JP2014201471A - Induction heating dissolution device - Google Patents

Induction heating dissolution device Download PDF

Info

Publication number
JP2014201471A
JP2014201471A JP2013077732A JP2013077732A JP2014201471A JP 2014201471 A JP2014201471 A JP 2014201471A JP 2013077732 A JP2013077732 A JP 2013077732A JP 2013077732 A JP2013077732 A JP 2013077732A JP 2014201471 A JP2014201471 A JP 2014201471A
Authority
JP
Japan
Prior art keywords
crucible
induction heating
silicon
carbon felt
melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013077732A
Other languages
Japanese (ja)
Other versions
JP6182938B2 (en
Inventor
津田 正徳
Masanori Tsuda
正徳 津田
悠 米虫
Hisashi Yonemushi
悠 米虫
中井 泰弘
Yasuhiro Nakai
泰弘 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinfonia Technology Co Ltd
Original Assignee
Sinfonia Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sinfonia Technology Co Ltd filed Critical Sinfonia Technology Co Ltd
Priority to JP2013077732A priority Critical patent/JP6182938B2/en
Publication of JP2014201471A publication Critical patent/JP2014201471A/en
Application granted granted Critical
Publication of JP6182938B2 publication Critical patent/JP6182938B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an induction heating dissolution device capable of heating at high heating efficiency, a dissolution raw material which is an electric nonconductor at room temperature and becomes conductive at a higher temperature than the room temperature, and shortening a time required for dissolution.SOLUTION: A crucible 1 is formed of a material allowing penetration of a magnetic flux from an induction heating coil 2, and a heater element formed of a carbon felt 3 is disposed between the crucible 1 and the induction heating coil 2. Hereby, in a heating initial stage, the heater element formed of the carbon felt 3 is induction-heated, and thereby silicon S as a dissolution raw material charged into the crucible 1 is heated indirectly by the carbon felt 3, and in a heating latter stage in which the heated silicon S becomes conductive, the silicon S can be heated directly by a magnetic flux penetrating the carbon felt 3 and the crucible 1 without suppressing input power into the induction heating coil 2.

Description

本発明は、シリコンやアルミナ、ジルコニア等のセラミックを溶解する誘導加熱溶解装置に関する。   The present invention relates to an induction heating melting apparatus that melts ceramics such as silicon, alumina, and zirconia.

半導体デバイス等に用いられるシリコン単結晶や、宝石等に用いられるアルミナ、ジルコニア等の単結晶を得る際には、ルツボ内に装入したこれらの固体または粉末の溶解原料を、ルツボの周囲に誘導加熱コイルを巻回した誘導加熱溶解装置によって溶解し、溶解した溶湯に種結晶を接触させて、これらの単結晶を成長させるようにしている(例えば、特許文献1、2参照)。   When obtaining silicon single crystals used for semiconductor devices, etc., and single crystals such as alumina and zirconia used for jewelry, etc., these solid or powder melting raw materials charged in the crucible are guided around the crucible. It melt | dissolves with the induction heating melting apparatus which wound the heating coil, a seed crystal is made to contact the molten metal, and these single crystals are made to grow (for example, refer patent document 1, 2).

これらのシリコンやアルミナ、ジルコニア等のセラミックは、常温では電気を通さない非導電体であり、高温領域のみで導電性を有するので、誘導加熱溶解装置の誘導加熱コイルに高周波電流を供給しても、ルツボ内の溶解原料には渦電流がほとんど発生せず、溶解原料を誘導加熱で直接加熱することができない。   These ceramics such as silicon, alumina, and zirconia are non-conductive materials that do not conduct electricity at room temperature, and have conductivity only in a high temperature region, so even if a high frequency current is supplied to the induction heating coil of the induction heating and melting apparatus. The melting raw material in the crucible hardly generates eddy currents, and the melting raw material cannot be directly heated by induction heating.

特許文献1に記載されたものでは、ルツボをモリブデンやタングステン等の導電体で形成し、ルツボを誘導加熱することにより、高温に加熱されたルツボによって、内部に装入された溶解原料としてのサファイア(アルミナ)粉末を間接的に加熱して、溶解するようにしている。   In the one described in Patent Document 1, sapphire as a melting raw material charged inside is formed by a crucible heated to a high temperature by forming a crucible with a conductor such as molybdenum or tungsten and induction heating the crucible. The (alumina) powder is indirectly heated to dissolve.

