JP2003192498A - Method of manufacturing gallium phosphide single crystal - Google Patents

Method of manufacturing gallium phosphide single crystal

Info

Publication number
JP2003192498A
JP2003192498A JP2001386658A JP2001386658A JP2003192498A JP 2003192498 A JP2003192498 A JP 2003192498A JP 2001386658 A JP2001386658 A JP 2001386658A JP 2001386658 A JP2001386658 A JP 2001386658A JP 2003192498 A JP2003192498 A JP 2003192498A
Authority
JP
Japan
Prior art keywords
crystal
single crystal
crucible
diameter
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001386658A
Other languages
Japanese (ja)
Inventor
Kazuki Tatsumiya
一樹 辰宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2001386658A priority Critical patent/JP2003192498A/en
Publication of JP2003192498A publication Critical patent/JP2003192498A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a gallium phosphide single crystal, which is a method for growing the gallium phosphide single crystal having a diameter of ≥63.5 mm (2.5 inch) by a liquid encapsulation Czochralski method (LEC method) using boron oxide (B<SB>2</SB>O<SB>3</SB>), and by which the occurrence of voids in a wafer is suppressed. <P>SOLUTION: In the method for manufacturing the gallium phosphide single crystal having a diameter of ≥63.5 mm (2.5 in) by the LEC method using B<SB>2</SB>O<SB>3</SB>, the ratio (d/Db) of the crystal diameter d to the inner diameter Db of a crucible is set to be ≥0.7. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、液体封止引き上げ
法によるリン化ガリウム単結晶の製造方法に関する。 【0002】 【従来の技術】可視光領域における発光ダイオード製造
用の基板に用いられるリン化ガリウム単結晶(以後、
「GaP単結晶」と略す)は、液体封止引き上げ法(以
後、「LEC法」と略す)によって育成されている。 【0003】LEC法による従来のGaP単結晶製造装
置の断面図を図2に示す。 【0004】LEC法によるGaP単結晶製造装置は、
100気圧程度の高圧にも耐えられる圧力容器1からな
り、通常は、50気圧のN2やArといった不活性ガス
の中で行われる。圧力容器1内の中心部には、ウオール
とベースの中にルツボ2aが配置され、ルツボ2aの中
には、原料のリンとガリウムを合成して作成したリン化
ガリウム多結晶(以後、「GaP多結晶」と略す)5
と、結晶中でn型またはp型の電気特性を示す不純物と
を添加して、さらに、原料融解時のリンの揮発分解を防
止する液体封止剤4としてB23を入れる。ルツボ2a
を囲むように、加熱用カーボンヒーター3が配置され
る。ルツボ2aの上方には、上部シャフト8を配置す
る。 【0005】リン化ガリウムの融点は1465℃であ
り、この時のリンの分解圧力は約35気圧と非常に高
い。従って、高圧不活性ガス雰囲気下で、加熱用カーボ
ンヒーター3に通電して、GaP多結晶5の融点以上ま
で昇温する。ルツボ2a内のGaP多結晶5が融解後、
上部シャフト8と連結した保持具に取り付けた(10
0)面種結晶7を降下させて、ルツボ2a内のB23
4の下部に位置するリン化ガリウム融液5に浸けて種付
けを行う。この時、事前に種結晶7と馴染むリン化ガリ
ウム融液の温度に維持しながら、ウオールとベースに入
ったルツボ2aを、指定の回転数で回転させる。一方、
種結晶7も指定の回転数で回転させながら、所定の速度
で該種結晶7を引き上げていき、GaP単結晶6を育成
する。 【0006】前記方法で育成されたGaP単結晶6は、
外形を整えるために円筒研削を行い、厚さ300〜50
0μm程度のウェーハに切断される。作製されたウェー
ハは、電気特性、結晶欠陥の有無、外観の汚れやキズな
どの有無の検査を行い、規格に合格したものを製品とす
る。 【0007】 【発明が解決しようとする課題】発光ダイオードの生産
量が増え、一つの基板から多くの素子を得るために大口
径のGaP基板が求められるようになってきた。しか
し、直径が63.5mm(2.5インチ)以上のGaP
単結晶を、前記の方法で育成すると、結晶トップ部にボ
イドが発生しやすくなる。このボイドによって、発光ダ
イオード作製のためにウェーハ上にエピタキシャル膜を
成長させたとき、このエピタキシャル膜にピットや突起
などの結晶欠陥が発生し、発光ダイオードの生産歩留ま
りを著しく低下させるという問題があり、そのため、ウ
ェーハのボイドの発生を抑制することが課題となってい
た。 【0008】本発明は、酸化ホウ素(B23)を用いた
液体封止引き上げ法(LEC法)で育成される直径が6
3.5mm(2.5インチ)以上のリン化ガリウム単結
晶製造方法において、ウェーハのボイドの発生を抑制し
たリン化ガリウム単結晶製造方法を提供することを目的
とする。 【0009】 【課題を解決するための手段】本発明のリン化ガリウム
単結晶製造方法は、酸化ホウ素(B23)を用いた液体
封止引き上げ法(LEC法)で、直径が63.5mm
(2.5インチ)以上のリン化ガリウム単結晶を育成す
る製造方法において、結晶直径/ルツボ内径を0.7以
下とする。 【0010】 【発明の実施の形態】前記課題を解決するため、本発明
者は、ウェーハのボイドの発生を抑制することを目的と
して、検討を重ねた結果、結晶トップ側でボイドが発生
する原因は、結晶頭部が液体封止剤から出たときに急激
に冷やされることによって、固液界面で結晶が急成長す
るか、あるいは、融液の温度低下を補うために急加熱さ
れて、融液が過飽和となって、気泡が発生するなどし
て、固液界面近傍の気泡が結晶に取り込まれるためと推
定した。そこで、融液表面と液体封止剤表面の温度差を
小さくすることで、ボイド発生を抑制することができる
ことを見出し、本発明を完成するに至った。すなわち、
結晶頭部が融液表面から液体封止剤にかけて成長したと
きに、融液表面に対して液体封止剤表面が小さくなるこ
とに原因があると思われた。 【0011】従って、本発明の方法は、酸化ホウ素(B
23)を用いた液体封止引き上げ法(LEC法)で、直
径が63.5mm(2.5インチ)以上のリン化ガリウ
ム単結晶を育成する製造方法において、結晶直径/ルツ
ボ内径を0.7以下とする。 【0012】以下、本発明の実施の形態について、図面
を参照して詳細に説明する。 【0013】図1は、本発明の方法による製造装置の一
実施例を示す断面図である。 【0014】LEC法によるGaP単結晶製造装置は、
100気圧程度の高圧にも耐えられる圧力容器1からな
り、通常は、50気圧のN2やArといった不活性ガス
の中で行われる。圧力容器1内の中心部には、ウオール
とベースの中にルツボ2bが配置され、ルツボ2bの中
には、原料のリンとガリウムを合成して作成したGaP
多結晶5と、結晶中でn型またはp型の電気特性を示す
不純物、例えばS、Te、Si等を添加する。さらに、
