JP4200690B2 - GaAs wafer manufacturing method - Google Patents

GaAs wafer manufacturing method Download PDF

Info

Publication number
JP4200690B2
JP4200690B2 JP2002156925A JP2002156925A JP4200690B2 JP 4200690 B2 JP4200690 B2 JP 4200690B2 JP 2002156925 A JP2002156925 A JP 2002156925A JP 2002156925 A JP2002156925 A JP 2002156925A JP 4200690 B2 JP4200690 B2 JP 4200690B2
Authority
JP
Japan
Prior art keywords
wafer
gaas
crystal
temperature
pits
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002156925A
Other languages
Japanese (ja)
Other versions
JP2004002076A (en
Inventor
清治 水庭
三千則 和地
健 中澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2002156925A priority Critical patent/JP4200690B2/en
Publication of JP2004002076A publication Critical patent/JP2004002076A/en
Application granted granted Critical
Publication of JP4200690B2 publication Critical patent/JP4200690B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、GaAsウェハの製造方法に係り、特にウェハ鏡面研磨後に測定される微小ピットの数を低減するものに関する。
【0002】
【従来の技術】
GaAs単結晶の製造方法としては、主に液体封止引上法(LEC法)及び垂直ブリッジマン法(VB法又はVGF法(温度傾斜法))が採用されている。成長炉内で融解したGa、AsからGaAs単結晶を徐々に成長し、炉内からそのまま結晶を取り出し、冷却し、その後ウェハに加工し、さらに鏡面研磨する。
【0003】
GaAs結晶から加工されたGaAsウェハには、結晶成長時に不純物をドープしたドープGaAsウェハと、不純物をドープしないアンドープGaAsウェハとがあるが、アンドープGaAsウェハは特にFET、HEMT、HBT等のような電子デバイス向けに多く使用されている。
【0004】
通常、GaAsウェハは鏡面研磨したものがエピタキシャル用の基板として使用されるが、GaAsウェハ表面には、鏡面研磨後に、大きさが0.5〜0.1μm程度の欠陥(以下、微小ピットという)が発生しやすい。一般的にSiドープ導電性ウェハの場合は微小ピットは発生し難いが、Siのドープ量を減らしてキャリア濃度を1×1017cm-3程度以下にすると、微小ピットが多く発生してくる。特に、Siをドープしないアンドープ半絶縁性GaAsウェハの場合は微小ピットが最も発生しやすい。
【0005】
【発明が解決しようとする課題】
上述したように成長炉内から結晶を取り出し、冷却し、ウェハ加工後鏡面研磨すると、アンドープ半絶縁性GaAsウェハの場合には、多数(数千個以上)の微小ピットが発生する。微小ピットが発生したウェハは、その表面の凹凸が、デバイスの微細加工時に問題となり、微小ピット数が多いと微細加工ができなかったり、微細加工ができても歩留まりが悪かった。
【0006】
本発明の課題は、上述した従来技術の問題点を解消して、微小ピットの発生数を低減することが可能なGaAs単結晶の製造方法を提供することにある。
【0007】
【課題を解決するための手段】
第1の発明は、鏡面研磨後に測定される0.1〜0.5μmの大きさのウェハ上の微小ピットの数を所定数以下に低減するLEC法によるノンドープ半絶縁性GaAsウェハの製造方法であって、成長炉でAs組成比が0.50005以上となるAs過剰のGaAs結晶を成長させる工程と、結晶成長後、GaAs結晶を前記成長炉から取り出さず、1100℃以上に昇温しアニールした後降温する過程で、1100℃以下の降温領域において50℃/h以上となる冷却速度で冷却する工程とを含むことを特徴とするGaAsウェハの製造方法である。ここでいう微小ピットとは、大きさ0.1〜0.5μmの欠陥をいう。As過剰になるように制御して結晶を成長させると、結晶中に過剰Asが固溶する。結晶成長後、GaAs結晶をそのままの高温状態から降温する過程で、所定の速度で冷却制御すると、結晶中に固溶した過剰Asが均一に分散する。このようにAs過剰となるように制御し、且つ降温過程で冷却速度制御することにより、GaAs鏡面ウェハ上の微小ピット数を有効に低減できる。
【0008】
第2の発明は、鏡面研磨後に測定される0.1〜0.5μmの大きさのウェハ上の微小ピットの数を所定数以下に低減するLEC法によるノンドープ半絶縁性GaAsウェハの製造方法であって、成長炉でAs組成比が0.50005以上となるAs過剰のGaAs結晶を成長させる工程と、結晶成長後、GaAs結晶を前記成長炉から取り出してから一旦1100℃以上に昇温しアニールした後降温する過程で、1100℃以下の降温領域において50℃/h以上となる冷却速度で冷却する工程とを含むことを特徴とするGaAsウェハの製造方法である。As過剰になるように制御して結晶を成長した後、そのまま降温する過程で冷却速度を制御するのではなく、一旦炉から取り出して降温させてから昇温(アニール)し、昇温後降温する過程で冷却速度を制御する。アニールすると、結晶中に過剰Asが固溶する。アニールしたGaAs結晶を降温する過程で、所定の速度で冷却制御すると、結晶中に固溶した過剰Asが均一に分散する。このようにAs過剰となるように制御し、且つアニールを施すことにより、GaAs鏡面ウェハ上の微小ピット数を有効に低減できる。
【0009】
第3の発明は、第2の発明において、前記一旦昇温した後降温する過程がインゴット状態で行なわれるGaAsウェハの製造方法である。アニール及び降温はインゴット状態で行なってもよい。この場合でも同様な微小ピット数低減効果が得られる。
【0010】
第4の発明は、第2の発明において、前記一旦昇温した後降温する過程がウェハ状態で行なわれるGaAsウェハの製造方法である。アニール及び降温はウェハ状態で行なってもよい。この場合でも同様な微小ピット数低減効果が得られる。
【0011】
第5の発明は、第2ないし第4の発明において、前記昇温がAs雰囲気中で行なわれるGaAsウェハの製造方法である。アニールがAs雰囲気で行なわれるので、Asの揮散が防止できる。
【0013】
の発明において、第1ないし第の発明において、前記鏡面研磨後に測定されるウェハ上の微小ピットの数が、4インチウェハ換算で1,000個/枚以下であるGaAsウェハの製造方法である。ウェハ上の微小ピットの数が、4インチウェハ換算で1,000個/枚以下であると、デバイスの微細加工時に問題が生じない。
【0015】
【実施の形態】
以下に本発明の実施の形態を説明する。
【0016】
図4はノンドープGaAs半絶縁性単結晶を製造するためのLEC法を用いた単結晶製造装置の概略構成図を示す。単結晶製造装置は、成長炉を構成する高圧容器1を備える。高圧容器1内に、原料であるGa、As、及び封止剤である三酸化硼素(B23)を入れるpBNるつぼ3が設けられる。るつぼ3の周囲にグラファイト製ヒータ5を配置し、るつぼ3を加熱するようになっている。るつぼ3にGa、As及び三酸化硼素をチャージする。その後、高圧容器1内をヒータ5によりGaAsの融点温度(1238℃)以上に加熱し、るつぼ3内部の原料を融解してGaAs融液6を形成し、その融液表面を三酸化硼素4で覆う。種結晶2を下降させ、GaAs融液6に接触させ、ヒータ5の出力調整により、高圧容器1内の温度を徐々に下げ、種結晶2を徐々に引上げることによりノンドープGaAs半絶縁性単結晶10を直接合成して成長させ、成長した単結晶を高圧容器1から取り出す。結晶はφ4インチ(直径101.6mm)である。
【0017】
微小ピットの発生状況を、上述したLEC法を用いて製造したノンドープGaAs半絶縁性単結晶で調査した結果、成長後の結晶を一旦1,100℃まで昇温加熱(アニール)した後、比較的速い速度で室温まで冷却すると、微小ピットの発生数が低減することがわかった。アニール温度が1,100℃より低い場合は効果が全くなく、また冷却速度は速い方が効果が大きいことがわかった。
