JP2004250238A - Method for manufacturing gallium arsenide single crystal - Google Patents

Method for manufacturing gallium arsenide single crystal Download PDF

Info

Publication number
JP2004250238A
JP2004250238A JP2003039067A JP2003039067A JP2004250238A JP 2004250238 A JP2004250238 A JP 2004250238A JP 2003039067 A JP2003039067 A JP 2003039067A JP 2003039067 A JP2003039067 A JP 2003039067A JP 2004250238 A JP2004250238 A JP 2004250238A
Authority
JP
Japan
Prior art keywords
single crystal
melt
gallium arsenide
boron trioxide
gaas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003039067A
Other languages
Japanese (ja)
Inventor
Michinori Wachi
三千則 和地
Shinji Yabuki
伸司 矢吹
Koji Taiho
幸司 大宝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2003039067A priority Critical patent/JP2004250238A/en
Publication of JP2004250238A publication Critical patent/JP2004250238A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a GaAs single crystal by an LEC method, by which a GaAs single crystal wafer with few square pits can be obtained. <P>SOLUTION: In the method for manufacturing the compound semiconductor single crystal by the LEC method comprising accommodating a gallium arsenide melt being a raw material melt and a boron trioxide melt as a liquid encapsulating agent in a crucible 5 which is accommodated in a pressure-resistant vessel filled with an inert gas, and heated, and growing the compound semiconductor single crystal by relatively moving a seed crystal and the crucible while bringing the seed crystal into contact with the raw material melt, a gallium arsenide polycrystal 6 is used as the raw material, then the gallium arsenide polycrystal 6 is mounted on the boron trioxide 7 by mounting the boron trioxide 7 and the gallium arsenide polycrystal 6 in the crucible 5 in this order, and the boron trioxide melt and the gallium arsenide melt are prepared. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、GaAs単結晶を成長するのに適したLEC法による化合物半導体単結晶の製造方法に関するものである。
【0002】
【従来の技術】
化合物半導体はその単結晶の高品質化により、高速集積回路、光−電子集積回路やその他の電子素子に広く用いられるようになってきた。なかでも、III−V族化合物半導体の砒化ガリウム(GaAs)は電子移動度がシリコンに比べて早く、10Ω・cm以上の比抵抗のウェハが製造容易という特長がある。現在では上記GaAsの単結晶は、主に液体封止チョクラルスキ法(Liquid Encapsulated Czochralski法、以下「LEC法」と記す)により製造されている。
【0003】
LEC法による砒化ガリウム(GaAs)の製造例を、図2を用いて説明する。
【0004】
図2において、1は結晶成長用高温炉の耐圧容器であり、耐圧容器1内には下側から下軸2が挿入され、この下軸2の先端にペデスタル3を介してサセプタ4が支持されている。サセプタ4内にはパイロリティック窒化硼素(PBN)製るつぼ5が配置されている。サセプタ4の周囲にはヒータ8が設けられており、サセプタ4を介してPBN製るつぼ5を周囲から加熱できるようになっている。下軸2は図示しない回転・昇降機構に接続されており、回転・昇降自在となっている。また、耐圧容器1の上側からは下軸2と同軸的に引上軸9が挿入され、その下端に設けられた種結晶ホルダ10に所望の方位を持った種結晶11(通常、方位として(100)が用いられる)が取り付けられる。この引上軸9は、図示しない回転・昇降機構によってPBN製るつぼ5とは同軸に回転・昇降自在となっている。引上軸9の途中には重量センサ12が設けられており、これによって成長過程の結晶重量を検知できるようになっている。
【0005】
結晶成長の際には、先ず、直径が280mmであるPBN製るつぼ5の中に、GaAs多結晶原料6を24,000gと、Asの揮発を防止する液体封止剤7の三酸化硼素(B)を1,500g入れ、成長炉の耐圧容器1に投入する。すなわち、PBN製るつぼ5内に、先にGaAs多結晶原料、次いで三酸化硼素の順に載置し、このるつぼ5を耐圧容器1に収納する。
【0006】
耐圧容器1内を真空排気し、その後、耐圧容器内が8気圧程度になるように窒素またはアルゴンなどの不活性ガスを封入し、調整、保持する。主ヒータ8に通電してPBN製るつぼ5の内部を昇温させる。500℃前後で液体封止剤(B)7が軟化、融解してGaAs多結晶原料6を覆う。引き続き昇温させ、PBN製るつぼ5内部の温度を1,238℃以上とし、多結晶原料6を融解させ、GaAs融液を作成する。
【0007】
次に、種結晶11を降下させ、その先端を原料融液に浸して種付けを行う。その後、主ヒータ8の温度を下げながら、引上軸9と下軸2を相対的に回転させながら引上軸9を9〜12mm/hrの速度で引き上げて行き、重量センサ12で結晶重量を検知しながら、主ヒータ8の出力を制御して、例えば直径φ105mmのGaAs単結晶を成長させる。
【0008】
上記単結晶をウェハ状に切断、研磨を行い、鏡面ウェハ面に最大で10μm程度の四角状を呈する空洞の欠陥(以下「角ピット」と記す)が観察される場合が多々ある。角ピットの発生割合は、φ105mmのGaAs単結晶ウェハ生産枚数の約10%にも達していた。
【0009】
従来、ウェハの収率を上げるため、単結晶である直銅長がより長いインゴットを得る成長結晶の長尺化の方法が検討されている。例えば、るつぼの側面の発熱体の長さLhと、るつぼ内の原料融液の深さDmとの比Lh/Dmを規定することが知られている(特許文献1参照)。
【0010】
【特許文献1】
特開平10−279382号公報
【0011】
【発明が解決しようとする課題】
しかしながら、特許文献1或いは他の従来技術は、角ピットの発生割合を低減するという点に着目したものではなく、PBN製るつぼ内に、GaAs多結晶原料、三酸化硼素をこの順序で載置するという一般的手法によっている。
【0012】
このため、上記従来技術の製造例で述べたように、GaAs単結晶ウェハには最大で10μm程度の四角状を呈する空洞の欠陥である角ピットが発生する場合が多々ある。角ピットが発生したウェハは、その表面の凹凸がデバイスの微細加工時の歩留が低下する大きな原因であった。また角ピットの数が多い場合は微細加工が不可能になるなどの問題も生じていた。
【0013】
そこで、本発明の目的は、GaAs単結晶ウェハでの上記従来技術の問題点を解消し、角ピットの少ないGaAs単結晶ウェハを得ることが可能なLEC法によるGaAs単結晶の製造方法を提供することにある。
【0014】
【課題を解決するための手段】
本発明の要旨は、角ピットの少ないLEC法によるGaAs単結晶を得ることにあり、方法は以下の通りである。
【0015】
請求項1の発明に係る砒化ガリウム単結晶の製造方法は、不活性ガスを充填した耐圧容器内に収容され、加熱されたるつぼに、原料融液である砒化ガリウム融液と液体封止剤としての三酸化硼素融液を収納し、種結晶を原料融液に接触させつつ種結晶とるつぼとを相対的に移動させて、化合物半導体単結晶を成長させるLEC法による化合物半導体単結晶の製造方法において、原料として砒化ガリウム多結晶を用い、るつぼへの載置を三酸化硼素、砒化ガリウム多結晶の順にて行い、三酸化硼素上に砒化ガリウム多結晶を載置して、三酸化硼素融液及び砒化ガリウム融液を作成することを特徴とする。