原料融解時のリンの揮発分解を防止する液体封止剤4と
してB23を入れる。ルツボ2bを囲むように、加熱用
カーボンヒーター3が配置される。ルツボ2bの上方に
は、上部シャフト8を配置する。 【0015】リン化ガリウムの融点は1465℃であ
り、この時のリンの分解圧力は約35気圧と非常に高
い。このため、高圧不活性ガス雰囲気下で、加熱用カー
ボンヒーター3に通電して、GaP多結晶5の融点以上
まで昇温する。ルツボ2b内のGaP多結晶5が融解
後、上部シャフト8と連結した保持具に取り付けた種結
晶7を降下させて、ルツボ2b内のB23層4の下部に
位置するリン化ガリウム融液5に浸けて種付けを行う。
この時、事前に種結晶7と馴染むリン化ガリウム融液の
温度に維持しながら、ウオールとベースに入ったルツボ
2bを、指定の回転数で回転させる。一方、(100)
面種結晶7も指定の回転数で回転させながら、上部シャ
フト8を引上げ軸として、所定の速度で該種結晶7を引
き上げていき、GaP単結晶6を育成する。 【0016】この時、GaP単結晶6の直径dは、引上
軸(上部シャフト8)に取り付けた質量センサーで結晶
質量を検出し、単位時間当たりの質量増加分から結晶直
径dを計算して、コンピュータを用い、自動的に加熱用
カーボンヒーター3へ出力(温度を調整)する方法で制
御している。 【0017】前述したように、結晶トップ側でボイドが
発生する原因は、結晶頭部が液体封止剤4から出たとき
に急激に冷やされることによって、固液界面で結晶6が
急成長するか、あるいは、融液5の温度低下を補うため
に急加熱され、融液5が過飽和となって気泡が発生する
などして、固液界面近傍の気泡が結晶に取り込まれるた
めと推定される。そこで、融液5の表面と液体封止剤4
の表面の温度差を小さくすることで、ボイド発生を抑制
することに思い至った。 【0018】そこで、結晶直径d/ルツボ内径Dbを変
化させ、その時の液体封止剤4やGaP融液5の温度
を、液体封止剤4や融液5中に熱電対を入れて実測して
みると、結晶直径d/ルツボ内径Dbが大きくなると、
両者の温度差が大きくなることがわかった。これは、結
晶頭部の成長の結果、液体封止剤4の表面が、融液5の
表面に対して小さくなっていることに因るものと考えら
れる。 【0019】また、結晶直径d/ルツボ内径Dbが0.
7を超えると、液体封止剤4とGaP融液5の温度差が
大きくなりすぎ、結晶6の頭部が液体封止剤4から出た
ときに、急激に冷やされることによって、固液界面近傍
の気泡が結晶に取り込まれ、ボイドの発生につながって
しまう。 【0020】以上のことから、GaP多結晶5を融解
後、GaP単結晶6を育成するルツボ2bの内径Dbに
対して、育成されるGaP単結晶6の直径dを、前記方
法でコントロールし、結晶直径d/ルツボ内径Dbを
0.7以下にすることによって、ボイドの発生の抑制に
効果が見られた。 【0021】 【実施例】本発明の実施例について、以下に説明する。 【0022】(実施例1)図1に断面図を示す製造装置
により、GaP単結晶を製造した。 【0023】ルツボ2bには、外径119.5mmφ、
内径115.5mmφの石英ルツボを用いた。 【0024】このルツボ2bにGaP多結晶5を150
0gと、添加不純物のS(硫黄)を添加して、液体封止
剤4を270g入れ、ルツボ2bの上に高さ30mm、
開口部80mmの石英キャップ(図示せず)を載せ、圧
力容器1内を真空にした後、高圧窒素ガス雰囲気下で加
熱用カーボンヒーター3に通電して、GaP融点の14
65℃以上に昇温し、GaP多結晶5が溶融後に、予め
配置しておいた(100)方位の種結晶7を5回転/分
にして降下させ、GaP融液5に浸けた後、10mm/
時の速度で引き上げながら、予め10回転/分に設定し
ていたルツボ2bの底の温度を1420℃に下げて、結
晶育成を開始した。 【0025】この時、育成結晶の直径dは80mmφと
した。結晶直径d/ルツボ内径Dbは80/115.5
=0.693である。 【0026】前記の育成条件で、38回の育成を行った
結果、平均直径81mmで平均質量1420gのGaP
単結晶6が得られ、このGaP単結晶ウェーハを王水エ
ッチングし、目視で観察した。ボイドは、1回の育成で
得られたGaP単結晶ごとに、平均0.8枚で発生し
た。 【0027】(実施例2)図1に断面図を示す製造装置
により、GaP単結晶を製造した。 【0028】ルツボ2bには、外径109.5mmφ、
内径105.5mmφの石英ルツボを用いた。 【0029】このルツボ2bに、GaP多結晶5を15
00gと添加不純物のS(硫黄)を添加して、液体封止
剤4を210g入れ、ルツボ2bの上に高さ30mm、
開口部80mmの石英キャップ(図示せず)を載せ、圧
力容器1内を真空にした後、高圧窒素ガス雰囲気下で加
熱用カーボンヒーター3に通電して、GaP融点の14
65℃以上に昇温し、GaP多結晶5が溶融後に、予め
配置しておいた(100)方位の種結晶7を5回転/分
にして降下させ、GaP融液5に浸けた後、10mm/
時の速度で引き上げながら、予め10回転/分に設定し
ていたルツボ2bの底の温度を1420℃に下げて、結
晶育成を開始した。 【0030】この時、育成結晶の直径dは65mmφと
した。結晶直径d/ルツボ内径Dbは65/105.5
=0.616である。 【0031】前記の育成条件で、60回の育成を行った
結果、平均直径66mmφで平均質量1400gのGa
P単結晶6が得られ、GaP単結晶ウェーハを王水エッ
チングし、目視で観察した。ボイドは、1回の育成で得
られたGaP単結晶ごとに、平均1.1枚で発生した。 【0032】(比較例)図2に断面図を示す製造装置に
より、GaP単結晶を製造した。 【0033】ルツボ2aには、外径109.5mmφ、
内径105.5mmφの石英ルツボを用いた。 【0034】このルツボ2aに、GaP多結晶5を15
00gと添加不純物のS(硫黄)を添加して、液体封止
剤4を210g入れ、ルツボ2aの上に高さ30mm、
開口部80mmの石英キャップ(図示せず)を載せ、圧
力容器1内を真空にした後、高圧窒素ガス雰囲気下で加
熱用カーボンヒーター3に通電して、GaP融点の14
65℃以上に昇温し、GaP多結晶5が溶融後に、予め
配置しておいた(100)方位の種結晶7を5回転/分
にして降下させ、GaP融液5に浸けた後、10mm/
時の速度で引き上げながら、予め10回転/分に設定し
ていたルツボ2aの底の温度を1420℃に下げて、結
晶育成を開始した。 【0035】この時、育成結晶の直径は80mmφとし
た。結晶直径d/ルツボ内径Daは80/105.5=
0.758である。 【0036】前記の育成条件で56回の育成を行った結
果、平均直径81mmφで平均質量1420gのGaP
単結晶6が得られ、GaP単結晶ウェーハを王水エッチ
ングし、目視で観察した。ボイドは、1回の育成で得ら
れたGaP単結晶ごとに、平均19.6枚で発生した。 【0037】 【発明の効果】以上述べたように、本発明の方法によれ
ば、63.5mm(2.5インチ)以上のリン化ガリウ
ム単結晶製造方法において、結晶直径/ルツボ内径を
0.7以下で結晶を育成することにより、融液表面と液
体封止剤表面の温度差を小さくすることができ、固液界
面近傍の気泡が結晶に取り込まれることが防止され、結
晶トップ側でボイドが発生することを抑制でき、発光ダ
イオード用に好適なGaP単結晶が提供可能となる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a gallium phosphide single crystal by a liquid sealing and pulling method. 2. Description of the Related Art Gallium phosphide single crystal (hereinafter, referred to as "substrate") used for a substrate for manufacturing a light emitting diode in a visible light region.
The “GaP single crystal” is grown by a liquid sealing and pulling method (hereinafter, abbreviated as “LEC method”). FIG. 2 is a cross-sectional view of a conventional GaP single crystal manufacturing apparatus using the LEC method. An apparatus for producing a GaP single crystal by the LEC method is as follows.
