor single crystal manufacturing apparatus according to claim 1 or 2,
An apparatus for producing a compound semiconductor single crystal, wherein the compound semiconductor single crystal to be grown has a large diameter of 100 mm or more.
JP2002289554A 2002-10-02 2002-10-02 Apparatus for manufacturing compound semiconductor single crystal Withdrawn JP2004123444A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002289554A JP2004123444A (en) 2002-10-02 2002-10-02 Apparatus for manufacturing compound semiconductor single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002289554A JP2004123444A (en) 2002-10-02 2002-10-02 Apparatus for manufacturing compound semiconductor single crystal

Publications (1)

Publication Number Publication Date
JP2004123444A true JP2004123444A (en) 2004-04-22

Family

ID=32281687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002289554A Withdrawn JP2004123444A (en) 2002-10-02 2002-10-02 Apparatus for manufacturing compound semiconductor single crystal

Country Status (1)

Country Link
JP (1) JP2004123444A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102465344A (en) * 2010-11-18 2012-05-23 日立电线株式会社 GaAs wafer and method for manufacturing the GaAs wafer
JP2012236750A (en) * 2011-05-13 2012-12-06 Hitachi Cable Ltd GaAs SINGLE CRYSTAL WAFER, AND METHOD FOR MANUFACTURING THE SAME

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102465344A (en) * 2010-11-18 2012-05-23 日立电线株式会社 GaAs wafer and method for manufacturing the GaAs wafer
JP2012106890A (en) * 2010-11-18 2012-06-07 Hitachi Cable Ltd GaAs WAFER AND METHOD FOR MANUFACTURING GaAs WAFER
JP2012236750A (en) * 2011-05-13 2012-12-06 Hitachi Cable Ltd GaAs SINGLE CRYSTAL WAFER, AND METHOD FOR MANUFACTURING THE SAME

Similar Documents

Publication Publication Date Title
TW202113168A (en) Process for growing silicon single crystal
KR101501036B1 (en) Sapphire single crystal and process for manufacturing the same
CN112226813A (en) Target single crystal growth device and method
JP2004123444A (en) Apparatus for manufacturing compound semiconductor single crystal
JP5375636B2 (en) Method for producing silicon single crystal
JP2006327879A (en) Method for manufacturing compound semiconductor single crystal
JP2004099390A (en) Method of manufacturing compound semiconductor single crystal and compound semiconductor single crystal
JP2004175620A (en) Manufacturing method of single crystal
KR100835293B1 (en) Manufacturing method of silicon single crystal ingot
CN111101194A (en) Crystal growth method of monocrystalline silicon crystal bar
JP4161787B2 (en) Method for producing compound semiconductor single crystal
JP4200690B2 (en) GaAs wafer manufacturing method
JP2531875B2 (en) Method for producing compound semiconductor single crystal
JP2005200228A (en) Growth method for compound semiconductor single crystal
JP2004010467A (en) Method for growing compound semiconductor single crystal
JP4155085B2 (en) Method for producing compound semiconductor single crystal
JP2004269273A (en) Method for manufacturing compound semiconductor single crystal
JPH05319973A (en) Single crystal production unit
JP2004107099A (en) Method of manufacturing semi-insulative gallium arsenide single crystal
CN118497882A (en) Method for growing silicon single crystal
JP2013193942A (en) Single crystal manufacturing apparatus and method for manufacturing single crystal using the same
JP2004244233A (en) Method of manufacturing gallium arsenide single crystal
JP2020132491A (en) Single crystal growth apparatus and method for manufacturing iii-v group semiconductor single crystal
JPH07206584A (en) Production of compound semiconductor single crystal
JP2004250238A (en) Method for manufacturing gallium arsenide single crystal

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060110