【0016】
<発明の要点>
本発明は、次のような発明者等の知見に基づきなされたものである。
【0017】
GaAsウェハの角ピットは、結晶成長を行う際の雰囲気ガスで満たされていることが確認された。また、角ピットは、成長の或る時点の固液界面に沿って分布していることも調査の結果明らかとなった。
【0018】
角ピットの発生頻度については、全ての結晶、または、全てのウェハに発生するものではない。よって、角ピットはある一定の条件下での成長時に発生するものと推定される。
【0019】
以上より、角ピットの発生機構として以下のモデルが考えられる。
【0020】
不活性ガスを充填した耐圧容器内に収容されたPBN製るつぼ中の三酸化硼素及びGaAs多結晶を融解する昇温過程において、三酸化硼素の融解時に、不活性ガスが三酸化硼素融液下部(GaAs多結晶側)に残留し又は取り込まれてしまう。GaAs多結晶が融液となった時点でも不活性ガスはGaAs融液側に残留し、GaAs融液、三酸化硼素融液の界面間に浮遊しているものと考えられる。
【0021】
GaAs単結晶成長過程で不活性ガスは、成長したGaAs単結晶とGaAs融液の界面である固液界面上にあるものと考えられるが、通常の成長過程では不活性ガスがGaAs単結晶に取り込まれることはない。何らかの事態によってGaAs融液が過冷却状態となり、当過冷却部が通常の成長速度よりもより早い速度で単結晶化した場合にのみ、不活性ガスがGaAs単結晶に取り込まれるものと考えられる。
【0022】
上記モデルは、角ピット内のガス分析の結果や、角ピットの発生頻度などが、明確に説明できる。
【0023】
よって、本発明の如く、るつぼへの載置を、三酸化硼素、GaAs多結晶の順にて行うことで、従来のGaAs多結晶、三酸化硼素の順で行う場合に比較して、三酸化硼素の融解時に、不活性ガスが三酸化硼素融液の下部(GaAs多結晶側)に残留し又は取り込まれてしまう割合が極端に小さくなる。
【0024】
【発明の実施の形態】
以下、本発明の実施形態を図示の実施例に基づいて説明する。
【0025】
[実施例]
図1に本発明の実施例の概要を示す。ここで用いた成長炉自体の構成は図2と同じである。
【0026】
結晶成長の際しては、先ず、成長容器としての直径が280mmであるPBN製るつぼ5の中に、Asの揮発を防止する液体封止剤7としての三酸化硼素(B)を1,500gを入れ、その上にGaAs多結晶原料6を24,000g載置し、成長炉の耐圧容器1に収納する。すなわち、耐圧容器1内に載置する順序は、先に三酸化硼素(B)、次いでGaAs多結晶原料6の順であり、この点で、図1の従来技術の場合と異なる。
【0027】
このように、直径が280mmであるPBN性のるつぼ5に、三酸化硼素1,500g、GaAs多結晶原料24,000g、の順で載置し、るつぼ5と共にGaAs多結晶原料24,000g、三酸化硼素1,500gを耐圧容器1に収納した後、耐圧容器1内を真空排気し、その後、耐圧容器1が8気圧になるように不活性ガスを封入、調整、保持した。
【0028】
その後、従来技術の製造例と同様に、ヒータ8に通電してPBN製るつぼ5の内部を昇温させる。500℃前後で液体封止剤7の三酸化硼素(B)が軟化、融解してGaAs多結晶原料6を覆う。更に、ヒータ8によって加熱し、PBN製るつぼ5内部の温度を1,238℃以上とし、多結晶原料6を融解させる。要するに、液体封止剤7の三酸化硼素(B)上にGaAs多結晶原料6を載置した状態から、ヒータによって加熱することで、三酸化硼素融液を作成し、更に加熱してGaAs融液を作成する。
【0029】
砒化ガリウム融液作成後、引上軸9の先端に取りつけた種結晶11を降下させ、その先端を原料融液に浸して種付けを行う。種結晶により種付けを行った後、引上軸9を回転させながらゆっくりと上昇させることで、結晶を成長させ、直径φ105mmのGaAs単結晶を成長させた。
【0030】
上記単結晶をウェハ状に切断、研磨を行い、鏡面ウェハとしたところ、角ピットは観察されなかった。同様の方法で、単結晶成長を50回行い、全ての結晶をウェハ状に切断、研磨を行い鏡面ウェハとしたところ、角ピットの発生割合は2%であった。
【0031】
このように当実施例で、角ピットの発生割合を、従来技術よりも低下させることができた理由は、るつぼ内に三酸化硼素、GaAs多結晶の順で載置することで、三酸化硼素融解時に不活性ガスが三酸化硼素融液下部(GaAs多結晶側)に残留、取り込まてしまう割合が減ったことに起因していると考えられる。
【0032】
上記の実施例では、GaAs単結晶の製造方法について記載したが、InP、GaP、InAs等の他の化合物半導体単結晶の製造方法についても直接応用が可能であり、同様の効果が期待される。
【0033】
本発明による製造方法で得られるGaAs単結晶ウェハは、従来法による場合よりも、角ピットが大幅に少ない。従って、本発明の製造方法で得られたGaAs単結晶ウェハを用いてFET、HEMT、HBT等のデバイス素子を作成した場合、角ピットに基づく素子歩留の低下を防止することができる。よって、工業生産における経済的効果は多大なものがある。
【0034】
【発明の効果】
以上説明したように本発明によれば、LEC法におけるGaAs単結晶の製造方法において、原料として砒化ガリウム多結晶を用い、るつぼへの載置を三酸化硼素、砒化ガリウム多結晶の順にて行い、三酸化硼素上に砒化ガリウム多結晶を載置するので、角ピットの少ないGaAs単結晶ウェハを製造することができる。
【図面の簡単な説明】
【図1】本発明の砒化ガリウム単結晶の製造方法による成長炉内の構成を示した図である。
【図2】従来の砒化ガリウム単結晶の製造方法による成長炉内の構成を示した図である。
【符号の説明】
1 耐圧容器
2 下軸
3 ペデスタル
4 サセプタ
5 PBN製るつぼ
6 多結晶原料
7 液体封止剤(B
8 ヒータ
9 引上軸
10 種結晶ホルダ
12 重量センサ
11 種結晶
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a compound semiconductor single crystal by an LEC method suitable for growing a GaAs single crystal.
[0002]
[Prior art]
Compound semiconductors have been widely used in high-speed integrated circuits, opto-electronic integrated circuits, and other electronic devices due to the high quality of single crystals. Among them, gallium arsenide (GaAs), which is a III-V compound semiconductor, has a feature that electron mobility is faster than that of silicon and that a wafer having a specific resistance of 10 7 Ω · cm or more can be easily manufactured. At present, the GaAs single crystal is mainly manufactured by a liquid-encapsulated Czochralski method (hereinafter, referred to as an “LEC method”).
[0003]
An example of manufacturing gallium arsenide (GaAs) by the LEC method will be described with reference to FIG.
[0004]