Becomes from the pressure vessel 1 capable of withstanding the high pressure of about 100 atmospheres, usually carried out in an inert gas such as of 50 atm N 2 or Ar. A crucible 2a is disposed in the center of the pressure vessel 1 in a wall and a base. In the crucible 2a, a gallium phosphide polycrystal (hereinafter referred to as “GaP”) prepared by synthesizing phosphorus and gallium as raw materials is provided. Abbreviated as “polycrystalline”) 5
And an impurity exhibiting n-type or p-type electrical characteristics in the crystal, and further, B 2 O 3 is added as a liquid sealant 4 for preventing the volatile decomposition of phosphorus during melting of the raw material. Crucible 2a
, A heating carbon heater 3 is arranged. The upper shaft 8 is arranged above the crucible 2a. [0005] The melting point of gallium phosphide is 1465 ° C, and the decomposition pressure of phosphorus at this time is as high as about 35 atm. Therefore, in a high-pressure inert gas atmosphere, electricity is supplied to the heating carbon heater 3 to raise the temperature to the melting point of the GaP polycrystal 5 or higher. After the GaP polycrystal 5 in the crucible 2a is melted,
Attached to the holder connected to the upper shaft 8 (10
0) The seed crystal 7 is lowered and immersed in the gallium phosphide melt 5 located below the B 2 O 3 layer 4 in the crucible 2a for seeding. At this time, the wall and the crucible 2a contained in the base are rotated at a specified number of revolutions while maintaining the temperature of the gallium phosphide melt compatible with the seed crystal 7 in advance. on the other hand,
The seed crystal 7 is pulled up at a predetermined speed while rotating the seed crystal 7 at a specified rotation speed, and a GaP single crystal 6 is grown. The GaP single crystal 6 grown by the above method is
Cylindrical grinding is performed to adjust the outer shape, and the thickness is 300-50
It is cut into wafers of about 0 μm. The manufactured wafers are inspected for electrical characteristics, for the presence or absence of crystal defects, and for the presence or absence of stains or scratches on the appearance, and those that pass the standards are used as products. [0007] The production of light-emitting diodes has increased, and a large-diameter GaP substrate has been demanded in order to obtain many elements from one substrate. However, GaP with a diameter of 63.5 mm (2.5 inches) or more
When a single crystal is grown by the above-described method, voids are likely to be generated at the top of the crystal. Due to the voids, when an epitaxial film is grown on a wafer for manufacturing a light emitting diode, crystal defects such as pits and protrusions are generated in the epitaxial film, and there is a problem that the production yield of the light emitting diode is significantly reduced. Therefore, it has been an issue to suppress generation of voids in the wafer. [0008] The present invention provides a liquid sealing and pulling method (LEC method) using boron oxide (B 2 O 3 ) having a diameter of 6 mm.
An object of the present invention is to provide a method for producing a gallium phosphide single crystal in which the generation of voids in a wafer is suppressed in a method for producing a gallium phosphide single crystal of 3.5 mm (2.5 inches) or more. The gallium phosphide single crystal production method of the present invention is a liquid sealing and pulling method (LEC method) using boron oxide (B 2 O 3 ) and has a diameter of 63. 5mm