【0018】
1,100℃というのは、結晶中の過剰Asが固溶する温度である。さらに冷却速度を高速にするほど効果が大きいことを考慮すると、過剰Asを固溶させた後、均一に分散させることが有効なのではないかと推測した。
【0019】
そこで、結晶の過剰As量を変えた実験を行なった。図1はAs組成比を変化させたときの微小ピット数の実験結果を示す。横軸はAs組成比、縦軸は鏡面研磨後のウェハ上の微小ピット数(ケ/枚)であり、冷却速度(℃/h)をパラメータとしている。
【0020】
ここに過剰As量はAs組成比で表される。LEC法を用いて結晶の直接合成引上げを行ない、使用する原料であるGaとAsの量を適宜変えることで、As組成比を変化させる。成長後の結晶中のAs組成比は、実際には測定が難しいため、As組成比の値は全て原料チャージの時の原料重量比から計算したものである。
【0021】
1,100℃以下の降温領域での冷却速度を50℃/hと30℃/hとの2通りに設定し、As組成比を0.4999〜0.5003まで変化させた。この実験から、予想通り、過剰Asが多いほど、微小ピット数の発生が少ないことがわかった。また、冷却速度が30℃/hではAs混晶比を過剰にしても微小ピット数を1,000個以下にすることができないが、冷却速度を50℃/hにすると、As組成比を0.50005以上にすることによって微小ピット数を1,000個以下にすることができることもわかった。
【0022】
また、図2にアニール後の冷却速度を変化させて実験した結果を示す。横軸は1,100℃以下の降温領域での冷却速度(℃/h)、縦軸は鏡面研磨後のウェハ上の微小ピット数(ケ/数)であり、As組成比は0.50005とした。この実験結果から、冷却速度が大きいほど微小ピット数の発生が少ないことがわかる。特に、冷却速度が50℃/hより大きいと極端に微小ピット数が低減することがわかる。
【0023】
図1及び図2より、組成比0.50005以上、冷却速度50℃/h以上で微小ピット数レベルが1,000個/枚以下になることがわかる。
【0024】
上記実施の形態では、1,100℃から冷却する方法は、取り出した結晶を再アニールしてから冷却するようにしたが、本発明はこれに限定されない。例えば、結晶成長後にそのまま冷却するようにしてもよい。また、アニールは結晶(インゴット)の状態でもウェハの状態でもよい。
【0025】
上述した説明から、実用的に問題がないと思われる微小ピット数が1,000個/枚以下のウェハを得る方法として、下記2点を満たしたものが最適となる。
【0026】
(1)結晶成長後そのまま降温する際、又は一旦成長炉から結晶を取り出した後(インゴット状態でもウェハの状態でもよい)1,100℃以上までアニールしてから降温する際、1,100℃以下の降温領域で50℃/h以上の速度で冷却する。
【0027】
(2)GaAs結晶のAs組成比は0.50005以上のAs過剰のものを使用する。
【0028】
この2点を満たして製造、加工したアンドープ半絶縁性GaAsウェハによると、これを鏡面研磨しても、測定されるウェハ表面の微小ピット数は1,000個以下/枚に抑えることができる。従って、ウェハ表面の凹凸が、デバイスの微細加工時にほとんど問題となることがなくなり、微細加工の歩留まりが大幅に向上する。
【0029】
なお、冷却速度は50℃/h以上であれば速い程効果が大きいが、速すぎると結晶中にスリップ等の結晶欠陥が入りやすいため、実用上は50〜80℃/hが好ましい。
【0030】
また、Asの組成比に関しては、測定が難しいため、実施の形態では原料のチャージ量から計算した数値を用いた。このため実際の組成比とは若干ずれている可能性があるが、As組成比が大きい程、微小ピット数低減効果が大きいという点ではなんら変るものではなく、別の組成比算出方法で多少ずれた値が測定されたとしても、本発明を逸脱するものではない。
【0031】
なお、要請される鏡面ウェハ上の微小ピット数が1,000個/枚を超えてもよい場合には、上記2点を満たさなくても良く、前述したAs組成比及び冷却速度の値を緩和して製造、加工すればよい。
【0032】
【実施例】
(実施例)
Ga10kg、As10.754kg、さらにB231,000gをpBNるつぼに入れた後、高圧容器の圧力をArガスで6MPaまで加圧した。その後、約900℃まで昇温し、GaとAsを反応させた後、さらに昇温して全体を融液にさせた。圧力を2MPaまで下げ、種結晶による種付けを行なった後、10mm/hの速度で引上げを行なって結晶を成長させた。成長終了後、室温まで徐冷した後、高圧容器から結晶を取り出して室温まで一旦冷却した。結晶は組成比0.5001のφ4インチ(直径101.6mm)サイズで17kgのノンドープGaAs半絶縁性単結晶であった。
【0033】
この結晶の両端を切り、外周を研削し、エッチング洗浄した後、インゴット状態で内圧補償用のAsとともに石英ガラス製容器に真空封止し、1,100℃まで昇温(アニール)し、10時間保持した後、80℃/hで室温まで冷却し、結晶を取り出した。この結晶からウェハを切り出し、鏡面研磨をして、微小ピット数の測定を鏡面検査装置(テンコール社のサーフスキャン6200)を用いて測定した。その結果、図3(b)に示すように、微小ピット数は約250個/枚であった。
(比較例)
実施例と同じ条件で結晶を成長させ、結晶状態でも、インゴットないしウェハ状態でもアニールせずに、ウェハ加工して鏡面研磨し、同様な測定方法で微小ピット数の測定をした。その結果、アニール前のアズグロウンでは、図3(a)に示すように、微小ピット数は約6,300個/枚であった。
【0034】
【発明の効果】
本発明によれば、鏡面ウェハの微小ピットの発生数を低減することができるので、微細加工が容易になり、このウェハを使ったデバイスの歩留まりを向上できる。
【図面の簡単な説明】
【図1】本発明のGaAsウェハの製造方法に係る鏡面ウェハ上の微小ピット数特性図であって、50℃/h、30℃/hの2つの冷却速度をパラメータとして、As組成比を変化させた時の微小ピット数の変化を表した実験データの図である。
【図2】本発明に係るAs組成比0.50005の結晶から加工した鏡面ウェハ上の微小ピット数の特性図であって、1,100℃以下の降温領域の冷却速度を変化させた時の微小ピット数の変化を表した実験データの図である。
【図3】As組成比が0.5001、φ4インチの結晶を80℃/hで降温したアニール後の実施例と、アニールなし(アズグロウン)の比較例とを示した鏡面ウェハ上の微小ピット数の発生状況を示す図である。
【図4】本発明に係るLEC法を用いた単結晶製造装置の概略構成図である。
【符号の説明】
1 高圧容器
2 種結晶
3 るつぼ
4 三酸化硼素
5 ヒータ
6 GaAs融液
10 GaAs単結晶
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a GaAs wafer, and more particularly, to a method for reducing the number of micropits measured after wafer mirror polishing.
[0002]
[Prior art]
As a method for producing a GaAs single crystal, a liquid sealing pulling method (LEC method) and a vertical Bridgman method (VB method or VGF method (temperature gradient method)) are mainly employed. A GaAs single crystal is gradually grown from Ga and As melted in the growth furnace, the crystal is taken out from the furnace as it is, cooled, then processed into a wafer, and further mirror polished.
[0003]
GaAs wafers processed from GaAs crystals include doped GaAs wafers doped with impurities during crystal growth and undoped GaAs wafers that are not doped with impurities. Often used for devices.
[0004]