In FIG. 2, reference numeral 1 denotes a pressure vessel of a high-temperature furnace for crystal growth. A lower shaft 2 is inserted into the pressure vessel 1 from below, and a susceptor 4 is supported at the tip of the lower shaft 2 via a pedestal 3. ing. A crucible 5 made of pyrolytic boron nitride (PBN) is arranged in the susceptor 4. A heater 8 is provided around the susceptor 4 so that the PBN crucible 5 can be heated from the periphery through the susceptor 4. The lower shaft 2 is connected to a rotating / elevating mechanism (not shown) and is rotatable / elevable. A pull-up shaft 9 is inserted coaxially with the lower shaft 2 from the upper side of the pressure vessel 1, and a seed crystal 11 having a desired orientation is placed in a seed crystal holder 10 provided at the lower end thereof (usually, 100) is used). The pulling shaft 9 is rotatable and vertically movable coaxially with the PBN crucible 5 by a rotating / elevating mechanism (not shown). A weight sensor 12 is provided in the middle of the pulling shaft 9 so that the weight of the crystal during the growth process can be detected.
[0005]
At the time of crystal growth, first, 24,000 g of the GaAs polycrystalline raw material 6 and boron trioxide (B) as a liquid sealant 7 for preventing volatilization of As were placed in a PBN crucible 5 having a diameter of 280 mm. 2, O 3 ) is put into the pressure vessel 1 of the growth furnace. That is, the GaAs polycrystalline raw material and then the boron trioxide are placed in the PBN crucible 5 in this order, and the crucible 5 is stored in the pressure-resistant container 1.
[0006]
The inside of the pressure vessel 1 is evacuated to vacuum, and then an inert gas such as nitrogen or argon is sealed, adjusted, and held so that the pressure inside the pressure vessel becomes about 8 atm. The main heater 8 is energized to raise the temperature inside the PBN crucible 5. At about 500 ° C., the liquid sealant (B 2 O 3 ) 7 softens and melts to cover the GaAs polycrystalline raw material 6. Subsequently, the temperature is increased to make the temperature inside the PBN crucible 5 1,238 ° C. or higher, and the polycrystalline raw material 6 is melted to form a GaAs melt.
[0007]
Next, the seed crystal 11 is lowered, and its tip is immersed in the raw material melt to perform seeding. Thereafter, while lowering the temperature of the main heater 8, the pulling shaft 9 is pulled up at a speed of 9 to 12 mm / hr while rotating the pulling shaft 9 and the lower shaft 2 relatively, and the weight of the crystal is detected by the weight sensor 12. While detecting, the output of the main heater 8 is controlled to grow a GaAs single crystal having a diameter of, for example, 105 mm.
[0008]
The single crystal is cut and polished into a wafer, and a cavity defect (hereinafter, referred to as “square pit”) having a square shape of up to about 10 μm is often observed on a mirror-finished wafer surface. The generation ratio of the square pits reached about 10% of the number of GaAs single crystal wafers with a diameter of 105 mm.
[0009]
Conventionally, in order to increase the yield of a wafer, a method of increasing the length of a grown crystal for obtaining an ingot having a longer straight copper as a single crystal has been studied. For example, it is known to define a ratio Lh / Dm of a length Lh of a heating element on a side surface of a crucible and a depth Dm of a raw material melt in the crucible (see Patent Document 1).
[0010]
[Patent Document 1]
JP-A-10-279382
[Problems to be solved by the invention]
However, Patent Literature 1 or another conventional technique does not focus on reducing the occurrence rate of square pits, and places a GaAs polycrystalline raw material and boron trioxide in this order in a PBN crucible. It is based on the general method.
[0012]
For this reason, as described in the above-mentioned prior art manufacturing example, the GaAs single crystal wafer often has square pits, which are defects of a rectangular cavity having a maximum shape of about 10 μm. The unevenness of the surface of the wafer in which the angular pits occurred was a major cause of a decrease in the yield at the time of fine processing of the device. In addition, when the number of square pits is large, there has been a problem that fine processing becomes impossible.
[0013]
Therefore, an object of the present invention is to provide a method of manufacturing a GaAs single crystal by the LEC method, which can solve the above-mentioned problems of the conventional technique in a GaAs single crystal wafer and can obtain a GaAs single crystal wafer having few square pits. It is in.
[0014]
[Means for Solving the Problems]