In a manufacturing method for growing a gallium phosphide single crystal of (2.5 inches) or more, the ratio of crystal diameter / crucible inner diameter is set to 0.7 or less. DETAILED DESCRIPTION OF THE INVENTION In order to solve the above-mentioned problems, the present inventor has repeatedly studied for the purpose of suppressing the generation of voids on a wafer. The crystal is rapidly cooled when the crystal head comes out of the liquid sealant, so that the crystal grows rapidly at the solid-liquid interface, or is rapidly heated to compensate for the temperature drop of the melt. It is presumed that bubbles in the vicinity of the solid-liquid interface were taken into the crystal due to supersaturation of the liquid and generation of bubbles. Thus, the inventors have found that the generation of voids can be suppressed by reducing the temperature difference between the surface of the melt and the surface of the liquid sealant, and have completed the present invention. That is,
When the crystal head grew from the surface of the melt to the liquid sealant, it was considered that the cause was that the surface of the liquid sealant became smaller than the surface of the melt. Accordingly, the method of the present invention provides a method for producing boron oxide (B
In a manufacturing method of growing a gallium phosphide single crystal having a diameter of 63.5 mm (2.5 inches) or more by a liquid sealing pulling method (LEC method) using 2 O 3 ), the ratio of crystal diameter / crucible inner diameter is set to 0. 0.7 or less. Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a sectional view showing an embodiment of a manufacturing apparatus according to the method of the present invention. An apparatus for producing a GaP single crystal by the LEC method is as follows.
Becomes from the pressure vessel 1 capable of withstanding the high pressure of about 100 atmospheres, usually carried out in an inert gas such as of 50 atm N 2 or Ar. In the center of the pressure vessel 1, a crucible 2b is arranged in a wall and a base. In the crucible 2b, GaP prepared by synthesizing phosphorus and gallium as raw materials is provided.
The polycrystal 5 and an impurity exhibiting n-type or p-type electric characteristics in the crystal, such as S, Te, and Si, are added. further,
B 2 O 3 is added as a liquid sealant 4 for preventing the volatile decomposition of phosphorus during melting of the raw material. The heating carbon heater 3 is arranged so as to surround the crucible 2b. The upper shaft 8 is arranged above the crucible 2b. The melting point of gallium phosphide is 1465 ° C., and the decomposition pressure of phosphorus at this time is as high as about 35 atm. Therefore, in a high-pressure inert gas atmosphere, electricity is supplied to the heating carbon heater 3 to raise the temperature to the melting point of the GaP polycrystal 5 or higher. After the GaP polycrystal 5 in the crucible 2b is melted, the seed crystal 7 attached to the holder connected to the upper shaft 8 is lowered to melt the gallium phosphide located in the lower portion of the B 2 O 3 layer 4 in the crucible 2b. Soaking in liquid 5 for seeding.
At this time, the wall and the crucible 2b contained in the base are rotated at a specified number of revolutions while maintaining the temperature of the gallium phosphide melt compatible with the seed crystal 7 in advance. On the other hand, (100)