Usually, a mirror-polished GaAs wafer is used as an epitaxial substrate, but the surface of the GaAs wafer has a size of about 0.5 to 0.1 μm after mirror polishing (hereinafter referred to as micropits). Is likely to occur. In general, in the case of a Si-doped conductive wafer, it is difficult to generate micro pits. However, if the carrier concentration is reduced to about 1 × 10 17 cm −3 or less by reducing the amount of Si doped, many micro pits are generated. In particular, in the case of an undoped semi-insulating GaAs wafer not doped with Si, micropits are most likely to occur.
[0005]
[Problems to be solved by the invention]
As described above, when the crystal is taken out from the growth furnace, cooled, and mirror-polished after wafer processing, in the case of an undoped semi-insulating GaAs wafer, a large number (thousands or more) of fine pits are generated. The surface of the wafer in which minute pits are generated has a problem when the device is finely processed. If the number of minute pits is large, fine processing cannot be performed, and even if fine processing is possible, the yield is poor.
[0006]
An object of the present invention is to provide a method of manufacturing a GaAs single crystal that can solve the above-described problems of the prior art and reduce the number of micropits generated.
[0007]
[Means for Solving the Problems]
1st invention is the manufacturing method of the non-dope semi-insulating GaAs wafer by LEC method which reduces the number of the micropits on the wafer of the size of 0.1-0.5 micrometer measured after mirror polishing to below predetermined number. In the growth furnace, an As-excess GaAs crystal having an As composition ratio of 0.50005 or more is grown, and after crystal growth, the GaAs crystal is not taken out of the growth furnace and is heated to 1100 ° C. or higher and annealed . And a step of cooling at a cooling rate of 50 ° C./h or higher in a temperature lowering region of 1100 ° C. or lower in the subsequent temperature lowering process. As used herein, the micro pit refers to a defect having a size of 0.1 to 0.5 μm. When a crystal is grown while being controlled so as to be excessive, excess As is dissolved in the crystal. When the GaAs crystal is cooled from the high temperature state as it is after the crystal growth, if the cooling control is performed at a predetermined speed, the excess As dissolved in the crystal is uniformly dispersed. As described above, the number of minute pits on the GaAs mirror wafer can be effectively reduced by controlling the excess of As and controlling the cooling rate in the temperature lowering process.
[0008]
The second invention is a method for producing a non-doped semi-insulating GaAs wafer by the LEC method that reduces the number of micro pits on a wafer having a size of 0.1 to 0.5 μm measured after mirror polishing to a predetermined number or less. A step of growing an As-excess GaAs crystal having an As composition ratio of 0.50005 or more in a growth furnace, and after the crystal growth, the GaAs crystal is taken out of the growth furnace and then heated to 1100 ° C. or higher for annealing. And then cooling at a cooling rate of 50 ° C./h or more in a temperature lowering region of 1100 ° C. or lower in the process of lowering the temperature . Rather than controlling the cooling rate in the process of lowering the temperature as it is after growing the crystal by controlling it to be over As, the temperature is taken out from the furnace and the temperature is lowered (annealed), and the temperature is lowered after the temperature is raised. Control the cooling rate in the process. When annealing is performed, excess As is dissolved in the crystal. If cooling is controlled at a predetermined speed in the process of cooling the annealed GaAs crystal, excess As dissolved in the crystal is uniformly dispersed. Thus, by controlling so as to be excess of As and performing annealing, the number of minute pits on the GaAs mirror wafer can be effectively reduced.
[0009]
A third invention is a method for producing a GaAs wafer according to the second invention, wherein the temperature raising process and the temperature lowering process are performed in an ingot state. Annealing and temperature lowering may be performed in an ingot state. Even in this case, the same effect of reducing the number of minute pits can be obtained.
[0010]
A fourth invention is a method for producing a GaAs wafer according to the second invention, wherein the temperature raising process and the temperature lowering process are performed in a wafer state. Annealing and temperature lowering may be performed in a wafer state. Even in this case, the same effect of reducing the number of minute pits can be obtained.
[0011]
A fifth invention is a method for producing a GaAs wafer according to the second to fourth inventions, wherein the temperature rise is performed in an As atmosphere. Since annealing is performed in an As atmosphere, As can be prevented from evaporating.
[0013]
6th invention WHEREIN: The manufacturing method of the GaAs wafer whose number of micropits on the wafer measured after the said mirror polishing in the 1st thru | or 5th invention is 1,000 pieces / piece or less in conversion of a 4-inch wafer It is. If the number of micro pits on the wafer is 1,000 or less in terms of a 4-inch wafer, there will be no problem during microfabrication of the device.
[0015]
Embodiment
Embodiments of the present invention will be described below.
[0016]
FIG. 4 is a schematic configuration diagram of a single crystal manufacturing apparatus using the LEC method for manufacturing a non-doped GaAs semi-insulating single crystal. The single crystal manufacturing apparatus includes a high-pressure vessel 1 constituting a growth furnace. In the high-pressure vessel 1, a pBN crucible 3 in which Ga, As, which are raw materials, and boron trioxide (B 2 O 3 ), which is a sealing agent, is provided. A graphite heater 5 is arranged around the crucible 3 to heat the crucible 3. The crucible 3 is charged with Ga, As, and boron trioxide. Thereafter, the inside of the high-pressure vessel 1 is heated by a heater 5 to a melting point temperature (1238 ° C.) or higher of GaAs, the raw material in the crucible 3 is melted to form a GaAs melt 6, and the melt surface is coated with boron trioxide 4. cover. The seed crystal 2 is lowered and brought into contact with the GaAs melt 6. By adjusting the output of the heater 5, the temperature in the high-pressure vessel 1 is gradually lowered, and the seed crystal 2 is gradually pulled up to gradually raise the seed crystal 2. 10 is directly synthesized and grown, and the grown single crystal is taken out from the high-pressure vessel 1. The crystal is 4 inches (diameter 101.6 mm).
[0017]
As a result of investigating the occurrence of minute pits with the non-doped GaAs semi-insulating single crystal produced by using the above-mentioned LEC method, the grown crystal was heated to 1100 ° C. (annealed), and then relatively It was found that the number of micro pits decreased when cooled to room temperature at a high speed. It was found that there was no effect when the annealing temperature was lower than 1,100 ° C., and that the effect was greater when the cooling rate was faster.
[0018]
1,100 ° C. is a temperature at which excess As in the crystal is dissolved. Furthermore, considering that the effect is greater as the cooling rate is increased, it was speculated that it would be effective to uniformly disperse excess As and then disperse it uniformly.
[0019]
Therefore, an experiment was conducted in which the amount of excess As in the crystal was changed. FIG. 1 shows the experimental results of the number of minute pits when the As composition ratio is changed. The horizontal axis represents the As composition ratio, the vertical axis represents the number of minute pits on the wafer after mirror polishing (single / sheet), and the cooling rate (° C./h) is a parameter.
[0020]
Here, the excess As amount is represented by the As composition ratio. The crystal composition is directly pulled up using the LEC method, and the As composition ratio is changed by appropriately changing the amounts of Ga and As as raw materials to be used. Since the As composition ratio in the crystal after growth is actually difficult to measure, all values of the As composition ratio are calculated from the raw material weight ratio at the time of raw material charging.
[0021]
The cooling rate in the temperature lowering region of 1,100 ° C. or lower was set to two values of 50 ° C./h and 30 ° C./h, and the As composition ratio was changed from 0.4999 to 0.5003. From this experiment, as expected, it was found that the more excess As, the less the number of micropits generated. Further, when the cooling rate is 30 ° C./h, even if the As mixed crystal ratio is excessive, the number of minute pits cannot be reduced to 1,000 or less. However, when the cooling rate is 50 ° C./h, the As composition ratio is 0. It was also found that the number of minute pits can be reduced to 1,000 or less by setting it to 0.505 or more.
[0022]
FIG. 2 shows the results of an experiment conducted by changing the cooling rate after annealing. The horizontal axis is the cooling rate (° C./h) in the temperature drop region of 1,100 ° C. or lower, the vertical axis is the number of micro pits (single / number) on the wafer after mirror polishing and the As composition ratio is 0.50005 did. From this experimental result, it can be seen that the smaller the cooling rate, the smaller the number of minute pits. In particular, it can be seen that when the cooling rate is higher than 50 ° C./h, the number of minute pits is extremely reduced.
[0023]
1 and 2, it can be seen that the fine pit number level is 1,000 pieces / sheet or less when the composition ratio is 0.50005 or more and the cooling rate is 50 ° C./h or more.
[0024]
In the above embodiment, the method of cooling from 1,100 ° C. is such that the crystal taken out is reannealed and then cooled, but the present invention is not limited to this. For example, it may be cooled as it is after crystal growth. Further, the annealing may be in a crystal (ingot) state or a wafer state.
[0025]
From the above description, a method that satisfies the following two points is optimal as a method for obtaining a wafer having a fine pit count of 1,000 / sheet or less, which seems to have no problem in practice.
[0026]
(1) When the temperature is lowered as it is after the crystal growth, or once the crystal is taken out from the growth furnace (ingot state or wafer state), when the temperature is lowered to 1,100 ° C. or higher and then lowered to 1,100 ° C. or lower Cooling at a rate of 50 ° C./h or more in the temperature drop region.
[0027]
(2) The As composition ratio of the GaAs crystal is 0.50005 or more with an excess of As.
[0028]
According to the undoped semi-insulating GaAs wafer manufactured and processed satisfying these two points, even if this is mirror-polished, the number of minute pits on the wafer surface to be measured can be suppressed to 1,000 or less. Accordingly, the unevenness of the wafer surface hardly becomes a problem at the time of microfabrication of the device, and the yield of microfabrication is greatly improved.
[0029]
Although the cooling rate is greater effect the faster if 50 ° C. / h or higher, and is easy to enter the crystal defects such as slips in the crystal and too fast, practically not preferable is 50 to 80 ° C. / h.
[0030]