また、特許文献2に記載されたものでは、ルツボを非導電体の石英で形成し、ルツボと周囲の誘導加熱コイルとの間に、発熱体として導電体であるカーボンで形成した筒体を上下方向に間隔を開けて配設して、加熱初期は発熱体を誘導加熱することにより、ルツボに装入された溶解原料としてのシリコンを発熱体からの輻射熱で間接加熱し、加熱されたシリコンの抵抗率が低下して導電性を有するようになったときに、上下方向に間隔を開けた筒体間を通る誘導加熱コイルの磁束によって、ルツボ内のシリコンを直接加熱して、溶解するようにしている。   Moreover, in what is described in Patent Document 2, a crucible is formed of non-conductive quartz, and a cylindrical body formed of carbon, which is a conductive material, is used as a heating element between the crucible and the surrounding induction heating coil. In the initial stage of heating, the heating element is inductively heated to indirectly heat silicon as a melting raw material charged in the crucible with radiant heat from the heating element. When the resistivity is lowered and becomes conductive, the silicon in the crucible is directly heated and melted by the magnetic flux of the induction heating coil that passes between the cylinders spaced apart in the vertical direction. ing.

特開2005−1934号公報Japanese Patent Laid-Open No. 2005-1934 特開2010−70404号公報JP 2010-70404 A

特許文献1に記載されたルツボを介して溶解原料を間接加熱する誘導加熱溶解装置は、ルツボを溶解原料よりも高温とするように必要以上に加熱するので、加熱効率が悪くなる問題がある。   The induction heating and melting apparatus that indirectly heats the melting raw material through the crucible described in Patent Document 1 heats the crucible more than necessary so that the temperature is higher than that of the melting raw material.

特許文献2に記載された加熱初期のみ発熱体を介して溶解原料を間接加熱する誘導加熱溶解装置は、ルツボを加熱する必要がなく、加熱後期は誘導加熱で直接加熱するので、加熱効率を向上させることができる。しかしながら、加熱初期に溶解原料を間接加熱する発熱体は、加熱後期にも誘導加熱によって加熱され続けるので過加熱となる。このため、加熱後期に誘導加熱コイルへの投入電力を抑制する必要があり、溶解に要する時間が長くなる問題がある。   The induction heating melting apparatus that indirectly heats the melting raw material via the heating element only in the initial stage of heating described in Patent Document 2 does not need to heat the crucible, and directly heats by induction heating in the latter stage of heating, thus improving the heating efficiency. Can be made. However, the heating element that indirectly heats the melted raw material in the early stage of heating is overheated because it continues to be heated by induction heating in the later stage of heating. For this reason, it is necessary to suppress the input power to the induction heating coil in the later stage of heating, and there is a problem that the time required for melting becomes long.

そこで、本発明の課題は、常温で非導電体であり、常温よりも高温で導電性を有するようになる溶解原料を高い加熱効率で加熱でき、溶解に要する時間を短縮できる誘導加熱溶解装置を提供することである。   Accordingly, an object of the present invention is to provide an induction heating and melting apparatus that can heat a melting raw material that is a non-conductor at normal temperature and has conductivity at a temperature higher than normal temperature with high heating efficiency and can reduce the time required for melting. Is to provide.

上記の課題を解決するために、本発明は、溶解原料として、常温で非導電体であり、常温よりも高温で導電性を有するようになるシリコンまたはセラミックを装入するルツボと、前記ルツボの周囲に巻回され、高周波電流を供給される誘導加熱コイルとを備え、前記ルツボに装入される溶解原料を加熱、溶解する誘導加熱溶解装置において、前記ルツボを前記誘導加熱コイルからの磁束を透過させる素材で形成し、前記ルツボと周囲の前記誘導加熱コイルとの間に、カーボンフェルトまたは多孔質カーボンで形成した発熱体を配設した構成を採用した。ルツボには、開閉可能な出湯用の孔を設けるものも含まれる。   In order to solve the above-described problems, the present invention provides a crucible containing silicon or ceramic that is a non-conductive material at room temperature and has conductivity at a temperature higher than room temperature, as a melting raw material, An induction heating coil that is wound around and supplied with a high-frequency current, and in which the melting raw material charged in the crucible is heated and melted, in the induction heating melting apparatus, the crucible is supplied with magnetic flux from the induction heating coil. A structure in which a heating element formed of carbon felt or porous carbon is disposed between the crucible and the surrounding induction heating coil is employed. The crucible includes one that has a hole for hot water that can be opened and closed.

前記カーボンフェルトや多孔質カーボンは、温度によって抵抗率がほとんど変化しない導電体であり、誘導加熱により発熱する発熱体となるが、空隙が多く密度が小さいので、後の図6にカーボンフェルトの例を示すように、誘導加熱コイルからの磁束があまり減衰しない。これに対して、空隙のない中実カーボンは、磁束が表面近くで急激に減衰する。   The carbon felt or porous carbon is a conductor whose resistivity hardly changes depending on the temperature, and becomes a heating element that generates heat by induction heating. However, since there are many voids and the density is low, an example of carbon felt is shown in FIG. As shown, the magnetic flux from the induction heating coil is not attenuated so much. On the other hand, in solid carbon without a gap, the magnetic flux attenuates rapidly near the surface.