The gist of the present invention is to obtain a GaAs single crystal by the LEC method with few corner pits, and the method is as follows.
[0015]
The method for producing a gallium arsenide single crystal according to the first aspect of the present invention is characterized in that a gallium arsenide melt as a raw material melt and a liquid sealing agent are housed in a pressure-resistant container filled with an inert gas and heated in a crucible. A method for producing a compound semiconductor single crystal by the LEC method of growing a compound semiconductor single crystal by containing a boron trioxide melt and relatively moving the seed crystal and the crucible while contacting the seed crystal with the raw material melt In the above, using gallium arsenide polycrystal as a raw material, placing on a crucible in the order of boron trioxide and gallium arsenide polycrystal, placing the gallium arsenide polycrystal on the boron trioxide, a boron trioxide melt And preparing a gallium arsenide melt.
[0016]
<The gist of the invention>
The present invention has been made based on the following findings of the inventors.
[0017]
It was confirmed that the square pits of the GaAs wafer were filled with an atmosphere gas for crystal growth. The investigation also revealed that the square pits were distributed along the solid-liquid interface at some point during growth.
[0018]
Regarding the frequency of occurrence of angular pits, it does not occur in all crystals or in all wafers. Therefore, it is presumed that the square pits are generated during growth under certain conditions.
[0019]
From the above, the following models can be considered as a mechanism for generating the square pit.
[0020]
In the process of melting the boron trioxide and the GaAs polycrystal in the PBN crucible contained in the pressure vessel filled with the inert gas, the inert gas is melted at the bottom of the boron trioxide melt when the boron trioxide is melted. (The GaAs polycrystal side). It is considered that the inert gas remains on the GaAs melt side even when the GaAs polycrystal becomes a melt and floats between the interfaces of the GaAs melt and the boron trioxide melt.
[0021]
In the GaAs single crystal growth process, the inert gas is considered to be on the solid-liquid interface which is the interface between the grown GaAs single crystal and the GaAs melt, but in the normal growth process, the inert gas is incorporated into the GaAs single crystal. Will not be. It is considered that the inert gas is taken into the GaAs single crystal only when the GaAs melt enters a supercooled state due to some situation and the subcooled portion becomes single crystallized at a higher speed than the normal growth rate.
[0022]
The above model can clearly explain the results of gas analysis in the square pits, the frequency of occurrence of the square pits, and the like.
[0023]
Therefore, as in the present invention, the mounting on the crucible is performed in the order of boron trioxide and GaAs polycrystal, so that the boron trioxide is compared with the conventional case in which the GaAs polycrystal and boron trioxide are mounted in this order. During the melting, the rate at which the inert gas remains or is taken into the lower part (on the GaAs polycrystal side) of the boron trioxide melt becomes extremely small.
[0024]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the illustrated examples.
[0025]
[Example]
FIG. 1 shows an outline of an embodiment of the present invention. The configuration of the growth furnace itself used here is the same as in FIG.
[0026]
During crystal growth, first, boron trioxide (B 2 O 3 ) as a liquid sealant 7 for preventing volatilization of As is placed in a PBN crucible 5 having a diameter of 280 mm as a growth vessel. 1,500 g is charged, and 24,000 g of the GaAs polycrystalline raw material 6 is placed thereon and stored in the pressure vessel 1 of the growth furnace. That is, the order of placing in the pressure vessel 1 is boron trioxide (B 2 O 3 ) first, then the GaAs polycrystalline raw material 6, and this point is different from the case of the prior art of FIG.
[0027]