The seed crystal 7 is pulled up at a predetermined speed using the upper shaft 8 as a pulling axis while the plane seed crystal 7 is also rotated at a specified rotation speed, and the GaP single crystal 6 is grown. At this time, the diameter d of the GaP single crystal 6 is obtained by detecting the crystal mass with a mass sensor attached to the pulling shaft (upper shaft 8), and calculating the crystal diameter d from the mass increase per unit time. It is controlled by a method of automatically outputting (adjusting the temperature) to the heating carbon heater 3 using a computer. As described above, the cause of the generation of voids on the crystal top side is that the crystal 6 grows rapidly at the solid-liquid interface because the crystal head is rapidly cooled when coming out of the liquid sealant 4. Alternatively, it is presumed that bubbles are generated in the vicinity of the solid-liquid interface due to rapid heating in order to compensate for a decrease in temperature of the melt 5, supersaturation of the melt 5, and generation of bubbles. . Therefore, the surface of the melt 5 and the liquid sealant 4
I thought that by reducing the temperature difference on the surface, the generation of voids could be suppressed. Therefore, the crystal diameter d / the inner diameter Db of the crucible is changed, and the temperature of the liquid sealant 4 or the GaP melt 5 at that time is measured by inserting a thermocouple into the liquid sealant 4 or the melt 5. When the crystal diameter d / crucible inner diameter Db increases,
It was found that the temperature difference between the two became large. This is considered to be due to the fact that the surface of the liquid sealant 4 is smaller than the surface of the melt 5 as a result of the growth of the crystal head. Further, the crystal diameter d / the crucible inner diameter Db is 0.1 mm.
If it exceeds 7, the temperature difference between the liquid sealant 4 and the GaP melt 5 becomes too large, and when the head of the crystal 6 comes out of the liquid sealant 4, it is rapidly cooled, so that the solid-liquid interface is formed. Nearby bubbles are taken into the crystal, leading to the generation of voids. From the above, after the GaP polycrystal 5 is melted, the diameter d of the GaP single crystal 6 to be grown is controlled by the above method with respect to the inner diameter Db of the crucible 2b for growing the GaP single crystal 6, By making the crystal diameter d / crucible inner diameter Db 0.7 or less, the effect of suppressing the generation of voids was observed. Embodiments of the present invention will be described below. Example 1 A GaP single crystal was manufactured using a manufacturing apparatus whose sectional view is shown in FIG. The crucible 2b has an outer diameter of 119.5 mmφ,
A quartz crucible having an inner diameter of 115.5 mmφ was used. In this crucible 2b, 150 g of GaP polycrystal 5 is added.
0 g and the additional impurity S (sulfur) are added, 270 g of the liquid sealant 4 is added, and a height of 30 mm is placed on the crucible 2b.
After placing a quartz cap (not shown) having an opening of 80 mm and evacuating the pressure vessel 1, the heating carbon heater 3 was energized in a high-pressure nitrogen gas atmosphere to obtain a GaP melting point of 14.
After the temperature was raised to 65 ° C. or higher, and the GaP polycrystal 5 was melted, the (100) oriented seed crystal 7 placed in advance was lowered at 5 revolutions / minute, and immersed in the GaP melt 5. /
The temperature at the bottom of the crucible 2b, which was previously set to 10 revolutions / minute, was lowered to 1420 ° C. while pulling up at the current speed, and crystal growth was started. At this time, the diameter d of the grown crystal was 80 mmφ. Crystal diameter d / crucible inner diameter Db is 80 / 115.5
= 0.693. As a result of growing 38 times under the above-mentioned growing conditions, GaP having an average diameter of 81 mm and an average mass of 1420 g was obtained.
A single crystal 6 was obtained, and this GaP single crystal wafer was subjected to aqua regia etching and visually observed. Voids were generated on average 0.8 sheets for each GaP single crystal obtained by one growth. Example 2 A GaP single crystal was manufactured by a manufacturing apparatus whose sectional view is shown in FIG. The crucible 2b has an outer diameter of 109.5 mmφ,
A quartz crucible having an inner diameter of 105.5 mmφ was used. In this crucible 2b, 15 g of GaP polycrystal 5 is added.
After adding 00 g and the additional impurity S (sulfur), 210 g of the liquid sealant 4 was added, and a height of 30 mm was placed on the crucible 2 b.
After placing a quartz cap (not shown) having an opening of 80 mm and evacuating the pressure vessel 1, the heating carbon heater 3 was energized in a high-pressure nitrogen gas atmosphere to obtain a GaP melting point of 14.
After the temperature was raised to 65 ° C. or higher, and the GaP polycrystal 5 was melted, the (100) oriented seed crystal 7 placed in advance was lowered at 5 revolutions / minute, and immersed in the GaP melt 5. /
The temperature at the bottom of the crucible 2b, which was previously set to 10 revolutions / minute, was lowered to 1420 ° C. while pulling up at the current speed, and crystal growth was started. At this time, the diameter d of the grown crystal was 65 mmφ. Crystal diameter d / crucible inner diameter Db is 65 / 105.5
= 0.616. As a result of growing 60 times under the above-described growth conditions, Ga having an average diameter of 66 mmφ and an average mass of 1400 g was obtained.
The P single crystal 6 was obtained, and the GaP single crystal wafer was subjected to aqua regia etching and visually observed. Voids were generated on average 1.1 pieces for each GaP single crystal obtained by one growth. (Comparative Example) A GaP single crystal was manufactured by a manufacturing apparatus whose sectional view is shown in FIG. The crucible 2a has an outer diameter of 109.5 mmφ,
A quartz crucible having an inner diameter of 105.5 mmφ was used. In this crucible 2a, 15 GaP polycrystals 5 are added.
After adding 00 g and the additional impurity S (sulfur), 210 g of the liquid sealant 4 was added, and a height of 30 mm was placed on the crucible 2 a.
After placing a quartz cap (not shown) having an opening of 80 mm and evacuating the pressure vessel 1, the heating carbon heater 3 was energized under a high-pressure nitrogen gas atmosphere, and the GaP melting point of 14 was obtained.
After the temperature was raised to 65 ° C. or more, and the GaP polycrystal 5 was melted, the (100) oriented seed crystal 7 arranged in advance was lowered at 5 revolutions / minute, and immersed in the GaP melt 5. /
The temperature at the bottom of the crucible 2a, which was previously set to 10 revolutions / minute, was lowered to 1420 ° C. while raising at the speed of the hour, and crystal growth was started. At this time, the diameter of the grown crystal was 80 mmφ. The crystal diameter d / crucible inner diameter Da is 80 / 105.5 =
0.758. As a result of growing 56 times under the above growing conditions, GaP having an average diameter of 81 mmφ and an average mass of 1420 g was obtained.
The single crystal 6 was obtained, and the GaP single crystal wafer was subjected to aqua regia etching and visually observed. Voids were generated in an average of 19.6 pieces for each GaP single crystal obtained by one growth. As described above, according to the method of the present invention, in the method for producing gallium phosphide single crystal having a diameter of 63.5 mm (2.5 inches) or more, the ratio of crystal diameter / crucible inner diameter is set to 0.1. By growing the crystal at a temperature of 7 or less, the temperature difference between the melt surface and the liquid sealant surface can be reduced, bubbles near the solid-liquid interface are prevented from being taken into the crystal, and voids are formed at the crystal top side. Can be suppressed, and a GaP single crystal suitable for a light emitting diode can be provided.

【図面の簡単な説明】 【図1】 本発明の方法による製造装置の一実施例を示
す断面図である。 【図2】 LEC法による従来のGaP単結晶製造装置
を示す断面図である。 【符号の説明】 1 圧力容器 2a、2b ルツボ 3 加熱用カーボンヒーター 4 液体封止剤 5 GaP融液 6 GaP単結晶 7 GaP種結晶 8 上部シャフト d 結晶直径 Da、Db ルツボ内径
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a sectional view showing one embodiment of a manufacturing apparatus according to the method of the present invention. FIG. 2 is a cross-sectional view showing a conventional GaP single crystal manufacturing apparatus by the LEC method. [Description of Signs] 1 Pressure vessels 2a, 2b crucible 3 Carbon heater for heating 4 Liquid sealant 5 GaP melt 6 GaP single crystal 7 GaP seed crystal 8 Upper shaft d Crystal diameter Da, Db Crucible inner diameter

Claims (1)

【特許請求の範囲】 【請求項1】 酸化ホウ素(B23)を用いた液体封止
引き上げ法(LEC法)で、直径が63.5mm(2.
5インチ)以上のリン化ガリウム単結晶を育成する製造
方法において、結晶直径/ルツボ内径を0.7以下とす
ることを特徴とするリン化ガリウム単結晶製造方法。
Claims: 1. A liquid sealing and pulling method (LEC method) using boron oxide (B 2 O 3 ) having a diameter of 63.5 mm (2.
A method for producing a gallium phosphide single crystal of 5 inches or more, wherein the ratio of crystal diameter / crucible inner diameter is 0.7 or less.
JP2001386658A 2001-12-19 2001-12-19 Method of manufacturing gallium phosphide single crystal Pending JP2003192498A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001386658A JP2003192498A (en) 2001-12-19 2001-12-19 Method of manufacturing gallium phosphide single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001386658A JP2003192498A (en) 2001-12-19 2001-12-19 Method of manufacturing gallium phosphide single crystal

Publications (1)

Publication Number Publication Date
JP2003192498A true JP2003192498A (en) 2003-07-09

Family

ID=27595749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001386658A Pending JP2003192498A (en) 2001-12-19 2001-12-19 Method of manufacturing gallium phosphide single crystal

Country Status (1)

Country Link
JP (1) JP2003192498A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006151745A (en) * 2004-11-29 2006-06-15 Kyocera Corp Method for producing single crystal and oxide single crystal obtained by using the same
CN116121867A (en) * 2023-02-01 2023-05-16 有研国晶辉新材料有限公司 Preparation method of optical grade gallium phosphide single crystal

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006151745A (en) * 2004-11-29 2006-06-15 Kyocera Corp Method for producing single crystal and oxide single crystal obtained by using the same
CN116121867A (en) * 2023-02-01 2023-05-16 有研国晶辉新材料有限公司 Preparation method of optical grade gallium phosphide single crystal
CN116121867B (en) * 2023-02-01 2023-08-15 有研国晶辉新材料有限公司 Preparation method of optical grade gallium phosphide single crystal

Similar Documents

Publication Publication Date Title
JP2011195423A (en) Method of manufacturing sapphire single crystal
SG189506A1 (en) Method of manufacturing silicon single crystal, silicon single crystal, and wafer
WO2006106644A1 (en) Si-DOPED GaAs SINGLE CRYSTAL INGOT AND PROCESS FOR PRODUCING THE SAME, AND Si-DOPED GaAs SINGLE CRYSTAL WAFER PRODUCED FROM SAID Si-DOPED GaAs SINGLE CRYSTAL INGOT
JP5433632B2 (en) GaAs single crystal manufacturing method and GaAs single crystal wafer
JP2005306653A (en) Method for manufacturing silicon single crystal
JP2006248825A (en) Silicon carbide ingot and its manufacturing method
JPWO2018179567A1 (en) Method for producing compound semiconductor and compound semiconductor single crystal
JP2016150877A (en) Production method of sapphire single crystal
JP2008247706A (en) Method for growing corundum single crystal, corundum single crystal and corundum single crystal wafer
JP2009132587A (en) Semiconductor crystal growth method and semiconductor crystal growth apparatus
JP2007070131A (en) Method of manufacturing epitaxial wafer, and epitaxial wafer
JP2003206200A (en) p-TYPE GaAs SINGLE CRYSTAL AND METHOD FOR PRODUCING THE SAME
JP2003192498A (en) Method of manufacturing gallium phosphide single crystal
JP2010064936A (en) Method for producing semiconductor crystal
JP4178989B2 (en) III-V compound semiconductor wafer manufacturing method
TWI769943B (en) Manufacturing method of indium phosphide substrate, semiconductor epitaxial wafer, indium phosphide single crystal ingot, and manufacturing method of indium phosphide substrate
JP2004099390A (en) Method of manufacturing compound semiconductor single crystal and compound semiconductor single crystal
JP2006089339A (en) Method for manufacturing gallium phosphide single crystal
JP2002274995A (en) Method of manufacturing silicon carbide single crystal ingot
JP4200690B2 (en) GaAs wafer manufacturing method
JP2010030868A (en) Production method of semiconductor single crystal
JP2004107120A (en) Method and apparatus for manufacturing gallium phosphide single crystal
JP2007506641A (en) Spinel article and manufacturing method thereof
JP4193681B2 (en) Gallium phosphide single crystal production equipment
JP2004250238A (en) Method for manufacturing gallium arsenide single crystal