誘導加熱における導電体への磁束(渦電流)の浸透深さδ(磁束が36.8%に減衰する深さ)は、導電体の抵抗率をρ(μΩ・cm)、比透磁率をμ、高周波電流の周波数をf(Hz)とすると、(1)式で表されることが知られている。

Figure 2014201471
The penetration depth δ of magnetic flux (eddy current) into the conductor in induction heating (depth at which the magnetic flux attenuates to 36.8%) is ρ (μΩ · cm) as the resistivity of the conductor and μ as the relative permeability as μ. When the frequency of the high-frequency current is f (Hz), it is known that it is expressed by the equation (1).
Figure 2014201471

図6は、周波数fが10kHzの場合について、カーボンフェルトと中実カーボンの磁束の減衰特性を比較して示す。図6には、(1)式から求められるカーボンフェルトと中実カーボンの各浸透深さδ、δを付記している。カーボンは非磁性体であるので比透磁率μが1であり、カーボンフェルトの抵抗率ρは約5.3×10μΩ・cm、中実カーボンの抵抗率ρは約1.0×10μΩ・cmであるので、カーボンフェルトの浸透深さδは36.6cm、中実カーボンの浸透深さδは1.6cmとなる。このように、中実カーボンは厚みをかなり薄くしないと磁束を透過させることができないが、カーボンフェルトは厚みを厚くしても磁束が十分に透過することが分かる。 FIG. 6 shows a comparison of the magnetic flux attenuation characteristics of carbon felt and solid carbon when the frequency f is 10 kHz. In FIG. 6, the penetration depths δ 1 and δ 2 of carbon felt and solid carbon obtained from equation (1) are appended. Since carbon is a non-magnetic material, the relative permeability μ is 1, the resistivity ρ 1 of carbon felt is about 5.3 × 10 5 μΩ · cm, and the resistivity ρ 2 of solid carbon is about 1.0 ×. Since it is 10 3 μΩ · cm, the penetration depth δ 1 of carbon felt is 36.6 cm, and the penetration depth δ 2 of solid carbon is 1.6 cm. In this way, solid carbon cannot transmit magnetic flux unless the thickness is considerably reduced, but it can be seen that the carbon felt sufficiently transmits magnetic flux even if the thickness is increased.

また、カーボンフェルトや多孔質カーボンは、誘導加熱による発熱量は中実カーボンよりも少ないが、熱容量が小さいので中実カーボンとほぼ同等の昇温速度で加熱されるとともに、後述するように、高温領域では抵抗率が低下するシリコン等の溶解原料が優先的に誘導加熱されるので、過加熱とならない。   Carbon felt and porous carbon generate less heat than induction carbon, but have a smaller heat capacity, so they are heated at almost the same rate of temperature as solid carbon, and as described later, In the region, the melting raw material such as silicon whose resistivity is reduced is preferentially heated by induction, so that it does not overheat.

このような知見に基づいて上記構成を採用することにより、加熱初期はカーボンフェルトまたは多孔質カーボンで形成した発熱体を誘導加熱して、ルツボに装入された溶解原料を発熱体からの輻射熱や伝熱で間接加熱し、加熱されたシリコンの抵抗率が低下して導電性を有するようになったときに、誘導加熱コイルへの投入電力を抑制することなく、発熱体とルツボを透過する磁束によって直接加熱できるようにし、常温で非導電体であり、常温よりも高温で導電性を有するようになる溶解原料、すなわち加熱前には非導電体で、かつ加熱後に導電性を備えるようになる溶解原料を高い加熱効率で加熱でき、溶解に要する時間を短縮できるようにした。また、空隙が多いカーボンフェルトや多孔質カーボンで形成した発熱体は、ルツボの断熱材としての役割もし、溶解する溶解原料を保温する効果もある。   By adopting the above configuration based on such knowledge, in the initial stage of heating, a heating element formed of carbon felt or porous carbon is induction-heated, and the melting raw material charged in the crucible is radiated from the heating element. Magnetic flux that passes through the heating element and the crucible without suppressing the input power to the induction heating coil when the resistivity of the heated silicon decreases and becomes conductive due to indirect heating by heat transfer It can be directly heated by a melting raw material that is non-conductive at room temperature and becomes conductive at a temperature higher than normal temperature, that is, non-conductive before heating, and becomes conductive after heating. The melting raw material can be heated with high heating efficiency, and the time required for melting can be shortened. Further, the heating element formed of carbon felt having a large number of voids or porous carbon also serves as a heat insulating material for the crucible, and has an effect of keeping the melting raw material to be dissolved.

前記発熱体を有底筒状の容器とし、前記ルツボを、前記有底筒状の容器の内面に被覆された金属薄膜で形成することにより、簡単な構成でルツボを形成できるとともに、その熱容量を小さくして、溶解原料の加熱効率をより高めることができる。有底筒状の容器には、開閉可能な出湯用の孔を設けるものも含まれる。   By forming the heating element as a bottomed cylindrical container and forming the crucible with a metal thin film coated on the inner surface of the bottomed cylindrical container, the crucible can be formed with a simple configuration and the heat capacity thereof can be increased. The heating efficiency of the melting raw material can be further increased by reducing the size. The bottomed cylindrical container includes one having a hot water opening and closing hole.

前記金属薄膜は導電体であるが、その厚みを前記磁束の浸透深さδよりも薄くすることにより、十分に磁束を透過させることができる。また、金属薄膜の被覆は、CVD法やPVD法等によって行うことができる。なお、金属薄膜の金属は、融点が溶解原料の溶解温度よりも十分に高いものであればよく、モリブデン、タングステン、タンタル等が挙げられる。   The metal thin film is a conductor, but the magnetic flux can be sufficiently transmitted by making the thickness thinner than the penetration depth δ of the magnetic flux. The metal thin film can be coated by a CVD method, a PVD method, or the like. In addition, the metal of the metal thin film should just have melting | fusing point sufficiently higher than the melting temperature of a melt | dissolution raw material, and molybdenum, tungsten, a tantalum etc. are mentioned.

本発明に係る誘導加熱溶解装置は、ルツボを誘導加熱コイルからの磁束を透過させる素材で形成し、ルツボと周囲の誘導加熱コイルとの間に、カーボンフェルトまたは多孔質カーボンで形成した発熱体を配設したので、常温で非導電体であり、常温よりも高温で導電性を有するようになる溶解原料を高い加熱効率で加熱でき、溶解に要する時間を短縮することができる。また、カーボンフェルトや多孔質カーボンで形成した発熱体は、ルツボの断熱材としての役割もし、溶解する溶解原料を保温する効果もある。   In the induction heating and melting apparatus according to the present invention, a crucible is formed of a material that transmits magnetic flux from the induction heating coil, and a heating element formed of carbon felt or porous carbon is provided between the crucible and the surrounding induction heating coil. Since it is disposed, it is possible to heat the melting raw material which is non-conductive at normal temperature and has conductivity at a temperature higher than normal temperature with high heating efficiency, and the time required for melting can be shortened. Further, the heating element formed of carbon felt or porous carbon also serves as a heat insulating material for the crucible and has an effect of keeping the melting raw material to be dissolved.

第1の実施形態の誘導加熱溶解装置を模式的に示す縦断面図1 is a longitudinal sectional view schematically showing an induction heating melting apparatus according to a first embodiment. シリコンとカーボンフェルトの抵抗率の温度特性を示すグラフGraph showing temperature characteristics of resistivity of silicon and carbon felt 各温度領域での誘導加熱コイルからシリコンとカーボンフェルトへの電力分配比率を示すグラフGraph showing power distribution ratio from induction heating coil to silicon and carbon felt in each temperature range 実施例の溶解試験におけるシリコンとカーボンフェルトの温度測定結果を示すグラフThe graph which shows the temperature measurement result of the silicon | silicone and carbon felt in the melt | dissolution test of an Example 第2の実施形態の誘導加熱溶解装置を模式的に示す縦断面図The longitudinal cross-sectional view which shows typically the induction heating melting apparatus of 2nd Embodiment カーボンフェルトと中実カーボンの磁束の減衰特性を比較して示すグラフGraph showing comparison of magnetic flux attenuation characteristics of carbon felt and solid carbon

以下、図面に基づき、本発明の実施形態を説明する。図1は、第1の実施形態の誘導加熱溶解装置を示す。この誘導加熱溶解装置は、溶解原料としての固体シリコンSが装入されるルツボ1と、ルツボ1の周囲に巻回され、高周波電流を供給される誘導加熱コイル2とを備え、発熱体としての筒状のカーボンフェルト3が、ルツボ1の全周を覆うように誘導加熱コイル2との間に配設されている。ルツボ1は石英で形成され、上部と底部を支持部材4a、4bで支持されている。ルツボ1の底には、開閉可能な出湯用の孔を設けてもよい。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows an induction heating melting apparatus according to the first embodiment. This induction heating melting apparatus includes a crucible 1 in which solid silicon S as a melting raw material is charged, and an induction heating coil 2 wound around the crucible 1 and supplied with a high-frequency current, and serves as a heating element. A cylindrical carbon felt 3 is disposed between the induction heating coil 2 and the entire circumference of the crucible 1. The crucible 1 is formed of quartz, and the top and bottom are supported by support members 4a and 4b. The bottom of the crucible 1 may be provided with a hole for hot water that can be opened and closed.

前記誘導加熱コイル2に高周波電流を供給すると、電磁誘導によって磁束が発生する。非導電体である石英で形成されたルツボ1はこの磁束を透過する。また、空隙が多いカーボンフェルト3は、図6に示したように、磁束の減衰が緩やかであるので、厚みをかなり厚くしても、十分に磁束を透過する。したがって、誘導加熱コイル2から発生する磁束は、ルツボ1内のシリコンSに到達する。   When a high frequency current is supplied to the induction heating coil 2, a magnetic flux is generated by electromagnetic induction. The crucible 1 made of quartz, which is a non-conductor, transmits this magnetic flux. Further, as shown in FIG. 6, the carbon felt 3 having a large number of gaps has a moderate attenuation of the magnetic flux, so that the magnetic flux is sufficiently transmitted even if the thickness is considerably increased. Therefore, the magnetic flux generated from the induction heating coil 2 reaches the silicon S in the crucible 1.

図2は、前記シリコンSとカーボンフェルト3の抵抗率ρの温度特性を示す。シリコンSは、常温では抵抗率が非常に高い非導電体であり、温度の上昇に伴って抵抗率ρが低下して、導電性を有するようになる。一方、カーボンフェルト3の抵抗率ρは、温度によってほとんど変化せず、シリコンSの室温と融点での抵抗率ρの中間の値となる約5.3×10μΩ・cmである。なお、シリコンSの抵抗率ρについて、実線で示した常温〜1000℃の領域と1410℃(融点)以上の領域は実測されたものであり、点線で示した1000℃〜1410℃の領域は、1000℃と1410℃の実測値を便宜的に直線で結んだものである。 FIG. 2 shows temperature characteristics of resistivity ρ of the silicon S and the carbon felt 3. Silicon S is a non-conductor having a very high resistivity at room temperature, and the resistivity ρ decreases as the temperature increases, and becomes conductive. On the other hand, the resistivity ρ of the carbon felt 3 hardly changes depending on the temperature, and is about 5.3 × 10 5 μΩ · cm, which is an intermediate value between the resistivity ρ at the room temperature and the melting point of the silicon S. Regarding the resistivity ρ of silicon S, the region of room temperature to 1000 ° C. indicated by the solid line and the region of 1410 ° C. (melting point) or higher are actually measured, and the region of 1000 ° C. to 1410 ° C. indicated by the dotted line is The measured values of 1000 ° C. and 1410 ° C. are connected by a straight line for convenience.

図3は、前記誘導加熱コイル2に、一定の投入電力で周波数fが40kHzの高周波電流を供給したときの、各温度領域でのシリコンSとカーボンフェルト3への電力分配比率を示す。低温領域では、電力は非導電体であるシリコンSには分配されず、カーボンフェルト3のみに分配されて、カーボンフェルト3が発熱し、輻射熱とルツボ1を介する伝熱によってシリコンSを間接加熱する。シリコンSが加熱されて抵抗率ρが低下し、導電性を有するようになると、誘導加熱コイル2によって直接加熱されるようになり、シリコンSへの分配比率が徐々に増加するとともに、カーボンフェルト3への分配比率が減少し、高温領域では両者への電力分配比率が逆転する。この電力分配比率が逆転する温度は、図2に示した、シリコンSとカーボンフェルト3の抵抗率ρが逆転する温度とほぼ一致する。図示は省略するが、高周波電流の周波数fを変えても、低温領域と高温領域で両者への電力分配比率が逆転する形態は同じである。   FIG. 3 shows a power distribution ratio between the silicon S and the carbon felt 3 in each temperature region when a high-frequency current having a frequency f of 40 kHz is supplied to the induction heating coil 2 with a constant input power. In the low temperature region, power is not distributed to the non-conductive silicon S but is distributed only to the carbon felt 3, the carbon felt 3 generates heat, and the silicon S is indirectly heated by radiant heat and heat transfer via the crucible 1. . When the silicon S is heated and the resistivity ρ decreases and becomes conductive, the silicon S is directly heated by the induction heating coil 2, and the distribution ratio to the silicon S gradually increases, and the carbon felt 3 The distribution ratio is reduced, and the power distribution ratio to both is reversed in the high temperature region. The temperature at which the power distribution ratio is reversed substantially matches the temperature at which the resistivity ρ of the silicon S and the carbon felt 3 is reversed as shown in FIG. Although illustration is omitted, even if the frequency f of the high-frequency current is changed, the form in which the power distribution ratio to both is reversed in the low temperature region and the high temperature region is the same.

図1に示した構成の誘導加熱溶解装置を用いて、シリコンS(融点1410℃)の溶解試験を行い、加熱、溶解過程におけるシリコンSの温度と、ルツボ1に接触するカーボンフェルト3内面の温度を測定した。ルツボ1の直径は78mm、カーボンフェルト3の厚みは10mmとし、誘導加熱コイル2に20kW一定の投入電力で周波数fが40kHzの高周波電流を供給した。シリコンSの初期装入量は240gとし、溶解が始まったのちに、50gまたは100gのシリコンSを適宜追装した。   A melting test of silicon S (melting point: 1410 ° C.) is performed using the induction heating melting apparatus having the configuration shown in FIG. 1, and the temperature of the silicon S in the heating and melting process and the temperature of the inner surface of the carbon felt 3 in contact with the crucible 1 Was measured. The diameter of the crucible 1 was 78 mm, the thickness of the carbon felt 3 was 10 mm, and a high frequency current having a frequency f of 40 kHz was supplied to the induction heating coil 2 with a constant input power of 20 kW. The initial charge amount of silicon S was 240 g, and after dissolution started, 50 g or 100 g of silicon S was appropriately added.

図4は、この溶解試験における上記温度の測定結果を示す。加熱初期は、カーボンフェルト3が誘導加熱されて先に温度上昇し、加熱されたカーボンフェルト3で間接加熱されるシリコンSが、これに追随するように遅れて温度上昇する。シリコンSは各追装時に一時的に温度低下するが、導電性を有するようになる加熱後期には直接誘導加熱され、図3に示したように、誘導加熱コイル2の電力分配比率がカーボンフェルト3と逆転するので、カーボンフェルト3よりも高温となり、継続して溶解する。このとき、カーボンフェルト3は過加熱されることはなく、溶解したシリコンSよりも少し低い温度に保持されている。   FIG. 4 shows the measurement results of the temperature in this dissolution test. In the initial stage of heating, the temperature of the carbon felt 3 is increased by induction heating, and the silicon S indirectly heated by the heated carbon felt 3 rises with a delay so as to follow this. Although the temperature of the silicon S temporarily decreases at the time of each addition, it is directly induction-heated in the latter stage of heating when it becomes conductive, and as shown in FIG. 3, the power distribution ratio of the induction heating coil 2 is the carbon felt. Therefore, the temperature becomes higher than that of the carbon felt 3 and it continuously dissolves. At this time, the carbon felt 3 is not overheated and is kept at a temperature slightly lower than the melted silicon S.

この試験結果より、本発明に係る誘導加熱溶解装置は、誘導加熱コイル2への投入電力を抑制することなく、溶解原料としてのシリコンSを高い加熱効率で加熱でき、溶解に要する時間を短縮できることが確認された。また、カーボンフェルト3は、ルツボ1の断熱材としての役割もし、溶解するシリコンSを保温する。   From this test result, the induction heating melting apparatus according to the present invention can heat silicon S as a melting raw material with high heating efficiency without reducing the input power to the induction heating coil 2, and can shorten the time required for melting. Was confirmed. Further, the carbon felt 3 also serves as a heat insulating material for the crucible 1 and keeps the dissolved silicon S warm.

上述した第1の実施形態では、発熱体としてのカーボンフェルトをルツボの全周を覆うように配設したが、カーボンフェルトは必ずしもルツボの全周を覆う必要はなく、ルツボ内部の監察用窓等の切欠き部を設けてもよい。   In the first embodiment described above, the carbon felt as a heating element is disposed so as to cover the entire circumference of the crucible. However, the carbon felt does not necessarily need to cover the entire circumference of the crucible, and a monitoring window inside the crucible, etc. A notch may be provided.

図5は、第2の実施形態の誘導加熱溶解装置を示す。この誘導加熱溶解装置は、前記発熱体としてのカーボンフェルト3が有底筒状の容器とされ、ルツボ1が、この有底筒状の容器の内面に被覆されたモリブデンの金属薄膜Mで形成されている点が異なる。その他の部分は、第1の実施形態のものと同じであり、ルツボ1とカーボンフェルト3の周囲に誘導加熱コイル2が巻回されている。   FIG. 5 shows an induction heating melting apparatus according to the second embodiment. In this induction heating and melting apparatus, the carbon felt 3 as the heating element is a bottomed cylindrical container, and the crucible 1 is formed of a molybdenum thin metal film M coated on the inner surface of the bottomed cylindrical container. Is different. The other portions are the same as those of the first embodiment, and the induction heating coil 2 is wound around the crucible 1 and the carbon felt 3.

前記金属薄膜MはPVDで形成され、厚みが0.5mmとされている。なお、ルツボ1を形成する金属薄膜Mは導電体であるが、厚みが磁束の浸透深さδよりも十分に薄いので、誘導加熱コイル2からの磁束を透過し、第1の実施形態のものと同様に、加熱後期に内部のシリコンSを直接加熱する。この誘導加熱溶解装置は、簡単な構成でルツボ1を形成できるとともに、その熱容量を小さくして、溶解原料の加熱効率を高めることができる。   The metal thin film M is formed of PVD and has a thickness of 0.5 mm. Although the metal thin film M forming the crucible 1 is a conductor, since the thickness is sufficiently thinner than the penetration depth δ of the magnetic flux, it transmits the magnetic flux from the induction heating coil 2 and is the same as that of the first embodiment. Similarly, the internal silicon S is directly heated in the latter stage of heating. This induction heating and melting apparatus can form the crucible 1 with a simple configuration, and can reduce the heat capacity to increase the heating efficiency of the melting raw material.

上述した各実施形態では、発熱体をカーボンフェルトで形成したが、発熱体はカーボン発泡体を含む多孔質カーボンで形成することもできる。   In each of the above-described embodiments, the heating element is formed of carbon felt. However, the heating element can be formed of porous carbon including a carbon foam.

上述した各実施形態では、溶解原料をシリコンとしたが、本発明に係る誘導加熱溶解装置に適用できる溶解原料は、常温で非導電体で、高温になると抵抗率が低下するものであればよく、アルミナやジルコニア等のセラミックとすることもできる。   In each of the embodiments described above, the melting material is silicon, but the melting material that can be applied to the induction heating melting apparatus according to the present invention may be any material that is non-conductive at room temperature and whose resistivity decreases at high temperatures. Further, ceramic such as alumina or zirconia can be used.

1 ルツボ
2 誘導加熱コイル
3 カーボンフェルト
4a、4b 支持部材
1 crucible 2 induction heating coil 3 carbon felt 4a, 4b support member

Claims (2)

溶解原料として、常温で非導電体であり、常温よりも高温で導電性を有するようになるシリコンまたはセラミックを装入するルツボと、
前記ルツボの周囲に巻回され、高周波電流を供給される誘導加熱コイルとを備え、
前記ルツボに装入される溶解原料を加熱、溶解する誘導加熱溶解装置において、
前記ルツボを前記誘導加熱コイルからの磁束を透過させる素材で形成し、
前記ルツボと周囲の前記誘導加熱コイルとの間に、カーボンフェルトまたは多孔質カーボンで形成した発熱体を配設したことを特徴とする誘導加熱溶解装置。
As a melting raw material, a crucible charged with silicon or ceramic that is non-conductive at room temperature and becomes conductive at a temperature higher than room temperature;
An induction heating coil wound around the crucible and supplied with a high-frequency current;
In the induction heating melting apparatus for heating and melting the melting raw material charged in the crucible,
The crucible is formed of a material that transmits magnetic flux from the induction heating coil,
An induction heating and melting apparatus, wherein a heating element made of carbon felt or porous carbon is disposed between the crucible and the surrounding induction heating coil.
前記発熱体を有底筒状の容器とし、
前記ルツボを、前記有底筒状の容器の内面に被覆された金属薄膜で形成した請求項1に記載の誘導加熱溶解装置。
The heating element is a bottomed cylindrical container,
The induction heating melting apparatus according to claim 1, wherein the crucible is formed of a metal thin film coated on an inner surface of the bottomed cylindrical container.
JP2013077732A 2013-04-03 2013-04-03 Induction heating melting device Active JP6182938B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013077732A JP6182938B2 (en) 2013-04-03 2013-04-03 Induction heating melting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013077732A JP6182938B2 (en) 2013-04-03 2013-04-03 Induction heating melting device

Publications (2)

Publication Number Publication Date
JP2014201471A true JP2014201471A (en) 2014-10-27
JP6182938B2 JP6182938B2 (en) 2017-08-23

Family

ID=52352247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013077732A Active JP6182938B2 (en) 2013-04-03 2013-04-03 Induction heating melting device

Country Status (1)

Country Link
JP (1) JP6182938B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01155188A (en) * 1987-12-14 1989-06-19 Tanaka Kikinzoku Kogyo Kk Holding furnace for manufacturing pt and pd group noble metal granular lump
JP2002243370A (en) * 2001-02-13 2002-08-28 Daido Steel Co Ltd Apparatus for dissolving silicon
JP2006151745A (en) * 2004-11-29 2006-06-15 Kyocera Corp Method for producing single crystal and oxide single crystal obtained by using the same
JP2007290914A (en) * 2006-04-25 2007-11-08 Sharp Corp Apparatus for supplying molten raw material and apparatus for manufacturing polycrystal substance or single-crystal substance
JP2010150100A (en) * 2008-12-26 2010-07-08 Sumco Corp Method of melting silicon, device for melting silicon, and apparatus for producing silicon single crystal
JP2011105575A (en) * 2009-11-20 2011-06-02 Showa Denko Kk Single crystal pulling apparatus
JP2012091969A (en) * 2010-10-27 2012-05-17 Kuramoto Seisakusho Co Ltd Quartz glass crucible and method for manufacturing the same, and method for manufacturing silicon single crystal
JP2013014519A (en) * 2012-10-26 2013-01-24 Sumitomo Electric Ind Ltd Crystal production method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01155188A (en) * 1987-12-14 1989-06-19 Tanaka Kikinzoku Kogyo Kk Holding furnace for manufacturing pt and pd group noble metal granular lump
JP2002243370A (en) * 2001-02-13 2002-08-28 Daido Steel Co Ltd Apparatus for dissolving silicon
JP2006151745A (en) * 2004-11-29 2006-06-15 Kyocera Corp Method for producing single crystal and oxide single crystal obtained by using the same
JP2007290914A (en) * 2006-04-25 2007-11-08 Sharp Corp Apparatus for supplying molten raw material and apparatus for manufacturing polycrystal substance or single-crystal substance
JP2010150100A (en) * 2008-12-26 2010-07-08 Sumco Corp Method of melting silicon, device for melting silicon, and apparatus for producing silicon single crystal
JP2011105575A (en) * 2009-11-20 2011-06-02 Showa Denko Kk Single crystal pulling apparatus
JP2012091969A (en) * 2010-10-27 2012-05-17 Kuramoto Seisakusho Co Ltd Quartz glass crucible and method for manufacturing the same, and method for manufacturing silicon single crystal
JP2013014519A (en) * 2012-10-26 2013-01-24 Sumitomo Electric Ind Ltd Crystal production method

Also Published As

Publication number Publication date
JP6182938B2 (en) 2017-08-23

Similar Documents

Publication Publication Date Title
JP2010095441A (en) Graphite crucible for electromagnetic induction melting of silicon and apparatus for melt refining of silicon, using the same crucible
KR20100025232A (en) High frequency inductive heating appatratus of ceramic material and non-pressing sintering method using the same
Minier et al. Influence of the current flow on the SPS sintering of a Ni powder
Lingappa et al. Melting of bulk non-ferrous metallic materials by microwave hybrid heating (MHH) and conventional heating: a comparative study on energy consumption
KR20170115551A (en) Components made of sintered material, in particular sintering furnace for dental parts
JP6182938B2 (en) Induction heating melting device
TW404991B (en) Single crystal raw material auxiliary melting device and the single crystal raw material melting method
JP2017041465A (en) Induction heating device
JP2014125404A (en) Sapphire single crystal growth apparatus
JP2015127608A (en) Heating melting device, heating melting system and tap control device
JP6231375B2 (en) Crucible, crystal manufacturing apparatus and crystal manufacturing method
KR100297575B1 (en) Single crystal production method and drawing device
TW201029922A (en) Purification of materials non-electrically conductive in the solid state and electrically conductive in the molten state with electric induction power
US7314522B2 (en) Apparatus and method for producing single crystal
JP5126974B2 (en) Induction heating melting furnace and induction heating method
JP6264058B2 (en) Silicon melting method and apparatus, and silicon single crystal manufacturing apparatus equipped with the apparatus
JP6279930B2 (en) Crystal manufacturing apparatus and crystal manufacturing method
JP2014017439A (en) Semiconductor manufacturing apparatus and semiconductor manufacturing method
JP2004342450A (en) High frequency induction heating device and semiconductor fabrication device
JP5228899B2 (en) Silicon melting method, silicon melting apparatus, and silicon single crystal manufacturing apparatus
KR20200047107A (en) Apparatus of solution growth for single crystal and method of solution growth for single crystal
JP7117842B2 (en) induction heating device
JP6135082B2 (en) Induction heating furnace
JP2012089557A (en) Substrate processing equipment and method for manufacturing semiconductor device
CN209906878U (en) Heating sensing device in coating equipment and coating equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170116

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20170116

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170710

R150 Certificate of patent or registration of utility model

Ref document number: 6182938

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250