Thus, 1,500 g of boron trioxide and 24,000 g of GaAs polycrystalline raw material are placed in this order on the PBN crucible 5 having a diameter of 280 mm, and 24,000 g of GaAs polycrystalline raw material are placed together with the crucible 5. After 1,500 g of boron oxide was placed in the pressure vessel 1, the inside of the pressure vessel 1 was evacuated, and then an inert gas was charged, adjusted, and held so that the pressure vessel 1 was at 8 atm.
[0028]
Thereafter, similarly to the manufacturing example of the related art, the heater 8 is energized to heat the inside of the PBN crucible 5. At about 500 ° C., boron trioxide (B 2 O 3 ) of the liquid sealant 7 softens and melts, and covers the GaAs polycrystalline raw material 6. Further, the temperature inside the PBN crucible 5 is increased to 1,238 ° C. or higher by heating by the heater 8 to melt the polycrystalline raw material 6. In short, from a state in which the GaAs polycrystalline raw material 6 is placed on boron trioxide (B 2 O 3 ) of the liquid sealing agent 7, a heater is heated by a heater to form a boron trioxide melt and further heated. To produce a GaAs melt.
[0029]
After preparing the gallium arsenide melt, the seed crystal 11 attached to the tip of the pulling shaft 9 is lowered, and the tip is immersed in the raw material melt for seeding. After seeding with a seed crystal, the crystal was grown by slowly raising the pulling shaft 9 while rotating the pulling shaft 9, thereby growing a GaAs single crystal having a diameter of 105 mm.
[0030]
When the single crystal was cut into a wafer and polished to obtain a mirror-finished wafer, no square pits were observed. A single crystal was grown 50 times by the same method, and all the crystals were cut into a wafer and polished to obtain a mirror-finished wafer. The occurrence rate of square pits was 2%.
[0031]
As described above, the reason why the rate of occurrence of square pits in this embodiment was lower than that in the prior art is that boron trioxide was placed in a crucible in the order of GaAs polycrystal, so that boron trioxide was formed. This is considered to be due to the fact that the rate at which the inert gas remains and is taken into the lower portion of the boron trioxide melt (on the GaAs polycrystal side) during melting is reduced.
[0032]
In the above embodiment, the method of manufacturing a GaAs single crystal has been described. However, the method of manufacturing other compound semiconductor single crystals such as InP, GaP, and InAs can be directly applied, and similar effects can be expected.
[0033]
The GaAs single crystal wafer obtained by the manufacturing method according to the present invention has significantly less square pits than the conventional method. Therefore, when device elements such as FETs, HEMTs, and HBTs are manufactured using a GaAs single crystal wafer obtained by the manufacturing method of the present invention, it is possible to prevent a decrease in element yield due to square pits. Therefore, there is a great economic effect in industrial production.
[0034]
【The invention's effect】
As described above, according to the present invention, in a method for manufacturing a GaAs single crystal in the LEC method, gallium arsenide polycrystal is used as a raw material, and the crucible is placed in the order of boron trioxide and gallium arsenide polycrystal, Since the gallium arsenide polycrystal is mounted on boron trioxide, a GaAs single crystal wafer having few square pits can be manufactured.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration inside a growth furnace according to a method for producing a gallium arsenide single crystal of the present invention.
FIG. 2 is a view showing a configuration inside a growth furnace according to a conventional method for producing a gallium arsenide single crystal.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 pressure vessel 2 lower shaft 3 pedestal 4 susceptor 5 crucible made of PBN 6 polycrystalline raw material 7 liquid sealant (B 2 O 3 )
Reference Signs List 8 heater 9 pulling shaft 10 seed crystal holder 12 weight sensor 11 seed crystal

Claims (1)

不活性ガスを充填した耐圧容器内に収容され、加熱されたるつぼに、原料融液である砒化ガリウム融液と液体封止剤としての三酸化硼素融液を収納し、種結晶を原料融液に接触させつつ種結晶とるつぼとを相対的に移動させて、化合物半導体単結晶を成長させるLEC法による化合物半導体単結晶の製造方法において、
原料として砒化ガリウム多結晶を用い、るつぼへの載置を三酸化硼素、砒化ガリウム多結晶の順にて行い、三酸化硼素上に砒化ガリウム多結晶を載置して、三酸化硼素融液及び砒化ガリウム融液を作成することを特徴とする砒化ガリウム単結晶の製造方法。
A gallium arsenide melt, which is a raw material melt, and a boron trioxide melt, which is a liquid sealant, are housed in a pressure-resistant container filled with an inert gas and heated. In the method for producing a compound semiconductor single crystal by the LEC method in which the seed crystal and the crucible are relatively moved while being brought into contact with each other to grow the compound semiconductor single crystal,
Using gallium arsenide polycrystal as a raw material, placing it in a crucible in the order of boron trioxide and gallium arsenide polycrystal, placing the gallium arsenide polycrystal on boron trioxide, melting boron trioxide and arsenic A method for producing a gallium arsenide single crystal, comprising preparing a gallium melt.
JP2003039067A 2003-02-18 2003-02-18 Method for manufacturing gallium arsenide single crystal Withdrawn JP2004250238A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003039067A JP2004250238A (en) 2003-02-18 2003-02-18 Method for manufacturing gallium arsenide single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003039067A JP2004250238A (en) 2003-02-18 2003-02-18 Method for manufacturing gallium arsenide single crystal

Publications (1)

Publication Number Publication Date
JP2004250238A true JP2004250238A (en) 2004-09-09

Family

ID=33023346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003039067A Withdrawn JP2004250238A (en) 2003-02-18 2003-02-18 Method for manufacturing gallium arsenide single crystal

Country Status (1)

Country Link
JP (1) JP2004250238A (en)

Similar Documents

Publication Publication Date Title
JP4083449B2 (en) CdTe single crystal manufacturing method
CN107313110A (en) A kind of p type inp single crystal preparation formula and preparation method
JP2004250238A (en) Method for manufacturing gallium arsenide single crystal
JP2006327879A (en) Method for manufacturing compound semiconductor single crystal
JP2004250237A (en) Method for manufacturing gallium arsenide single crystal
JP2517803B2 (en) Method for synthesizing II-VI compound semiconductor polycrystal
JP2004175620A (en) Manufacturing method of single crystal
JP2004099390A (en) Method of manufacturing compound semiconductor single crystal and compound semiconductor single crystal
JP4200690B2 (en) GaAs wafer manufacturing method
US10815586B2 (en) Gallium-arsenide-based compound semiconductor crystal and wafer group
JP2004123444A (en) Apparatus for manufacturing compound semiconductor single crystal
JPH05319973A (en) Single crystal production unit
JP2005200228A (en) Growth method for compound semiconductor single crystal
JP2003192498A (en) Method of manufacturing gallium phosphide single crystal
JP4207783B2 (en) Method for producing compound semiconductor single crystal
KR101625431B1 (en) Method for growing a silicon single crystal using czochralski method and silicon single crystal ingot
JPS6021899A (en) Apparatus for preparing compound semiconductor single crystal
CN117071051A (en) Balanced solidification method for preparing compound crystal by temperature gradient solidification
CN116324047A (en) Indium phosphide substrate, semiconductor epitaxial wafer, method for producing indium phosphide single-crystal ingot, and method for producing indium phosphide substrate
JP2004010467A (en) Method for growing compound semiconductor single crystal
JP2004338960A (en) METHOD FOR MANUFACTURING InP SINGLE CRYSTAL
JPH0725533B2 (en) Method for producing silicon polycrystalline ingot
JP2004244233A (en) Method of manufacturing gallium arsenide single crystal
JPH0867593A (en) Method for growing single crystal
JPH05163094A (en) Production of compound semiconductor crystal

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060509