In addition, since it is difficult to measure the composition ratio of As, a numerical value calculated from the charge amount of the raw material is used in the embodiment. For this reason, there is a possibility that the composition ratio is slightly different from the actual composition ratio. However, the larger the As composition ratio, the greater the effect of reducing the number of minute pits. Even if the measured value is measured, it does not depart from the present invention.
[0031]
If the required number of micro pits on the mirror surface wafer may exceed 1,000 pieces / piece, the above two points may not be satisfied, and the values of As composition ratio and cooling rate described above are relaxed. Can be manufactured and processed.
[0032]
【Example】
(Example)
After putting 10 kg of Ga, 10.754 kg of As, and 1,000 g of B 2 O 3 into the pBN crucible, the pressure of the high-pressure vessel was increased to 6 MPa with Ar gas. Then, after heating up to about 900 degreeC and making Ga and As react, it heated up further and made the whole into a melt. After reducing the pressure to 2 MPa and seeding with a seed crystal, the crystal was grown by pulling up at a speed of 10 mm / h. After completion of the growth, it was gradually cooled to room temperature, and then the crystal was taken out from the high-pressure vessel and once cooled to room temperature. The crystal was a non-doped GaAs semi-insulating single crystal of 17 kg with a composition ratio of 0.5001, φ4 inch (diameter 101.6 mm).
[0033]
After cutting both ends of the crystal, grinding the outer periphery, cleaning by etching, in an ingot state, vacuum sealed in a quartz glass container together with As for internal pressure compensation, heated to 1,100 ° C. (annealed), and 10 hours After being held, it was cooled to room temperature at 80 ° C./h, and the crystals were taken out. A wafer was cut out from the crystal, mirror-polished, and the number of minute pits was measured using a mirror inspection apparatus (Turcor Surf Scan 6200). As a result, as shown in FIG. 3B, the number of minute pits was about 250 / sheet.
(Comparative example)
Crystals were grown under the same conditions as in the examples. The wafers were processed and mirror-polished without annealing in the crystalline state, ingot or wafer state, and the number of micropits was measured by the same measurement method. As a result, in the as-grown before annealing, as shown in FIG. 3A, the number of minute pits was about 6,300 pieces / sheet.
[0034]
【The invention's effect】
According to the present invention, since the number of micro pits generated on a mirror surface wafer can be reduced, microfabrication is facilitated, and the yield of devices using this wafer can be improved.
[Brief description of the drawings]
FIG. 1 is a characteristic diagram of the number of micro pits on a specular wafer according to a GaAs wafer manufacturing method of the present invention, with As composition ratios changed using two cooling rates of 50 ° C./h and 30 ° C./h as parameters. It is a figure of the experimental data showing the change of the number of micropits when it was made to do.
FIG. 2 is a characteristic diagram of the number of micro pits on a mirror wafer processed from a crystal having an As composition ratio of 0.50005 according to the present invention, when the cooling rate in the temperature drop region of 1,100 ° C. or lower is changed. It is a figure of the experimental data showing the change of the number of micropits.
FIG. 3 shows the number of micropits on a mirror surface wafer showing an example after annealing in which a crystal having an As composition ratio of 0.5001 and φ4 inch is cooled at 80 ° C./h, and a comparative example without annealing (as grown). FIG.
FIG. 4 is a schematic configuration diagram of a single crystal manufacturing apparatus using the LEC method according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 High pressure vessel 2 Seed crystal 3 Crucible 4 Boron trioxide 5 Heater 6 GaAs melt 10 GaAs single crystal

Claims (6)

鏡面研磨後に測定されるウェハ上の0.1〜0.5μmの大きさの微小ピットの数を所定数以下に低減するLEC法によるノンドープ半絶縁性GaAsウェハの製造方法であって、
成長炉でAs組成比が0.50005以上となるAs過剰のGaAs結晶を成長させる工程と、結晶成長後、GaAs結晶を前記成長炉から取り出さず、1100℃以上に昇温しアニールした後降温する過程で、1100℃以下の降温領域において50℃/h以上となる冷却速度で冷却する工程とを含むことを特徴とするノンドープ半絶縁性GaAsウェハの製造方法。
A method for producing a non-doped semi-insulating GaAs wafer by the LEC method that reduces the number of micro-pits having a size of 0.1 to 0.5 μm on a wafer measured after mirror polishing to a predetermined number or less,
A step of growing an As-excess GaAs crystal having an As composition ratio of 0.50005 or more in a growth furnace, and after crystal growth, the GaAs crystal is not taken out from the growth furnace, heated to 1100 ° C. or higher, and then cooled. And a step of cooling at a cooling rate of 50 ° C./h or more in a temperature-decreasing region of 1100 ° C. or less.
鏡面研磨後に測定されるウェハ上の0.1〜0.5μmの大きさの微小ピットの数を所定数以下に低減するLEC法によるノンドープ半絶縁性GaAsウェハの製造方法であって、
成長炉でAs組成比が0.50005以上となるAs過剰のGaAs結晶を成長させる工程と、結晶成長後、GaAs結晶を前記成長炉から取り出してから一旦1100℃以上に昇温しアニールした後降温する過程で、1100℃以下の降温領域において50℃/h以上となる冷却速度で冷却する工程とを含むことを特徴とするノンドープ半絶縁性GaAsウェハの製造方法。
A method for producing a non-doped semi-insulating GaAs wafer by the LEC method that reduces the number of micro-pits having a size of 0.1 to 0.5 μm on a wafer measured after mirror polishing to a predetermined number or less,
A step of growing an As-excess GaAs crystal having an As composition ratio of 0.50005 or more in a growth furnace; and after crystal growth, the GaAs crystal is taken out of the growth furnace and then heated to 1100 ° C. or higher and annealed. And a step of cooling at a cooling rate of 50 ° C./h or more in a temperature-decreasing region of 1100 ° C. or less, and a method for producing a non-doped semi-insulating GaAs wafer.
請求項2に記載のGaAsウェハの製造方法において、前記一旦昇温した後降温する過程がインゴット状態で行なわれるGaAsウェハの製造方法。  3. The method of manufacturing a GaAs wafer according to claim 2, wherein the temperature raising process and the temperature lowering process are performed in an ingot state. 請求項2に記載のGaAsウェハの製造方法において、前記一旦昇温した後降温する過程がウェハ状態で行なわれるGaAsウェハの製造方法。  3. The method for manufacturing a GaAs wafer according to claim 2, wherein the process of lowering the temperature after the temperature is once increased is performed in a wafer state. 前記昇温がAs雰囲気中で行なわれる請求項2ないし4のいずれかに記載のGaAsウェハの製造方法。  The method for manufacturing a GaAs wafer according to claim 2, wherein the temperature rise is performed in an As atmosphere. 前記鏡面研磨後に測定されるウェハ上の微小ピットの数が、4インチウェハ換算で1,000個/枚以下である請求項1ないし5のいずれかに記載のGaAsウェハの製造方法。  6. The method for manufacturing a GaAs wafer according to claim 1, wherein the number of micro pits on the wafer measured after the mirror polishing is 1,000 or less per 4 inch wafer.
JP2002156925A 2002-05-30 2002-05-30 GaAs wafer manufacturing method Expired - Fee Related JP4200690B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002156925A JP4200690B2 (en) 2002-05-30 2002-05-30 GaAs wafer manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002156925A JP4200690B2 (en) 2002-05-30 2002-05-30 GaAs wafer manufacturing method

Publications (2)

Publication Number Publication Date
JP2004002076A JP2004002076A (en) 2004-01-08
JP4200690B2 true JP4200690B2 (en) 2008-12-24

Family

ID=30428363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002156925A Expired - Fee Related JP4200690B2 (en) 2002-05-30 2002-05-30 GaAs wafer manufacturing method

Country Status (1)

Country Link
JP (1) JP4200690B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005272201A (en) * 2004-03-24 2005-10-06 Sumitomo Electric Ind Ltd Gallium arsenide single crystal and its manufacturing method
TWI545237B (en) * 2009-01-20 2016-08-11 Sumitomo Electric Industries Fabrication of conductive GaAs and substrate and the like

Also Published As

Publication number Publication date
JP2004002076A (en) 2004-01-08

Similar Documents

Publication Publication Date Title
TW522456B (en) Silicon single crystal wafer and method for manufacturing the same
US8211228B2 (en) Method for producing single crystal and a method for producing annealed wafer
JP2008115050A (en) Method for producing epitaxial wafer
TWI582277B (en) GaAs single crystal and GaAs single crystal wafer
TWI699464B (en) Compound semiconductor and compound semiconductor single crystal manufacturing method
JP4193610B2 (en) Single crystal manufacturing method
Deitch et al. Bulk single crystal growth of silicon-germanium
JP4930166B2 (en) Method for producing aluminum oxide single crystal
US20060191468A1 (en) Process for producing single crystal
JP4200690B2 (en) GaAs wafer manufacturing method
WO2004065666A1 (en) Process for producing p doped silicon single crystal and p doped n type silicon single crystal wafe
JP4655861B2 (en) Manufacturing method of substrate for electronic device
JP3818023B2 (en) Method for producing GaAs single crystal
JP4273793B2 (en) Single crystal manufacturing method
JP6172013B2 (en) Method for producing GSGG single crystal and method for producing oxide garnet single crystal film
JP2004175620A (en) Manufacturing method of single crystal
JP2011157224A (en) Method for manufacturing silicon single crystal
JP2009023851A (en) Method for producing raw material for producing silicon single crystal, and method for producing silicon single crystal
JP2004099390A (en) Method of manufacturing compound semiconductor single crystal and compound semiconductor single crystal
JP2002274995A (en) Method of manufacturing silicon carbide single crystal ingot
JP2781857B2 (en) Single crystal manufacturing method
CN116324047A (en) Indium phosphide substrate, semiconductor epitaxial wafer, method for producing indium phosphide single-crystal ingot, and method for producing indium phosphide substrate
JP2004269312A (en) Production method for single crystal
JP2004010467A (en) Method for growing compound semiconductor single crystal
JP2005047797A (en) InP SINGLE CRYSTAL, GaAs SINGLE CRYSTAL, AND METHOD FOR PRODUCING THEM

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040618

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20040618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061020

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080916

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080929

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131017

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees