JP5464429B2 - Method for growing single crystal silicon having a square cross section - Google Patents

Method for growing single crystal silicon having a square cross section Download PDF

Info

Publication number
JP5464429B2
JP5464429B2 JP2010066177A JP2010066177A JP5464429B2 JP 5464429 B2 JP5464429 B2 JP 5464429B2 JP 2010066177 A JP2010066177 A JP 2010066177A JP 2010066177 A JP2010066177 A JP 2010066177A JP 5464429 B2 JP5464429 B2 JP 5464429B2
Authority
JP
Japan
Prior art keywords
single crystal
silicon
crystal silicon
section
quadrangular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010066177A
Other languages
Japanese (ja)
Other versions
JP2011195414A (en
Inventor
隆史 関口
英明 北澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2010066177A priority Critical patent/JP5464429B2/en
Publication of JP2011195414A publication Critical patent/JP2011195414A/en
Application granted granted Critical
Publication of JP5464429B2 publication Critical patent/JP5464429B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Photovoltaic Devices (AREA)

Description

本発明は、フローティングゾーン(Floating Zone)法(以下、「FZ法」という)を用いた四角形の断面を有する単結晶シリコンの育成方法、及びFZ法による単結晶シリコンから得られた四角形のシリコンウェ−ハに関する。   The present invention relates to a method for growing single crystal silicon having a square cross section using a floating zone method (hereinafter referred to as “FZ method”), and a square silicon wafer obtained from single crystal silicon by the FZ method. -Regarding c.

単結晶シリコン太陽電池は、多結晶シリコン太陽電池に比べて10%以上変換効率が高く、一般用では最高の特性を有している。これまで、単結晶シリコン太陽電池は、チョクラルスキー(CZ)法で育成した円柱状の単結晶シリコンをスライスした円形シリコンウエハを用いて製造されていた。
ところが、円形シリコンウエハでは太陽電池パネルの空間を有効に埋められないため、素子としての効率が高くても、パネルの効率は多結晶より低くなってしまうこともある。
A single crystal silicon solar cell has a conversion efficiency of 10% or more higher than that of a polycrystalline silicon solar cell, and has the best characteristics for general use. Until now, single crystal silicon solar cells have been manufactured using circular silicon wafers obtained by slicing cylindrical single crystal silicon grown by the Czochralski (CZ) method.
However, since the space of the solar cell panel cannot be effectively filled with the circular silicon wafer, the efficiency of the panel may be lower than that of the polycrystal even if the element efficiency is high.

一方、大電力用半導体素子などに用いられる単結晶シリコンは、FZ法を用いて製造される場合がある。FZ法は成長炉内に設けた誘導加熱コイルによりシリコン原料棒を降下させながら加熱溶融して単結晶シリコンを成長させるものであるが、通常、円柱状の単結晶シリコンが製造される(例えば、特許文献1〜3参照)。   On the other hand, single crystal silicon used for high-power semiconductor elements and the like may be manufactured using the FZ method. In the FZ method, single crystal silicon is grown by heating and melting while lowering a silicon raw material rod by an induction heating coil provided in a growth furnace. Patent Literatures 1 to 3).

特許文献1には、「誘導加熱コイルの上面側及び/又は下面側にリング状部材を設け、該リング状部材の内周縁を前記シリコン原料棒が溶融した溶融帯に挿入し、1回のFZ工程でシリコン単結晶を成長させること」(請求項1)が記載されているが、リング状部材は、原料棒側の固液界面から剥離した多結晶粒のうち、溶融帯の表面上に浮上した多結晶粒の下方への移動を阻止するために使用することが示されているだけで(段落[0017])、リング状部材によって、シリコン原料棒が溶融した融液を制御することは示唆されていない。   In Patent Document 1, a ring-shaped member is provided on the upper surface side and / or the lower surface side of the induction heating coil, and the inner peripheral edge of the ring-shaped member is inserted into a molten zone in which the silicon raw material rod is melted. Although it is described that a silicon single crystal is grown in a process "(Claim 1), the ring-shaped member floats on the surface of the molten zone among the polycrystalline grains separated from the solid-liquid interface on the raw material rod side. It has only been shown to be used to prevent the downward movement of the polycrystalline grains (paragraph [0017]), suggesting that the ring-shaped member controls the melt from which the silicon raw material rod is melted. It has not been.

特許文献2には、「原料多結晶棒、育成単結晶棒、浮遊帯域のいずれか1以上と前記誘導加熱コイルの間の放電を防ぐために、前記原料多結晶棒、育成単結晶棒、浮遊帯域のいずれか1以上と前記誘導加熱コイルの間に絶縁性部材を配置したものであること」(請求項1)、「前記絶縁性部材は、少なくとも、前記誘導加熱コイルの上面、下面、内周面のいずれか1面以上に配置されたものであること」(請求項2)、「前記絶縁性部材は、リング形状であること」(請求項3)が記載されているが、この発明において、絶縁性部材は、放電を防ぐためのものであり、原料多結晶棒が溶融した融液を制御するためのものではない。   Patent Document 2 discloses that in order to prevent discharge between any one or more of the raw material polycrystalline rod, the grown single crystal rod, and the floating zone and the induction heating coil, the raw material polycrystalline rod, the grown single crystal rod, the floating zone An insulating member is disposed between any one or more of the above and the induction heating coil ”(Claim 1),“ the insulating member is at least the upper surface, the lower surface, and the inner periphery of the induction heating coil. It should be arranged on one or more of the surfaces ”(Claim 2) and“ The insulating member is ring-shaped ”(Claim 3). The insulating member is for preventing discharge, and is not for controlling the melt in which the raw material polycrystalline rod is melted.

特許文献3には、「環状の誘導加熱コイルを用いて種結晶上に液体シリコンの溶融キャップを生成して種結晶を一定の引張速度で下降させ、溶融キャップのシリコンを種結晶上で固化させて単結晶を形成する、大径のインゴット型シリコン単結晶の製造方法であって、固体シリコンを溶融装置内で溶融して液状で溶融キャップに供給する、ことを特徴とする方法。」(請求項1)の発明が記載され、また、「次に、成長単結晶の直径を連続的に増大させ、所謂初期円錐体を引っ張る。誘導加熱コイルと溶融キャップとの間にはリング好ましくは石英リングを配置し、これを下降させて溶融キャップ内に浸漬する。しかしながら、それまでに、成長単結晶の直径は、リングの直径より少なくとも20mm大きくすべきである。リングは、溶融キャップの表面上でのウェーブの形成を抑制すると共に、溶融キャップの温度を均一にし、非溶融シリコン粒子が相境界に達するのを防いでいる。」(段落[0009])と記載されているが、この発明において、「溶融キャップの表面上でのウェーブの形成を抑制すると共に、溶融キャップの温度を均一にする」ために使用するものは、「リング」に限定され、しかも、「固体シリコンを溶融装置内で溶融して液状で溶融キャップに供給する」という特殊な方法が採用されているから、FZ法による四角形の断面を有する単結晶シリコンの育成方法に適用することは示唆されていない。   Patent Document 3 states that “a liquid silicon melting cap is generated on a seed crystal using an annular induction heating coil, the seed crystal is lowered at a constant tensile speed, and the silicon in the melting cap is solidified on the seed crystal. A method for producing a large-diameter ingot-type silicon single crystal that forms a single crystal, wherein the solid silicon is melted in a melting apparatus and supplied in a liquid state to a melting cap. The invention of item 1) is described, and “then the diameter of the grown single crystal is continuously increased and the so-called initial cone is pulled. A ring, preferably a quartz ring, is interposed between the induction heating coil and the melting cap. However, by this time, the diameter of the grown single crystal should be at least 20 mm larger than the diameter of the ring. "Wave formation on the surface of the cup is suppressed, and the temperature of the melt cap is made uniform, and non-molten silicon particles are prevented from reaching the phase boundary" (paragraph [0009]). However, in the present invention, what is used to "suppress wave formation on the surface of the melt cap and make the temperature of the melt cap uniform" is limited to "ring", Since a special method of “melting in a melting apparatus and supplying it to the melt cap in a liquid state” is adopted, it is not suggested to be applied to a method for growing single crystal silicon having a square cross section by the FZ method. .

上記のような円柱状の単結晶シリコンをスライスした円形シリコンウエハでは太陽電池パネルの空間を有効に埋められないという欠点を改善するために、近年、太陽電池用として、垂直勾配凝固法(VGF法)やCZ法を用いた四角形の断面を有する単結晶シリコンの製造方法の発明が提案されている(特許文献4及び5参照)。
しかし、特許文献4のVGF法では、均一な四角形の断面を有する単結晶シリコンが得られ難いという課題、特許文献5のCZ法では、四角形の断面を有する単結晶シリコンの成長速度が遅いという課題があった。
In order to improve the disadvantage that the circular silicon wafer obtained by slicing cylindrical single crystal silicon as described above cannot effectively fill the space of the solar cell panel, in recent years, the vertical gradient solidification method (VGF method) has been used for solar cells. And the invention of a method for producing single crystal silicon having a square cross section using the CZ method has been proposed (see Patent Documents 4 and 5).
However, the VGF method of Patent Document 4 has a problem that it is difficult to obtain single crystal silicon having a uniform square cross section, and the CZ method of Patent Document 5 has a problem that the growth rate of single crystal silicon having a square section is slow. was there.

また、FZ法を用いた四角形の断面を有する単結晶シリコンの製造方法も報告されている(非特許文献1参照)。この製造方法は、四箇所のスリットを持つ四角い形状の高周波コイルによって四角い温度分布を作り、ファセット成長を利用して、四角形の断面を有する単結晶シリコンを製造するものであるが、四角い形状の高周波コイルと四箇所のスリットを持った高周波コイルでは、丸い原料棒を溶融することが難しいという課題があった。
さらに、ファセット成長を利用して四角形状の結晶を作るには、融液の温度分布を四角形状の分布にする必要が有り、高周波コイルだけでは困難であるという課題があった。また、高周波コイルだけで融液の温度分布を四角形状にするために、融液の対流や界面形状の制御が難しく、抵抗率の面内分布が悪いという欠点があった。
In addition, a method for producing single crystal silicon having a square cross section using the FZ method has been reported (see Non-Patent Document 1). In this manufacturing method, a square temperature distribution is created by a square-shaped high-frequency coil having four slits, and single-crystal silicon having a square cross section is produced using facet growth. In a high frequency coil having a coil and four slits, there is a problem that it is difficult to melt a round raw material rod.
Furthermore, in order to produce a quadrilateral crystal using facet growth, the temperature distribution of the melt needs to be a quadrilateral distribution, which is difficult with only a high-frequency coil. In addition, since the melt temperature distribution is made to be a square shape using only a high-frequency coil, it is difficult to control the convection of the melt and the interface shape, and the in-plane distribution of resistivity is poor.

特開平8−104590号公報JP-A-8-104590 特開2006−169059号公報JP 2006-169059 A 特開平9−142988号公報Japanese Patent Laid-Open No. 9-142988 特開2007−284343号公報JP 2007-284343 A 特開2010−37142号公報JP 2010-37142 A

InternationalScientific Colloquium, Modelling for Material Processing, Riga, June 8-9, 2006International Scientific Colloquium, Modeling for Material Processing, Riga, June 8-9, 2006

本発明は、上記のような課題を解決しようとするものであり、成長速度が大きく、高周波コイルだけに頼らないで四角形状の温度分布が容易に制御でき、結晶欠陥の形成が抑制され、抵抗率の面内分布が均一化された四角形の断面を有する単結晶シリコンの育成方法、及び四角形のシリコンウェ−ハを提供することを課題とする。   The present invention is intended to solve the above-described problems, has a high growth rate, can easily control a rectangular temperature distribution without relying only on a high-frequency coil, suppresses the formation of crystal defects, and has a resistance. It is an object of the present invention to provide a method for growing single crystal silicon having a quadrangular cross section with a uniform in-plane distribution of the rate, and a quadrangular silicon wafer.

本発明は、上記の課題を解決するために、以下の手段を採用する。
(1)育成炉内に設けた高周波コイルによりシリコン原料棒を加熱溶融して単結晶シリコンを育成するFZ法による四角形の断面を有する単結晶シリコンの育成方法において、前記高周波コイルの下面側に四角形の型枠を設け、前記四角形の型枠を前記シリコン原料棒が溶融した融液に接触させることを特徴とする四角形の断面を有する単結晶シリコンの育成方法である。
(2)前記四角形の型枠により、前記融液の対流及び/又は界面形状を制御することを特徴とする前記(1)の四角形の断面を有する単結晶シリコンの育成方法である。
(3)種結晶を用いて、一辺の径を徐々に拡大して単結晶化した増径角錐部を形成することを特徴とする前記(1)又は(2)の四角形の断面を有する単結晶シリコンの育成方法である。
(4)前記増径角錐部の径の拡大に伴って前記四角形の型枠の大きさを変化させることを特徴とする前記(3)の四角形の断面を有する単結晶シリコンの育成方法である。
(5)前記高周波コイルが四角形であることを特徴とする前記(1)〜(4)のいずれか一項の四角形の断面を有する単結晶シリコンの育成方法である。
The present invention employs the following means in order to solve the above problems.
(1) In the method for growing single crystal silicon having a quadrangular cross section by the FZ method in which a silicon raw material rod is heated and melted by a high frequency coil provided in a growth furnace to grow single crystal silicon, a square is formed on the lower surface side of the high frequency coil. A method for growing single crystal silicon having a quadrangular cross section, wherein the quadrangular mold is contacted with a melt obtained by melting the silicon raw material rod.
(2) The method for growing single crystal silicon having a quadrangular cross section according to (1), wherein the convection and / or interface shape of the melt is controlled by the quadrangular formwork.
(3) A single crystal having a quadrangular cross section according to (1) or (2), wherein a seeded crystal is used to form an enlarged pyramid portion obtained by gradually increasing the diameter of one side to form a single crystal. This is a method for growing silicon.
(4) The method for growing single crystal silicon having a quadrangular cross section according to (3), wherein the size of the quadrangular formwork is changed as the diameter of the enlarged pyramid portion increases.
(5) The method for growing single crystal silicon having a quadrangular section according to any one of (1) to (4), wherein the high-frequency coil is quadrangular.

本発明の単結晶シリコンの育成方法では、高周波コイルによって作られた融液に四角形の型枠を接触させることにより、融液の対流や界面形状を制御し、融液内に比較的容易に四角い温度分布を作ることができ、面内の抵抗率分布を改善することができる。
また、融液に四角形の型枠を接触させることで、融液を容易に拘束することができ、四角形の断面を有する単結晶シリコンの高速成長ができる。
さらに、融液に接触させた四角形の型枠によって、ファセット成長機構だけに頼らない四角形の単結晶を製造することができる。ファセット成長は、温度の過冷却が必要なので、成長速度を大きく出来ない欠点があったが、本発明では、成長速度を大きくすることが可能であり、低速成長時のスワ−ル欠陥の形成を抑制することができる。
本発明の単結晶シリコンの育成方法によって四角形の断面を有する単結晶シリコンが得られるので、これをスライスして、そのまま太陽電池パネルに用いる四角形の単結晶シリコンウェ−ハとすることができる。
In the method for growing single crystal silicon according to the present invention, the convection and interface shape of the melt are controlled by bringing a square formwork into contact with the melt produced by the high frequency coil, and the square is relatively easily formed in the melt. A temperature distribution can be created and the in-plane resistivity distribution can be improved.
In addition, by bringing a square formwork into contact with the melt, the melt can be easily restrained, and single crystal silicon having a square cross section can be grown at high speed.
Furthermore, a rectangular single crystal that does not rely solely on the facet growth mechanism can be produced by a rectangular mold that is in contact with the melt. Facet growth has the disadvantage that the growth rate cannot be increased because it requires supercooling of the temperature. However, in the present invention, the growth rate can be increased, and swirl defects can be formed during slow growth. Can be suppressed.
Since the single crystal silicon having a square cross section is obtained by the method for growing single crystal silicon according to the present invention, this can be sliced to obtain a square single crystal silicon wafer used for a solar cell panel as it is.

本発明の型枠を使用したFZ装置の概略断面図である。It is a schematic sectional drawing of the FZ apparatus using the formwork of this invention. 実施例1で使用した高周波コイルと型枠(スリット無しの丸形高周波コイル+型枠A)を示す図である。It is a figure which shows the high frequency coil and formwork (round high frequency coil without a slit + formwork A) used in Example 1. FIG. 実施例2で使用した高周波コイルと型枠(スリット無しの丸形高周波コイル+型枠B)を示す図である。It is a figure which shows the high frequency coil and mold which were used in Example 2 (round high frequency coil without slit + mold B). 実施例3で使用した高周波コイルと型枠(スリット無しの四角形高周波コイル+型枠A)を示す図である。It is a figure which shows the high frequency coil and formwork (square high frequency coil without a slit + formwork A) used in Example 3. 実施例4で使用した高周波コイルと型枠(スリット無しの四角形高周波コイル+型枠B)を示す図である。It is a figure which shows the high frequency coil and formwork (square high frequency coil without a slit + formwork B) used in Example 4. 比較例で使用した4箇所のスリットの入った四角形高周波コイルを示す図である。It is a figure which shows the square high frequency coil containing the slit of 4 places used by the comparative example. 四角形の断面を有する単結晶シリコンの抵抗率の面内分布を示す図である。It is a figure which shows the in-plane distribution of the resistivity of the single crystal silicon which has a square cross section. 実施例4の四角形の断面を有する単結晶シリコンをスライスした四角形のウェ−ハの抵抗率の面内分布を示す図である。It is a figure which shows the in-plane distribution of the resistivity of the square wafer which sliced the single crystal silicon which has the square cross section of Example 4. FIG. 従来の円筒状のシリコン単結晶から作製した四角形のウェ−ハの抵抗率の面内分布を示す図である。It is a figure which shows the in-plane distribution of the resistivity of the square wafer produced from the conventional cylindrical silicon single crystal.

図1に、本発明の単結晶シリコンの育成方法に使用するFZ装置(育成炉)の概略断面図を示す。
育成炉内には、上軸7の原料棒保持部11に保持されたシリコン原料棒(シリコン多結晶原料棒)1と下軸6の種結晶保持部10に保持された種結晶5が収容されている。シリコン原料棒1の下端を部分的に加熱溶融するための輪環状の高周波コイル(高周波誘導加熱コイル)8がシリコン原料棒1を囲繞するようにシリコン原料棒1と同軸に配置されている。また、不活性ガスを12から供給し、13から排出するように構成されている。
FIG. 1 shows a schematic cross-sectional view of an FZ apparatus (growing furnace) used in the method for growing single crystal silicon according to the present invention.
In the growth furnace, a silicon raw material rod (silicon polycrystalline raw material rod) 1 held by the raw material rod holding portion 11 of the upper shaft 7 and a seed crystal 5 held by the seed crystal holding portion 10 of the lower shaft 6 are accommodated. ing. An annular high frequency coil (high frequency induction heating coil) 8 for partially heating and melting the lower end of the silicon raw material rod 1 is arranged coaxially with the silicon raw material rod 1 so as to surround the silicon raw material rod 1. Further, an inert gas is supplied from 12 and discharged from 13.

このFZ装置を用いて単結晶シリコンを育成する場合、まず、先細り状に形成したシリコン原料棒1の先端部を高周波コイル8により加熱溶融して溶融ゾーンを形成し、種結晶5を融着する。本発明においては、四角形の断面を有する<001>方位の単結晶ロッド({110}面を側面とする四角柱)を種結晶5とすることが種の製造コストの面からみて好ましい。しかし、結晶構造は種結晶の形状に依存しないので、円柱や円錐の種結晶からでも四角形の断面を有する単結晶は育成可能である。したがって、円柱形状や円錐形状の種結晶5を用いても良い。次に、種絞りをするための絞り代をシリコン原料棒1側に形成し、その後、一辺の径が、例えば約3mmの無転位化を行うための種絞り部4を形成する。   When single crystal silicon is grown using this FZ apparatus, first, the tip of the silicon raw material rod 1 formed in a tapered shape is heated and melted by the high frequency coil 8 to form a melting zone, and the seed crystal 5 is fused. . In the present invention, it is preferable from the viewpoint of the production cost of the seed to use a <001> -oriented single crystal rod having a square cross section (a quadratic prism having a {110} plane as a side surface) as the seed crystal 5. However, since the crystal structure does not depend on the shape of the seed crystal, a single crystal having a square cross section can be grown even from a cylindrical or conical seed crystal. Therefore, a cylindrical or conical seed crystal 5 may be used. Next, a drawing allowance for performing seed drawing is formed on the silicon raw material rod 1 side, and thereafter, a seed drawing portion 4 for making dislocation-free having a side diameter of, for example, about 3 mm is formed.

続いて、シリコン原料棒1を徐々に下方に移動させながら、高周波コイル8により加熱溶融し、一辺の径を徐々に拡大して単結晶化した増径角錐部3を形成する。
本発明は、四角形の型枠9をシリコン原料棒1が溶融した融液に接触させる点に特徴を有する。四回対称の温度分布(高周波コイル8による誘導電流で加熱される発熱分布)中で、種結晶の{110}側面を温度分布の高温部に対向させて、{111}面のファセット面を{110}側面部に成長させることで、四角形の断面を維持しつつ、育成単結晶のサイズを大きくし、増径角錐部3を形成する。
この増径角錐部3の形成において、型枠を使用することによって増径角錐部3を形成することが容易になる。すなわち、四角形の可変型枠9を使用し、径の拡大に応じて型枠の大きさを拡大していくことによって、増径角錐部3を容易に形成することが可能になる。
Subsequently, while the silicon raw material rod 1 is gradually moved downward, it is heated and melted by the high-frequency coil 8 to gradually enlarge the diameter of one side to form a single-crystallized enlarged pyramid portion 3.
The present invention is characterized in that the square mold 9 is brought into contact with a melt obtained by melting the silicon raw material rod 1. In a four-fold symmetrical temperature distribution (heat generation distribution heated by induction current generated by the high-frequency coil 8), the {110} side face of the seed crystal is opposed to the high temperature part of the temperature distribution, and the {111} facet surface is { 110} Growing on the side surface portion increases the size of the grown single crystal while maintaining the rectangular cross section, and forms the increased-diameter pyramid portion 3.
In the formation of the increased-diameter pyramid portion 3, the increased-diameter pyramid portion 3 can be easily formed by using a mold. That is, by using the square variable mold 9 and enlarging the size of the mold in accordance with the increase in diameter, it is possible to easily form the increased-diameter pyramid portion 3.

そして、増径角錐部3の径をさらに拡大し、四角形の断面の一辺が適切な長さになったところで、単結晶シリコン(製品単結晶棒)2となる部分の成長を開始する。高周波コイル8によって作られた溶融ゾーンの位置、あるいは成長した単結晶の位置をずらすことで、シリコン原料棒1の一端からもう一端に向かって、単結晶を育成する。
本発明においては、四角形の断面を有する製品単結晶棒2を成長させる過程で四角形の固定型枠9を使用することもできる。
Then, the diameter of the enlarged pyramid portion 3 is further expanded, and when a side of the square cross section has an appropriate length, growth of a portion that becomes the single crystal silicon (product single crystal rod) 2 is started. By shifting the position of the melting zone formed by the high-frequency coil 8 or the position of the grown single crystal, the single crystal is grown from one end of the silicon raw material rod 1 toward the other end.
In the present invention, the square fixed mold 9 can be used in the process of growing the product single crystal rod 2 having a square cross section.

本発明において使用する高周波コイル8は、丸型でも四角形でも良く、特に形状は限定されないが、単結晶シリコン2の抵抗率の面内分布をより均一化するためには、四角形高周波コイルが好ましい。   The high frequency coil 8 used in the present invention may be round or square, and the shape is not particularly limited. However, in order to make the in-plane distribution of resistivity of the single crystal silicon 2 more uniform, a rectangular high frequency coil is preferable.

本発明において使用する型枠9は、四角形の断面を有する単結晶シリコン2を製造するために、基本的には四角形であるが、融液の対流及び/又は界面形状を制御することができれば良いから、真四角である必要はなく、角が丸くなっているものや、全体が曲線状になっているものも含む。
型枠9の材質は単結晶の純度を低下させないように高純度の石英、窒化珪素、シリコンなどを使用することができる。酸素や窒素の混入を嫌う場合は、高純度のシリコンが好ましい。
The mold 9 used in the present invention is basically a quadrangle in order to produce a single crystal silicon 2 having a quadrangular cross section, but it is sufficient that the convection and / or interface shape of the melt can be controlled. Therefore, it does not have to be a true square, and includes a case where the corner is rounded and a case where the whole is curved.
As the material of the mold 9, high-purity quartz, silicon nitride, silicon or the like can be used so as not to lower the purity of the single crystal. High purity silicon is preferable when mixing with oxygen and nitrogen is disliked.

本発明において育成された単結晶シリコン2は、四角形の断面を有するものであり、できるだけ角も丸くない方が好ましいが、角が僅かに丸いものは許容される。四角形の断面を有する単結晶シリコンをスライスした四角形の単結晶シリコンウェ−ハについても同様のことがいえる。また、単結晶シリコン2は必ずしも無転位である必要はないが、固液界面形状を制御することで、転位の集積と増殖をなくし、多結晶化を防ぐ。このために、育成炉の熱設計を最適化することが好ましい。   The single crystal silicon 2 grown in the present invention has a quadrangular cross section, and it is preferable that the corners are not rounded as much as possible, but those having slightly rounded corners are acceptable. The same can be said for a rectangular single crystal silicon wafer obtained by slicing single crystal silicon having a rectangular cross section. Further, the single crystal silicon 2 is not necessarily free of dislocations, but by controlling the shape of the solid-liquid interface, the accumulation and growth of dislocations are eliminated, and polycrystallization is prevented. For this reason, it is preferable to optimize the thermal design of the growth furnace.

本発明で採用しているFZ法は、原料棒の一部を溶融し、連続的に結晶成長を行なうため、ドーピング不純物の偏析を一定にすることが可能である。このため、偏析係数の小さいリン等の不純物も結晶成長の最初から最後まで均一濃度に分布させることができる。   Since the FZ method employed in the present invention melts a part of the raw material rod and continuously performs crystal growth, segregation of doping impurities can be made constant. For this reason, impurities such as phosphorus having a small segregation coefficient can be distributed at a uniform concentration from the beginning to the end of crystal growth.

FZ法は、原料棒を高周波で直接加熱するために、CZ法のようにヒ−タ−からの熱輻射が育成した結晶に照射しない。すなわち、一般的に、FZ法は、CZ法(1mm/min)やキャスト法(0.1mm/min)に比べて成長速度が速くできる(3mm/min)。
本発明においては、育成速度(成長速度)を2〜3mm/minとする。
また、FZ装置は、熱輻射が少ないために成長界面から直径や温度の測定機器までの距離を短くすることができるので、自動運転制御が容易である。
In the FZ method, since the raw material rod is directly heated at a high frequency, the crystal grown by the heat radiation from the heater as in the CZ method is not irradiated. That is, generally, the FZ method can increase the growth rate (3 mm / min) compared to the CZ method (1 mm / min) and the cast method (0.1 mm / min).
In the present invention, the growth rate (growth rate) is set to 2 to 3 mm / min.
In addition, since the FZ apparatus has less heat radiation, the distance from the growth interface to the diameter and temperature measuring device can be shortened, so that automatic operation control is easy.

以下に、図に基づいて実施例を示すが、これらの図は一例であって、型枠の大きさは限定されるものではない。   Examples will be described below with reference to the drawings. However, these drawings are merely examples, and the size of the mold is not limited.

(実施例1)
直径120mmのシリコン多結晶原料棒を用いて、図2に示すスリット無しの丸型高周波コイル8と四角形型枠(単結晶シリコン2の上部に位置する。以下の実施例においても同じ。)によって、一辺が105mm、長さが800mmの断面が四角形の単結晶シリコン(FZ結晶)2を5本製造した。
結晶の育成速度は、2.0mm/minで、融液の零れ落ちも無く、無転位単結晶が育成できた。
Example 1
By using a silicon polycrystalline raw material rod having a diameter of 120 mm, a slit-shaped round high-frequency coil 8 shown in FIG. 2 and a rectangular frame (located above the single-crystal silicon 2; the same applies to the following embodiments). Five single crystal silicons (FZ crystals) 2 each having a side of 105 mm and a length of 800 mm and having a square cross section were manufactured.
The crystal growth rate was 2.0 mm / min, there was no spillage of the melt, and a dislocation-free single crystal could be grown.

(実施例2)
直径120mmのシリコン多結晶原料棒を用いて、図3に示すスリット無しの丸型高周波コイル8と四角形型枠によって、一辺が105mm、長さが800mmの断面が四角形のFZ結晶2を3本製造したが、結果は、図2の四角形型枠の配置と同じであった。
(Example 2)
Using a silicon polycrystalline raw material rod having a diameter of 120 mm, three FZ crystals 2 each having a square section of 105 mm and a length of 800 mm are manufactured by a round high-frequency coil 8 without slits and a rectangular frame shown in FIG. However, the result was the same as the arrangement of the square form in FIG.

(実施例3)
直径120mmのシリコン多結晶原料棒を用いて、図4に示すスリット無しの四角形高周波コイル8と四角形型枠によって、一辺が105mm、長さが800mmの断面が四角形のFZ結晶2を5本製造した。
結晶の育成速度は、2.5mm/minで、融液の零れ落ちも無く、無転位単結晶が育成できた。
(Example 3)
Using a silicon polycrystalline raw material rod having a diameter of 120 mm, five FZ crystals 2 each having a square section of 105 mm and a length of 800 mm were manufactured by using the rectangular high-frequency coil 8 without slits and a rectangular frame shown in FIG. .
The crystal growth rate was 2.5 mm / min, there was no spillage of the melt, and a dislocation-free single crystal could be grown.

(実施例4)
直径120mmのシリコン多結晶原料棒を用いて、図5に示すスリット無しの四角形高周波コイル8と四角形型枠によって、一辺が105mm、長さが800mmの断面が四角形のFZ結晶2を3本製造したが、結果は、図4の四角形型枠の配置と同じであった。
Example 4
Using a silicon polycrystalline raw material rod having a diameter of 120 mm, three FZ crystals 2 having a side of 105 mm and a length of 800 mm and having a square cross section were produced by the rectangular high-frequency coil 8 and the rectangular mold shown in FIG. However, the result was the same as the arrangement of the square form in FIG.

(比較例)
直径120mmのシリコン多結晶原料棒を用いて、図6に示す4箇所のスリットの入った四角形高周波コイル8によって、一辺が105mm、長さが800mmの断面が四角形のFZ結晶2を5本製造した。
結晶の育成速度は、1.0mm/minで、融液の零れ落ちが2回発生して有転位化し、3本は融液の零れ落ちが無くて無転位単結晶だった。
(Comparative example)
Using a silicon polycrystalline raw material rod having a diameter of 120 mm, five FZ crystals 2 each having a square section of 105 mm and a length of 800 mm were manufactured by the rectangular high-frequency coil 8 having four slits shown in FIG. .
The growth rate of the crystal was 1.0 mm / min, and melt spilling occurred twice, resulting in dislocations, and the three crystals were dislocation-free single crystals with no melt spilling.

育成した四角形の断面を有する一辺が105mmの単結晶シリコンを機械加工で整形して一辺の径を100mmとし、これをスライスして一辺が100mmの四角形の単結晶シリコンウェ−ハを得た。
表1及び図7に、比較例、実施例2及び実施例4の長さ400mmの部位から採取したウェ−ハにおける抵抗率の面内分布(ウェ−ハの中心を通り、一辺に平行な線上の抵抗率分布)を示す。
比較例では抵抗率の面内分布が30%と悪いが、実施例2では22%に改善され、実施例4では12%に改善された。
The grown single crystal silicon having a square cross section with a side of 105 mm was shaped by machining to have a side diameter of 100 mm, and this was sliced to obtain a square single crystal silicon wafer with a side of 100 mm.
Table 1 and FIG. 7 show the in-plane distribution of resistivity in a wafer sampled from a 400 mm long portion of Comparative Example, Example 2 and Example 4 (on a line parallel to one side through the center of the wafer). Resistivity distribution).
In the comparative example, the in-plane distribution of resistivity was as bad as 30%, but it was improved to 22% in Example 2 and 12% in Example 4.

上記の実施例4で製造した結晶の長さ400mmの部位のウェ−ハの抵抗率の2次元の面内分布(一辺は100mm)を図8に示す。図8より、本発明の四角形の単結晶シリコンウェ−ハは、抵抗率が四回対称の面内分布を有することが判る。また、このウェ−ハでは、中心部と外部が中間部よりも抵抗率が高いが、抵抗率の面内分布は平らに近づいていることが判る。
なお、従来の円筒状のシリコン単結晶から作製した四角形の単結晶シリコンウェ−ハの抵抗率の2次元の面内分布を図9に示す。軸対称(同心円)の抵抗率分布であり、本発明の四角形の単結晶シリコンウェ−ハの抵抗率の面内分布とは異なる。
FIG. 8 shows a two-dimensional in-plane distribution of wafer resistivity (one side is 100 mm) of the portion of the crystal manufactured in Example 4 having a length of 400 mm. It can be seen from FIG. 8 that the rectangular single crystal silicon wafer of the present invention has an in-plane distribution with a four-fold resistivity. Further, in this wafer, the resistivity is higher in the central portion and the outer portion than in the intermediate portion, but it can be seen that the in-plane distribution of the resistivity approaches flat.
FIG. 9 shows a two-dimensional in-plane distribution of resistivity of a rectangular single crystal silicon wafer manufactured from a conventional cylindrical silicon single crystal. It is an axisymmetric (concentric) resistivity distribution, which is different from the in-plane resistivity distribution of the rectangular single crystal silicon wafer of the present invention.

(符号の説明)
1:シリコン原料棒
2:単結晶シリコン
3:増径角錐部
4:種絞り部
5:種結晶
6:下軸
7:上軸
8:高周波コイル
9:四角形の型枠
10:種結晶保持部
11:原料棒保持部
12:ガス供給路
13:ガス排出路
(Explanation of symbols)
1: Silicon raw material rod 2: Single crystal silicon 3: Increased diameter pyramid part 4: Seed restricting part 5: Seed crystal 6: Lower shaft 7: Upper shaft 8: High-frequency coil 9: Square mold 10: Seed crystal holding part 11 : Raw material rod holding unit 12: Gas supply path 13: Gas discharge path

本発明のFZ法により育成した単結晶シリコンは、四角形の断面を有し、四角形のシリコンウエハが得られるから、太陽電池用として利用できる。
また、本発明のFZ法は、坩堝を使用しないため、育成した単結晶シリコンに石英坩堝からの酸素の混入がないから、酸素不純物濃度が低く抑えられ、酸素化合物や酸素析出物によるキャリア消滅の影響が無視できる。これは光生成したキャリアの拡散長を向上させ、太陽電池の効率の増大に寄与する。また、他の遷移金属不純物の混入に関しても同様で、原料シリコンの純度を落とさない高純度の結晶育成が可能で、光生成したキャリアの拡散長を向上させ、太陽電池の効率の増大に寄与する。したがって、太陽電池用の単結晶シリコンとして最適である。
Single crystal silicon grown by the FZ method of the present invention has a rectangular cross section, and a rectangular silicon wafer can be obtained, so that it can be used for solar cells.
In addition, since the FZ method of the present invention does not use a crucible, oxygen is not mixed into the grown single crystal silicon from the quartz crucible, so that the oxygen impurity concentration is kept low, and carrier annihilation due to oxygen compounds and oxygen precipitates is eliminated. The impact can be ignored. This improves the diffusion length of the photogenerated carrier and contributes to an increase in the efficiency of the solar cell. The same applies to the mixing of other transition metal impurities, which enables the growth of high-purity crystals without reducing the purity of the raw material silicon, improves the diffusion length of photogenerated carriers, and contributes to the increase in solar cell efficiency. . Therefore, it is optimal as single crystal silicon for solar cells.

Claims (5)

育成炉内に設けた高周波コイルによりシリコン原料棒を加熱溶融して単結晶シリコンを育成するFZ法による四角形の断面を有する単結晶シリコンの育成方法において、前記高周波コイルの下面側に四角形の型枠を設け、前記四角形の型枠を前記シリコン原料棒が溶融した融液に接触させることを特徴とする四角形の断面を有する単結晶シリコンの育成方法。   In the method for growing single crystal silicon having a square cross section by the FZ method in which a silicon raw material rod is heated and melted by a high frequency coil provided in a growth furnace to grow single crystal silicon, a rectangular mold is formed on the lower surface side of the high frequency coil. A method for growing single crystal silicon having a quadrangular cross section, wherein the quadrangular mold is brought into contact with a melt obtained by melting the silicon raw material rod. 前記四角形の型枠により、前記融液の対流及び/又は界面形状を制御することを特徴とする請求項1に記載の四角形の断面を有する単結晶シリコンの育成方法。   2. The method for growing single crystal silicon having a quadrangular cross section according to claim 1, wherein the convection and / or interface shape of the melt is controlled by the quadrangular formwork. 種結晶を用いて、一辺の径を徐々に拡大して単結晶化した増径角錐部を形成することを特徴とする請求項1又は2に記載の四角形の断面を有する単結晶シリコンの育成方法。   3. The method for growing single crystal silicon having a quadrangular cross section according to claim 1, wherein a diameter-increased pyramid portion is formed by gradually increasing the diameter of one side to form a single crystal by using a seed crystal. . 前記増径角錐部の径の拡大に伴って前記四角形の型枠の大きさを変化させることを特徴とする請求項3に記載の四角形の断面を有する単結晶シリコンの育成方法。   4. The method for growing single crystal silicon having a quadrangular cross section according to claim 3, wherein the size of the quadrangular formwork is changed as the diameter of the enlarged pyramid portion increases. 前記高周波コイルが四角形であることを特徴とする請求項1〜4のいずれか一項に記載の四角形の断面を有する単結晶シリコンの育成方法。   The method for growing single crystal silicon having a quadrangular cross section according to any one of claims 1 to 4, wherein the high-frequency coil is quadrangular.
JP2010066177A 2010-03-23 2010-03-23 Method for growing single crystal silicon having a square cross section Expired - Fee Related JP5464429B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010066177A JP5464429B2 (en) 2010-03-23 2010-03-23 Method for growing single crystal silicon having a square cross section

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010066177A JP5464429B2 (en) 2010-03-23 2010-03-23 Method for growing single crystal silicon having a square cross section

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013255895A Division JP2014062044A (en) 2013-12-11 2013-12-11 Rectangular single crystal silicon wafer

Publications (2)

Publication Number Publication Date
JP2011195414A JP2011195414A (en) 2011-10-06
JP5464429B2 true JP5464429B2 (en) 2014-04-09

Family

ID=44874087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010066177A Expired - Fee Related JP5464429B2 (en) 2010-03-23 2010-03-23 Method for growing single crystal silicon having a square cross section

Country Status (1)

Country Link
JP (1) JP5464429B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107002276A (en) * 2015-10-26 2017-08-01 北京京运通科技股份有限公司 Melt the automatic growth method and system of crystal in area

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013103874A (en) * 2011-11-11 2013-05-30 Yutaka Kamaike Silicon and method for manufacturing the same
CN102534754B (en) * 2012-02-29 2014-11-12 浙江晶盛机电股份有限公司 Reflection ring lifting device for improving thermal field of zone-melting single-crystal furnace
CN102808216A (en) * 2012-08-22 2012-12-05 北京京运通科技股份有限公司 Float-zone monocrystalline silicon production process and float-zone thermal field
JP2014062044A (en) * 2013-12-11 2014-04-10 National Institute For Materials Science Rectangular single crystal silicon wafer
CN103993348B (en) * 2014-05-09 2016-05-25 上海大学 The growing method of rare earth orthoferrite monocrystalline and application
CN106702474B (en) * 2015-07-20 2019-04-12 有研半导体材料有限公司 The technique of polycrystalline thorn is eliminated in a kind of growth of zone-melted silicon single crystal
CN116479523B (en) * 2023-06-25 2023-09-22 苏州晨晖智能设备有限公司 Device and method for growing non-cylindrical silicon single crystal ingot

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005063346B4 (en) * 2005-04-06 2010-10-28 Pv Silicon Forschungs Und Produktions Gmbh Process for producing a monocrystalline Si wafer with approximately round polygonal cross section

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107002276A (en) * 2015-10-26 2017-08-01 北京京运通科技股份有限公司 Melt the automatic growth method and system of crystal in area
CN107002276B (en) * 2015-10-26 2020-03-20 北京京运通科技股份有限公司 Automatic growth method and system of zone-melting crystal

Also Published As

Publication number Publication date
JP2011195414A (en) 2011-10-06

Similar Documents

Publication Publication Date Title
JP5464429B2 (en) Method for growing single crystal silicon having a square cross section
KR101997565B1 (en) Method for producing monocrystalline silicon
US10253430B2 (en) Method for preparing polycrystalline silicon ingot
EP2505695A2 (en) Methods for manufacturing cast silicon from seed crystals
JP2001158690A (en) Method for producing high-quality silicon single crystal
JP4830312B2 (en) Compound semiconductor single crystal and manufacturing method thereof
JP3053958B2 (en) Crystal production equipment by the floating zone melting method
JP2008534427A (en) Method for producing a monocrystalline Si wafer having a substantially polygonal cross section and such a monocrystalline Si wafer
JP2012513950A (en) Method and pull assembly for pulling a polycrystalline silicon ingot from a silicon melt
US20100148403A1 (en) Systems and Methods For Manufacturing Cast Silicon
CN107604431A (en) N-type monocrystalline silicon manufacturing method and apparatus
JP5671057B2 (en) Method for producing germanium ingot with low micropit density (MPD) and apparatus for growing germanium crystals
JPH076972A (en) Growth method and device of silicon single crystal
JP6719718B2 (en) Si ingot crystal manufacturing method and manufacturing apparatus thereof
JP5372105B2 (en) N-type silicon single crystal and manufacturing method thereof
JP4060106B2 (en) Unidirectionally solidified silicon ingot, manufacturing method thereof, silicon plate, solar cell substrate and sputtering target material
JP2008266090A (en) Silicon crystal material and method for manufacturing fz (floating-zone) silicon single crystal using the material
KR100331552B1 (en) Czochralski Pullers and Pulling Methods for Manufacturing Monocrystalline Silicon Ingots by Controlling Temperature Gradients at the Center and Edge of an Ingot-Melt Interface
JP5370394B2 (en) Compound semiconductor single crystal substrate
JP2014062044A (en) Rectangular single crystal silicon wafer
JP2006151745A (en) Method for producing single crystal and oxide single crystal obtained by using the same
JP2007284323A (en) Manufacturing device and manufacturing method for semiconductor single crystal
JP4218460B2 (en) Graphite heater for single crystal production, single crystal production apparatus and single crystal production method
JP2006290641A (en) Production method of compound single crystal
JP2004099390A (en) Method of manufacturing compound semiconductor single crystal and compound semiconductor single crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140108

R150 Certificate of patent or registration of utility model

Ref document number: 5464429

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees