JP2007230846A - Crucible for single crystal producing apparatus - Google Patents

Crucible for single crystal producing apparatus Download PDF

Info

Publication number
JP2007230846A
JP2007230846A JP2006057418A JP2006057418A JP2007230846A JP 2007230846 A JP2007230846 A JP 2007230846A JP 2006057418 A JP2006057418 A JP 2006057418A JP 2006057418 A JP2006057418 A JP 2006057418A JP 2007230846 A JP2007230846 A JP 2007230846A
Authority
JP
Japan
Prior art keywords
crucible
raw material
material powder
single crystal
seed crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006057418A
Other languages
Japanese (ja)
Inventor
Toshihiro Yamanishi
敏弘 山西
Kosuke Hoshikawa
浩介 星河
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006057418A priority Critical patent/JP2007230846A/en
Publication of JP2007230846A publication Critical patent/JP2007230846A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a crucible for a single crystal producing apparatus, which can make the temperature distribution in a raw material powder provided therein uniform, sublimate the raw material powder stably, enhance crystal growth speed, and improve crystal quality. <P>SOLUTION: The crucible for the single crystal producing apparatus for growing a single crystal on a seed crystal substrate 7 is equipped with: a seed crystal attaching part 25 which is provided on a cap part 5 of a crucible body 24 and to which the seed crystal substrate 7 comprising a single crystal is attached; a conical flange 6 in which the opening part at the raw material powder 4 side is larger than that at the seed crystal substrate 7 side and which consolidates the gas sublimated from the raw material powder 4 to the vicinity of the seed crystal substrate 7; a heat insulating material 23 for covering the whole crucible body; and a high frequency coil 8 which is arranged at the outside of the heat insulating material 23 arranged at the periphery of the whole crucible body to heat the seed crystal and the raw material. The thickness of the side wall of the crucible body 24 of a heat conductor is continuously changed within a range from the bottom part of the crucible body 24 to a position between the surface of the raw material powder 4 accommodated in the crucible body 24 and the lower end of the conical flange 6 so as to make the thermal conduction to the raw material powder 4 uniform. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、単結晶製造装置用坩堝に関し、特に炭化珪素単結晶の製造に好適に利用できるものである。   The present invention relates to a crucible for a single crystal manufacturing apparatus, and can be suitably used particularly for manufacturing a silicon carbide single crystal.

従来から、炭化珪素単結晶を成長させる方法として、昇華法が広く用いられている。昇華法は改良レーリー法とも呼ばれる。円筒形状をした黒鉛製坩堝内に炭化珪素単結晶で構成される種結晶基板および多結晶の炭化珪素からなる原料粉末を充填し、前記坩堝を加熱すると昇華ガスとなり種結晶基板に向かって移動し、原料粉末より低温なる種結晶基板付近で冷却されて固化して単結晶が成長する。高品質な単結晶を作成するには、一般に、種結晶基板と原料表面の温度差は20〜30℃が好適といわれている。この結晶成長プロセスは化学反応であることから、前記坩堝のことを反応炉と呼ぶことも有る。炭化珪素を原料とした場合に発生する昇華ガスの組成は、Si、SiC2、Si2C、Si2、Si3等であり、特にSi、SiC2、Si2Cは平衡分圧が大きく重要と考えられている。 Conventionally, a sublimation method has been widely used as a method for growing a silicon carbide single crystal. The sublimation method is also called the modified Rayleigh method. A cylindrical graphite crucible filled with a seed crystal substrate composed of a silicon carbide single crystal and a raw material powder composed of polycrystalline silicon carbide is heated to become a sublimation gas when moving to the seed crystal substrate. The single crystal grows by being cooled and solidified near the seed crystal substrate at a temperature lower than the raw material powder. In order to produce a high quality single crystal, it is generally said that the temperature difference between the seed crystal substrate and the raw material surface is preferably 20 to 30 ° C. Since this crystal growth process is a chemical reaction, the crucible is sometimes called a reaction furnace. The composition of the sublimation gas generated when silicon carbide is used as a raw material is Si, SiC 2 , Si 2 C, Si 2 , Si 3, etc. Especially, Si, SiC 2 , Si 2 C have a large equilibrium partial pressure and are important. It is believed that.

一般的な昇華法炭化珪素単結晶製造装置および製造方法を、図20、図17を用いて説明する(例えば特許文献1参照)。説明の都合上、これら図面記載の黒鉛製坩堝を従来技術1、黒鉛製坩堝を単に坩堝と呼ぶ。   A general sublimation silicon carbide single crystal manufacturing apparatus and manufacturing method will be described with reference to FIGS. 20 and 17 (see, for example, Patent Document 1). For convenience of explanation, the graphite crucibles shown in these drawings are referred to as Prior Art 1, and the graphite crucible is simply referred to as a crucible.

図17における従来技術1の坩堝24は、円錐フランジ6を備えた坩堝側壁2が坩堝底板3に載り一面が開口した円筒容器となっており、前記開口部に坩堝上蓋5が勘合する構成となっており、外観は円筒形状をしている。坩堝下部には原料粉末4が充填され、坩堝上蓋の種結晶取り付け部25に炭化珪素単結晶で構成される種結晶基板7を取り付ける。なお円錐フランジは、原料から発生した昇華ガスを種結晶基板に集めるためのガス流制御目的で使われる。単結晶は、坩堝、原料粉末4および種結晶基板7に囲まれて形成される単結晶成長空間26において成長する。   The crucible 24 of the prior art 1 in FIG. 17 is a cylindrical container in which the crucible side wall 2 provided with the conical flange 6 is placed on the crucible bottom plate 3 and opened on one side, and the crucible upper lid 5 is fitted into the opening. The appearance is cylindrical. A raw material powder 4 is filled in the lower portion of the crucible, and a seed crystal substrate 7 made of a silicon carbide single crystal is attached to a seed crystal attachment portion 25 of the crucible upper lid. The conical flange is used for the purpose of gas flow control for collecting the sublimation gas generated from the raw material on the seed crystal substrate. The single crystal grows in a single crystal growth space 26 formed surrounded by the crucible, the raw material powder 4 and the seed crystal substrate 7.

坩堝に用いられる材料は、殆どの場合が黒鉛だが、一部で高融点物質や、高融点物質コーティング黒鉛など、黒鉛以外の物質が部分的に用いられる場合もある。原料粉末4としては、炭化珪素粉末を用いるのが一般的であるが、目的に応じて、炭化珪素にシリコン、カーボン、あるいはドーパントを加えてもよい。   Most of the materials used for the crucible are graphite, but some materials other than graphite, such as high melting point materials and high melting point material-coated graphite, are partially used. Although silicon carbide powder is generally used as the raw material powder 4, silicon, carbon, or a dopant may be added to silicon carbide depending on the purpose.

図20は単結晶装置全体を示したもので、坩堝24は断熱材23にて周囲を取り囲まれて支持台9に載せられる。そして断熱材の外側に螺旋状に巻かれた高周波コイル8があって、前記コイルに例えば20kHzの高周波電流を数百A流すことで、坩堝の黒鉛は誘導加熱されて2000℃以上の高温になる。非接触温度計を使って坩堝下部を2200〜2500℃に、坩堝上蓋外表面温度が坩堝下部温度より100〜200℃低くなるように、支持台を上下移動させて坩堝と高周波コイルの相対位置を調整する。ただし結晶成長品質を決める本質的な温度情報は温度計測できる坩堝外側の温度でなく、単結晶成長空間の温度分布である。前記したように良質の単結晶を成長させるためには種結晶基板の温度は原料表面より20〜30℃低くいこととあるが、これは坩堝内部の現象であり非接触温度計でも実測できない課題があった。そこで、坩堝内部の温度分布は有限要素法等の熱流体シミュレーション技術で可視化することが一般的である。そして前記シミュレーション活用にて高周波コイル位置と単結晶成長空間の温度分布の関係を解析して、適切な高周波コイルと坩堝の相対位置およびコイル電流値を決定している。こうして原料表面と種結晶基板間の温度勾配を20〜30℃に制御すれば原料粉末から種結晶基板へ昇華ガスが安定的に輸送されて、図17に示すように種結晶基板の下部に単結晶27に安定成長する。   FIG. 20 shows the entire single crystal device. The crucible 24 is surrounded by a heat insulating material 23 and placed on the support base 9. Then, there is a high-frequency coil 8 spirally wound outside the heat insulating material, and by passing a high-frequency current of 20 kHz, for example, several hundreds A, the graphite in the crucible is induction-heated to a high temperature of 2000 ° C. or higher. . Using a non-contact thermometer, move the support base up and down so that the crucible lower part is 2200-2500 ° C. and the crucible upper lid outer surface temperature is 100-200 ° C. lower than the crucible lower part temperature. adjust. However, the essential temperature information that determines the crystal growth quality is not the temperature outside the crucible where the temperature can be measured, but the temperature distribution in the single crystal growth space. As described above, in order to grow a good quality single crystal, the temperature of the seed crystal substrate is sometimes 20-30 ° C. lower than the surface of the raw material, but this is a phenomenon inside the crucible and cannot be measured with a non-contact thermometer. was there. Therefore, the temperature distribution inside the crucible is generally visualized by a thermal fluid simulation technique such as a finite element method. Then, by utilizing the simulation, the relationship between the high frequency coil position and the temperature distribution in the single crystal growth space is analyzed, and the appropriate relative position between the high frequency coil and the crucible and the coil current value are determined. In this way, if the temperature gradient between the raw material surface and the seed crystal substrate is controlled to 20 to 30 ° C., the sublimation gas is stably transported from the raw material powder to the seed crystal substrate, and as shown in FIG. The crystal 27 grows stably.

このような従来技術1の坩堝においては、上述したように坩堝全体が2000℃以上の高温になっている中で、単結晶成長空間の温度勾配を20〜30℃前後に制御しなければならない、という技術課題がある。図17は坩堝から原料粉末への熱の流れを示したベクトル図でもある。坩堝下部に位置する原料粉末は、坩堝側壁から熱19と坩堝底板から熱22を受けて均一に高温状態となる。しかし原料表面では坩堝側壁からの熱19しか熱源がないため、原料表面の温度分布は坩堝側壁ほど高く、坩堝中心軸に向かうほど低温となって温度バラツキが大きい。熱流体シミュレーションによれば、原料粉末が概略2200℃のとき、原料表面で中心軸付近の原料粉末と坩堝内壁に接している原料粉末の温度差は約2.2℃ある。単結晶成長空間の温度勾配を20〜30℃前後に制御しなければならないことを考えると、前記温度差2.2℃は無視できないことがわかる。   In the crucible of such prior art 1, as described above, the temperature gradient of the single crystal growth space must be controlled around 20-30 ° C. while the entire crucible is at a high temperature of 2000 ° C. or higher. There is a technical problem. FIG. 17 is also a vector diagram showing the flow of heat from the crucible to the raw material powder. The raw material powder located at the lower part of the crucible receives heat 19 from the crucible side wall and heat 22 from the crucible bottom plate and is uniformly heated. However, since there is only the heat source 19 from the crucible side wall on the surface of the raw material, the temperature distribution on the raw material surface is higher as the crucible side wall is lowered toward the crucible central axis, and the temperature variation is large. According to the thermal fluid simulation, when the raw material powder is approximately 2200 ° C., the temperature difference between the raw material powder near the central axis on the raw material surface and the raw material powder in contact with the inner wall of the crucible is about 2.2 ° C. Considering that the temperature gradient of the single crystal growth space must be controlled around 20-30 ° C., it can be seen that the temperature difference of 2.2 ° C. cannot be ignored.

原料粉末の昇華現象は高温ほど大きいので、従来技術1の坩堝では前記温度バラツキに従って坩堝側壁と坩堝底板から昇華が始まり、全体に拡大していく。図17のハッチング領域21は原料粉末の昇華が大きい場所を表したもので、坩堝側壁と坩堝底板に近いところで昇華が大きいことをイメージしたものである。   Since the sublimation phenomenon of the raw material powder increases as the temperature rises, in the crucible of the prior art 1, sublimation starts from the crucible side wall and the crucible bottom plate according to the temperature variation and expands to the whole. A hatching region 21 in FIG. 17 represents a place where the sublimation of the raw material powder is large, and is an image of the fact that the sublimation is large near the crucible side wall and the crucible bottom plate.

しかし昇華し尽くした原料粉末は断熱特性の大きな煤状粉末に変化するため、坩堝側壁及び坩堝底板から坩堝中央への熱伝導が低下し、坩堝中央の原料は充分に加熱されず、結晶成長プロセスの最後まで昇華せず残ることもある。すなわち原料粉末の昇華は原料全体に拡大しない。したがって坩堝内に充填された原料粉末を全て昇華させるためには、坩堝内の原料粉末全体の温度分布を均一にして一斉に昇華させる、とくに結晶成長初期に大事な原料表面の温度分布の均一化が重要である。   However, since the raw material powder that has been sublimated changes into a bowl-like powder with large heat insulation properties, the heat conduction from the crucible side wall and the crucible bottom plate to the crucible center decreases, and the raw material in the crucible center is not heated sufficiently, and the crystal growth process It may remain without sublimation until the end of. That is, sublimation of the raw material powder does not extend to the entire raw material. Therefore, in order to sublime all the raw material powder filled in the crucible, the temperature distribution of the whole raw material powder in the crucible is made uniform and sublimated at the same time. is important.

そこで特許文献2記載の従来技術2では、原料粉末の温度分布を均一にするため、図19に示すように黒鉛を用いた熱伝導体18を坩堝内の中央に配置している。その他の構成は従来技術1と同じなので説明は省略する。こうすることで、図18に示す熱伝導体からの熱20により原料中央部分が加熱されるので、従来技術1と比較して原料粉末の半径方向の温度勾配が改善された。図18のハッチング領域21は坩堝中心部分の温度分布が一様となり、坩堝中心部分でも原料粉末の昇華が増えたことをイメージしたものである。
特開平05−32496号公報 特開平05−58774号公報
Therefore, in the prior art 2 described in Patent Document 2, in order to make the temperature distribution of the raw material powder uniform, a heat conductor 18 using graphite is arranged in the center of the crucible as shown in FIG. Since other configurations are the same as those of the prior art 1, description thereof is omitted. By doing so, since the central portion of the raw material is heated by the heat 20 from the thermal conductor shown in FIG. 18, the temperature gradient in the radial direction of the raw material powder is improved as compared with the prior art 1. The hatched area 21 in FIG. 18 is an image of the temperature distribution in the crucible center portion being uniform and the sublimation of the raw material powder being increased in the crucible center portion.
JP 05-32496 A Japanese Patent Laid-Open No. 05-58774

しかしながら、従来の構成では、所望の温度均一性を得ることができないといいう問題があった。従来の構成の熱流体シミュレーションの解析結果を図21に示す。   However, the conventional configuration has a problem that desired temperature uniformity cannot be obtained. FIG. 21 shows the analysis result of the conventional thermofluid simulation.

図21において、原料表面における半径方向の温度分布は従来技術1より改善されていたが、原料中央における半径方向の温度分布は従来技術1より悪く、原料表面と原料中央でのバラツキの合計値も従来技術2は従来技術1より大きい。ここで原料中央とは原料粉末の高さの1/2の高さのところである。したがって熱流体シミュレーション結果としては、従来技術2は従来技術1と同等か、悪いことが明らかになった。   In FIG. 21, the temperature distribution in the radial direction on the surface of the raw material is improved from the prior art 1, but the temperature distribution in the radial direction at the center of the raw material is worse than that of the prior art 1, and the total value of the variation between the surface of the raw material and the center of the raw material is also Prior art 2 is greater than prior art 1. Here, the center of the raw material is a height that is ½ of the height of the raw material powder. Therefore, as a result of the thermal fluid simulation, it has become clear that the prior art 2 is equivalent to or worse than the prior art 1.

図21に従えば、原料粉末表面の中心軸での原料粉末温度が概略2200℃のとき、従来技術1において原料表面での温度バラツキは2.2℃、原料中央部分での温度バラツキは3.0℃である。そして従来技術2において原料表面の温度バラツキは2.1℃、原料中央での温度バラツキは3.3℃となる。   According to FIG. 21, when the temperature of the raw material powder at the central axis of the raw material powder surface is approximately 2200 ° C., the temperature variation at the raw material surface is 2.2 ° C. and the temperature variation at the central portion of the raw material is 3. 0 ° C. In the prior art 2, the temperature variation on the surface of the raw material is 2.1 ° C., and the temperature variation at the center of the raw material is 3.3 ° C.

坩堝に充填された原料粉末を有効活用するためには原料粉末を一斉に安定的に昇華させる必要がある。そのためには、少なくとも従来技術1および従来技術2よりも温度バラツキを小さくすることが不可欠で有る。また最新の文献・学会等では原料の温度バラツキと結晶欠陥との因果関係を議論する報告もあり、これらを踏まえて原料粉末の温度バラツキは2℃以下に抑えることが望ましい。   In order to effectively use the raw material powder filled in the crucible, it is necessary to stably sublime the raw material powder all at once. For that purpose, it is indispensable to make temperature variation smaller than at least prior art 1 and prior art 2. In addition, the latest literatures and academic societies have reports that discuss the causal relationship between temperature variations of raw materials and crystal defects, and it is desirable to suppress the temperature variations of raw material powders to 2 ° C. or lower based on these reports.

この熱流体シミュレーションで検討した従来技術1の坩堝形状は、坩堝内壁半径が30mm、坩堝の外壁半径は45mm、坩堝底板の下面から坩堝上蓋の表面までの全高は150mmで、坩堝底板の板厚は15mmである。坩堝内に充填される原料粉末の高さh1は92mm、坩堝底板の底面から円錐フランジまでの高さh2は115mm、原料表面から種結晶基板までの単結晶成長空間は40mm、種結晶基板の厚みは1mmである。従来技術2の坩堝形状は、上記形状で前記熱伝導体の半径が5mm、熱伝導体の上端は原料表面から5mmの位置とした。   The crucible shape of the prior art 1 studied in this thermal fluid simulation has a crucible inner wall radius of 30 mm, a crucible outer wall radius of 45 mm, an overall height from the bottom surface of the crucible bottom plate to the surface of the crucible upper lid, and the thickness of the crucible bottom plate is 15 mm. The height h1 of the raw material powder filled in the crucible is 92 mm, the height h2 from the bottom surface of the crucible bottom plate to the conical flange is 115 mm, the single crystal growth space from the raw material surface to the seed crystal substrate is 40 mm, and the thickness of the seed crystal substrate Is 1 mm. The crucible shape of prior art 2 is the above shape, and the radius of the heat conductor is 5 mm, and the upper end of the heat conductor is 5 mm from the raw material surface.

前記円錐フランジの下端は原料表面から23mm離れたところから始まり、円錐形状で種結晶に向かって狭まるが、このときの円錐形状は高さ方向に20mmである。なお種結晶取り付け部と円錐フランジとは、半径方向に1mmの隙間が設けられている。   The lower end of the conical flange starts at a distance of 23 mm from the surface of the raw material and has a conical shape that narrows toward the seed crystal. The conical shape at this time is 20 mm in the height direction. The seed crystal attachment portion and the conical flange are provided with a 1 mm gap in the radial direction.

なお表1に示した温度バラツキについては、式5に基づき坩堝中央の原料粉末温度に対する坩堝内壁面の原料粉末温度の比で定義した。また原料表面と原料中央の場所についても図8aに示しておく。温度バラツキは、坩堝側壁の内壁に接する原料粉末の温度と坩堝中心軸上にある原料粉末の温度との比により求める。即ち、|(坩堝側壁の内壁に接する原料粉末の温度)/(坩堝中心軸上にある原料粉末の温度)|−1の式より計算する。この式より、坩堝中心軸での原料粉末温度と坩堝内壁面の原料粉末温度が同じならば、温度バラツキは0となる。   The temperature variation shown in Table 1 was defined by the ratio of the raw material powder temperature on the inner wall of the crucible to the raw material powder temperature at the center of the crucible based on Equation 5. Also shown in FIG. 8a is the location of the source surface and the center of the source. The temperature variation is determined by the ratio between the temperature of the raw material powder in contact with the inner wall of the crucible side wall and the temperature of the raw material powder on the crucible central axis. That is, | (temperature of the raw material powder in contact with the inner wall of the crucible side wall) / (temperature of the raw material powder on the crucible central axis) | -1 is calculated. From this equation, if the raw material powder temperature at the crucible central axis and the raw material powder temperature at the inner wall surface of the crucible are the same, the temperature variation is zero.

従来技術2の構成においては、坩堝中央に熱伝導体を配置するため従来技術1よりも原料粉末の充填量が少なく、製造できる単結晶も小ぶりになる。そこで1回目の成長プロセスが終了したあとで原料粉末を再充填して2回目の成長プロセスを行う必要があって、従来技術1と同じ大きさの単結晶を作るのに要する時間は長くなり、従って結晶成長速度が低下する課題がある。将来的には坩堝中央の熱伝導体の存在は、単結晶の大型化・長尺化への対応が難しくなる課題も含んでいる。   In the structure of the prior art 2, since the heat conductor is arranged in the center of the crucible, the filling amount of the raw material powder is smaller than that of the prior art 1, and the single crystal that can be manufactured is also small. Therefore, after the first growth process is completed, it is necessary to refill the raw material powder and perform the second growth process, and the time required to make a single crystal of the same size as the prior art 1 becomes longer. Therefore, there is a problem that the crystal growth rate is lowered. In the future, the existence of a heat conductor at the center of the crucible will also include a problem that it becomes difficult to cope with the increase in size and length of single crystals.

本発明は、従来技術1と従来技術2の前記課題を解決するもので、原料粉末の温度分布を均一にすることで満遍なく原料を昇華・消耗させること、および原料の充填量を増やすことができる単結晶製造装置用坩堝を提供することを目的とする。そのために原料表面及び原料中央での温度バラツキを2℃以下に抑える。これらの課題解決を図ることで、結晶成長速度の向上できる単結晶製造装置用坩堝を提供することも可能である。   The present invention solves the above-mentioned problems of the prior art 1 and the prior art 2, and can uniformly sublimate and consume the raw material by increasing the temperature distribution of the raw material powder, and can increase the filling amount of the raw material. An object is to provide a crucible for a single crystal manufacturing apparatus. Therefore, the temperature variation at the raw material surface and the raw material center is suppressed to 2 ° C. or less. By solving these problems, it is possible to provide a crucible for a single crystal manufacturing apparatus capable of improving the crystal growth rate.

前記従来の課題を解決するために、本発明の単結晶製造装置用坩堝は、単結晶を成長させる原料粉末を円筒形容器の坩堝内に収容し、当該単結晶の原料粉末を加熱昇華させ単結晶からなる種結晶基板上に供給し、この種結晶基板上に単結晶を成長させる単結晶成長装置用坩堝において、前記坩堝内部の蓋部に単結晶からなる種結晶基板を設置するための種結晶取り付け部と、当該種結晶基板に対して原料粉末からの昇華ガスを種結晶基板近傍に集約させるための原料粉末側が種結晶基板側より大きい開口部を有する円錐形状のフランジと、前記坩堝体全体を覆う断熱材と、前記種結晶と原料を加熱するために前記坩堝体全体の周囲に配置される断熱材の外側に配置される高周波コイルと、を備え、熱伝導体の前記坩堝の側壁は、前記原材料粉末に対する熱伝導を均一にするために当該坩堝底部から坩堝内に収納された原料粉末表面と前記円錐形状フランジ底部の間の位置までの厚さを連続的に変化していることを特徴としたものであり、坩堝内の原料粉末の温度の均一性を向上することができる。   In order to solve the above-mentioned conventional problems, the crucible for a single crystal production apparatus of the present invention accommodates a raw material powder for growing a single crystal in a crucible of a cylindrical container, and sublimates the single crystal raw material powder by heating. In a crucible for a single crystal growth apparatus, which is supplied on a seed crystal substrate made of crystals and grows a single crystal on the seed crystal substrate, a seed for installing the seed crystal substrate made of a single crystal on the lid inside the crucible A crystal mounting portion, a conical flange having an opening larger than the seed crystal substrate side on the raw material powder side for concentrating the sublimation gas from the raw material powder in the vicinity of the seed crystal substrate with respect to the seed crystal substrate, and the crucible body A heat insulating material covering the whole, and a high-frequency coil disposed outside the heat insulating material disposed around the entire crucible body for heating the seed crystal and the raw material, and a side wall of the crucible of the heat conductor The raw material powder The thickness from the bottom of the crucible to the position between the surface of the raw material powder stored in the crucible and the bottom of the conical flange is continuously changed in order to make the heat conduction to the uniform uniform Thus, the uniformity of the temperature of the raw material powder in the crucible can be improved.

本発明の単結晶製造装置用坩堝によれば、坩堝内原料粉末の温度分布を均一にすることで安定に原料粉末を昇華・消耗させることができ、結晶成長速度を向上さすことができる。   According to the crucible for a single crystal production apparatus of the present invention, the temperature distribution of the raw material powder in the crucible can be made uniform so that the raw material powder can be stably sublimated and consumed, and the crystal growth rate can be improved.

本発明の実施例を説明する前に、予備検討した単結晶製造装置用坩堝について、図8a、図8b、図10、図11、図15a、図15b、図16を用いて説明する。   Before explaining the embodiments of the present invention, the pre-examined crucible for single crystal manufacturing apparatus will be described with reference to FIGS. 8a, 8b, 10, 11, 15, 15a, 15b, and 16. FIG.

図10は予備検討した単結晶製造装置の坩堝24に関して、その断面を表した図で、形状係数βとして、寸法h1、h2、h3を用いて、β=h3÷(h2−h1)で表したものである。円筒形状をした坩堝24は坩堝底板3の上に円錐フランジ6を付設した坩堝側壁2が置かれ、上方に向いて開口し、その開口部と勘合するように坩堝上蓋5が坩堝側壁に配置された構成である。坩堝上蓋には種結晶基板取り付け部25が設けられ、そこに種結晶基板7が接着されている。坩堝内部には、原料粉末4がv溝28の位置まで充填されており、単結晶成長空間26は原料表面と種結晶基板との空間になる。前記v溝は坩堝側壁を旋盤加工するときに同時形成する。     FIG. 10 is a diagram showing a cross section of the crucible 24 of the single crystal manufacturing apparatus that was preliminarily studied, and expressed as β = h3 ÷ (h2−h1) using the dimensions h1, h2, and h3 as the shape factor β. Is. In the crucible 24 having a cylindrical shape, a crucible side wall 2 provided with a conical flange 6 is placed on the crucible bottom plate 3 and opened upward. It is a configuration. A seed crystal substrate mounting portion 25 is provided on the crucible upper lid, and the seed crystal substrate 7 is bonded thereto. The raw material powder 4 is filled up to the position of the v-groove 28 in the crucible, and the single crystal growth space 26 becomes a space between the raw material surface and the seed crystal substrate. The v-groove is formed simultaneously when the crucible side wall is turned.

前記円錐フランジは、原料粉末からの昇華ガスを種結晶基板近傍に集約させる目的で設けられている。その形状の下端は原料表面から23mm離れたところから始まり、円錐形状で種結晶に向かって狭まるが、このときの円錐形状は高さ方向に20mmである。なお種結晶取り付け部と円錐フランジとは、半径方向に1mmの隙間が設けられている。   The conical flange is provided for the purpose of concentrating the sublimation gas from the raw material powder in the vicinity of the seed crystal substrate. The lower end of the shape starts from a position 23 mm away from the surface of the raw material and narrows toward the seed crystal in a conical shape. At this time, the conical shape is 20 mm in the height direction. The seed crystal attachment portion and the conical flange are provided with a 1 mm gap in the radial direction.

図10では省略しているが、従来技術1と同じく坩堝外側は断熱材23で取り囲まれて、さらにその外側に螺旋状に高周波コイル8が配置されている。高周波コイルに数百Aの電流を流して坩堝を加熱すれば、原料が高温となり昇華ガスが発生して、種結晶基板に単結晶27が成長していく。   Although omitted in FIG. 10, the outer side of the crucible is surrounded by a heat insulating material 23, and the high-frequency coil 8 is spirally arranged outside the crucible as in the prior art 1. When the crucible is heated by passing a current of several hundreds A through the high frequency coil, the raw material becomes high temperature and sublimation gas is generated, and the single crystal 27 grows on the seed crystal substrate.

従来技術1の坩堝と比較して、大きな違いは坩堝側壁の外側に段付き側壁17を備えていることである。従来技術1の課題は、原料粉末の表面近傍は坩堝側壁から加熱されるだけなので、坩堝側壁近傍が高温、坩堝中心軸近傍が低温という温度バラツキである。そこで坩堝側壁の下部に段付き部を付設して坩堝下部から原料表面に向かう熱流を増やすことで、相対的に坩堝側壁からの加熱を抑制できるので、原料粉末はバランスよく加熱される。この構成によれば従来技術1と比較して原料表面の温度バラツキが改善できる。また従来技術2と比較して、熱伝導体18が無いため原料粉末が多く充填できる。   Compared with the crucible of prior art 1, the major difference is that a stepped side wall 17 is provided outside the crucible side wall. The problem of the prior art 1 is that the vicinity of the surface of the raw material powder is only heated from the crucible side wall, so that there is temperature variation where the vicinity of the crucible side wall is high temperature and the vicinity of the crucible central axis is low temperature. Therefore, by providing a stepped portion at the lower part of the crucible side wall and increasing the heat flow from the lower part of the crucible toward the raw material surface, heating from the crucible side wall can be relatively suppressed, so that the raw material powder is heated in a balanced manner. According to this configuration, the temperature variation of the raw material surface can be improved as compared with the prior art 1. Compared with the prior art 2, since there is no heat conductor 18, it can be filled with much raw material powder.

坩堝の概略寸法は、坩堝の内壁半径r00は30mm、坩堝の外壁半径r30は45mm、もうひとつの外壁半径r10=38mmである。坩堝底板の下面から坩堝上蓋の表面までの全高は150mmで、坩堝底板の板厚はh0=15mmである。坩堝内に充填される原料粉末の高さh1は92mm、坩堝底板の底面から円錐フランジまでの高さh2は115mm、原料表面から種結晶基板までの距離(結晶成長空間26)は40mm、種結晶基板の厚みは1mmである。   The approximate dimensions of the crucible are as follows: the crucible inner wall radius r00 is 30 mm, the crucible outer wall radius r30 is 45 mm, and the other outer wall radius r10 = 38 mm. The total height from the lower surface of the crucible bottom plate to the surface of the crucible upper lid is 150 mm, and the plate thickness of the crucible bottom plate is h0 = 15 mm. The height h1 of the raw material powder filled in the crucible is 92 mm, the height h2 from the bottom surface of the crucible bottom plate to the conical flange is 115 mm, the distance from the raw material surface to the seed crystal substrate (crystal growth space 26) is 40 mm, the seed crystal The thickness of the substrate is 1 mm.

なお従来技術1および従来技術2の坩堝形状は「発明が解決しようとする課題」で記載したとおりである。   The crucible shapes of the prior art 1 and the prior art 2 are as described in “Problems to be solved by the invention”.

図11は、段付き側壁の形状係数βと実際の坩堝形状を対比したものである。β=−1.6ならば段付き側壁の高さは、原料粉末の高さ方向の半分である。β=0では段付き側壁の高さは原料粉末の表面と同じ高さ、β=0.5ならば段付き側壁の高さは原料表面と円錐フランジの付け根との真ん中になる。β=1のとき段付き側壁の高さは円錐フランジの付け根と同じ高さである。したがって見かけ上、βが大きな負値をとると坩堝側壁の板厚が(r10−r00)の従来技術1の坩堝、βが大きな正値をとると坩堝側壁の板厚が(r20−r00)の従来技術1の坩堝に類似する。   FIG. 11 compares the shape factor β of the stepped side wall with the actual crucible shape. If β = −1.6, the height of the stepped side wall is half of the height direction of the raw material powder. When β = 0, the height of the stepped side wall is the same as the surface of the raw material powder, and when β = 0.5, the height of the stepped side wall is in the middle between the raw material surface and the root of the conical flange. When β = 1, the height of the stepped side wall is the same height as the root of the conical flange. Therefore, when β takes a large negative value, the crucible side wall has a thickness (r10-r00) of prior art 1, and when β takes a large positive value, the crucible side wall has a thickness (r20-r00). Similar to the crucible of prior art 1.

図15aはこの段付き側壁を備えた坩堝に関して、熱流体シミュレーションを用いて原料表面温度を半径方向に沿って熱解析した結果で、段付き側壁の形状を表す係数βを幾つか変えた結果と従来技術1および従来技術2の結果を比較したもので有る。同様に図15bは原料中央に関して、半径方向に沿って熱解析した結果である。どちらも横軸は半径、縦軸は半径=0での原料粉末温度に対する各半径での温度比を表したものである。どちらの図でも、温度比が1に近ければ温度分布が均一となる。なお図8aおよび図8bに、熱解析した原料表面および原料中央の位置を示しておくが、原料中央は原料粉末の高さ方向で1/2の場所を指す。   FIG. 15a is a result of thermal analysis of the raw material surface temperature along the radial direction using a thermofluid simulation for the crucible having the stepped side wall, and a result of changing several coefficients β representing the shape of the stepped side wall. The results of Conventional Technology 1 and Conventional Technology 2 are compared. Similarly, FIG. 15B shows the result of thermal analysis along the radial direction with respect to the center of the raw material. In both cases, the horizontal axis represents the radius, and the vertical axis represents the temperature ratio at each radius with respect to the raw material powder temperature at radius = 0. In both figures, if the temperature ratio is close to 1, the temperature distribution is uniform. 8a and 8b show the positions of the surface of the raw material and the center of the raw material subjected to the thermal analysis. The center of the raw material indicates a half place in the height direction of the raw material powder.

図15aによれば、通説どおり、2つの従来技術の温度分布は坩堝内壁面(半径15mm)が最も高温で、坩堝中心軸(半径0mm)に向かうほど温度が低くなる。これらに対して、段付き側壁を備えた坩堝では形状係数βが正値ならば坩堝内壁面の方が高温だが、形状係数βが負値になると坩堝内壁面の方が低温になる。また図15aから形状係数β=0のときが、原料表面の温度分布は最も均一になることもわかる。   According to FIG. 15a, as is conventional, the temperature distribution of the two prior arts is such that the inner wall surface of the crucible (radius 15 mm) is the highest temperature, and the temperature decreases toward the crucible central axis (radius 0 mm). In contrast, in a crucible having a stepped side wall, if the shape factor β is positive, the inner wall surface of the crucible is hotter, but if the shape factor β is negative, the inner wall surface of the crucible becomes lower. It can also be seen from FIG. 15a that the temperature distribution on the raw material surface is most uniform when the shape factor β = 0.

図15bによれば、全ての形状係数βで坩堝内壁面に接する原料粉末の温度が坩堝中心軸に位置する原料粉末の温度より高温である。また段付き側壁を有する坩堝と2つの従来技術の坩堝を比較すると、β=0.87を除けば、段付き側壁を有する坩堝は坩堝内壁面と坩堝中心軸での原料粉末の温度差が大きい。   According to FIG. 15b, the temperature of the raw material powder in contact with the inner wall surface of the crucible is higher than the temperature of the raw material powder located on the crucible central axis with all the shape factors β. In addition, comparing the crucible having the stepped side wall and the two prior art crucibles, except for β = 0.87, the crucible having the stepped side wall has a large temperature difference between the raw material powder at the crucible inner wall surface and the crucible central axis. .

図16は、図15aと図15bの結果を式5でまとめて合計したもので、全体の傾向を簡単に把握できる。この結果から段付き側壁の坩堝は、期待と逆の結果であった。すなわち従来技術と比較して温度バラツキが大きく、前記の技術課題を解決できないことが判明した。しかしながらこの取り組みを通して、坩堝外壁形状は原料粉末の温度分布に及ぼす影響が大きいことが明らかとなり、坩堝の外壁形状を適切に制御すれば前記温度バラツキが改善できる可能性が高いことがわかった。   FIG. 16 is a summation of the results of FIGS. 15a and 15b by Equation 5, and the overall tendency can be easily grasped. From this result, the crucible of the stepped side wall was a result opposite to the expectation. That is, it has been found that the temperature variation is larger than that of the prior art and the above technical problem cannot be solved. However, through this approach, it became clear that the outer wall shape of the crucible has a great influence on the temperature distribution of the raw material powder, and it was found that there is a high possibility that the temperature variation can be improved by appropriately controlling the outer wall shape of the crucible.

そこで坩堝外壁の形状を検討し、発明者達は原料粉末の温度バラツキが改善できる坩堝形状を見出したので、以下に、本発明の単結晶製造装置用坩堝の実施の形態を図面とともに詳細に説明する。   Accordingly, the shape of the outer wall of the crucible was examined, and the inventors found a crucible shape that can improve the temperature variation of the raw material powder. The embodiment of the crucible for a single crystal manufacturing apparatus of the present invention will be described below in detail with reference to the drawings. To do.

図1は、本発明の第1の実施例における単結晶製造装置用坩堝の断面を示している。円筒形状をした坩堝24は、坩堝底板3の上に、内壁側に円錐フランジ6を備えた坩堝側壁2が置かれ、坩堝側壁は上方に向いて開口していて、その開口部に勘合するように坩堝上蓋5が配置された構成である。前記坩堝は支持台9の上に載る。坩堝上蓋には種結晶基板取り付け部25が設けられ、そこに種結晶基板7が接着されている。坩堝内部には、原料粉末4がv溝28の位置まで充填されており、単結晶成長空間26は原料表面と種結晶基板との空間になる。v溝は坩堝側壁を旋盤加工するときに同時形成する。   FIG. 1 shows a cross section of a crucible for a single crystal manufacturing apparatus according to a first embodiment of the present invention. In the crucible 24 having a cylindrical shape, the crucible side wall 2 provided with the conical flange 6 on the inner wall side is placed on the crucible bottom plate 3, and the crucible side wall is open upward and fits into the opening. It is the structure by which the crucible upper cover 5 was arrange | positioned. The crucible is placed on a support base 9. A seed crystal substrate mounting portion 25 is provided on the crucible upper lid, and the seed crystal substrate 7 is bonded thereto. The raw material powder 4 is filled up to the position of the v-groove 28 in the crucible, and the single crystal growth space 26 becomes a space between the raw material surface and the seed crystal substrate. The v-groove is formed simultaneously when turning the crucible side wall.

坩堝外側は断熱材23で取り囲まれて、さらにその外側に高周波コイル8が配置されている。高周波コイルに数百Aの電流を流して坩堝を加熱すれば、原料粉末が高温となり昇華ガスが発生して、前記ガスが種結晶基板に向かって輸送され、単結晶からなる種結晶基板に単結晶27が成長していく。この結晶成長プロセスは化学反応により行われるので、前記坩堝を反応炉と呼ぶことも有る。   The outer side of the crucible is surrounded by a heat insulating material 23, and the high-frequency coil 8 is arranged on the outer side. When the crucible is heated by passing a current of several hundreds of A through the high-frequency coil, the raw material powder becomes high temperature and sublimation gas is generated, and the gas is transported toward the seed crystal substrate, and the single crystal is made into a single crystal substrate. Crystal 27 grows. Since this crystal growth process is performed by a chemical reaction, the crucible is sometimes referred to as a reaction furnace.

前記円錐フランジは、原料粉末からの昇華ガスを種結晶基板近傍に集約させる目的で設けられている。その形状の下端は原料表面から23mm離れたところから始まり、円錐形状で種結晶に向かって狭まるが、このときの円錐形状は高さ方向に20mmである。なお種結晶取り付け部と円錐フランジとは、半径方向に1mmの隙間が設けられている。   The conical flange is provided for the purpose of concentrating the sublimation gas from the raw material powder in the vicinity of the seed crystal substrate. The lower end of the shape starts from a position 23 mm away from the surface of the raw material and narrows toward the seed crystal in a conical shape. At this time, the conical shape is 20 mm in the height direction. The seed crystal attachment portion and the conical flange are provided with a 1 mm gap in the radial direction.

従来技術1の坩堝と比較して、大きな違いは坩堝側壁の外側に坩堝下部から坩堝上部に向かって連続的に坩堝側壁の厚みが薄くなるテーパー1を設けたことである。これが請求項1および請求項2に記載した内容である。坩堝底板及び坩堝側壁は誘導加熱されて原料粉末を加熱するヒーターとなるが、前記テーパー構成をとれば図2に示すように坩堝側壁から原料への熱の流れ11が坩堝上方に行くほど弱まり、坩堝底板からの熱の流れ12が相対的に強まり、原料粉末はバランスよく加熱される作用がある。したがって従来技術1と比較して原料粉末の温度分布が均一になり、原料粉末を満遍なく昇華・消耗できる。図2のハッチング領域10は、従来技術1と比較して原料粉末全体の温度分布が一様となり、坩堝中心軸部分でも原料粉末の昇華が増えたことをイメージしたものである。なお図5に示したように、テーパーは厳密な直線形状でなくとも、緩やかな曲線形状13でも、本発明の効果は得られる。   Compared with the crucible of the prior art 1, the major difference is that a taper 1 is provided on the outside of the crucible side wall so that the thickness of the crucible side wall continuously decreases from the crucible lower part toward the crucible upper part. This is the contents described in claims 1 and 2. The crucible bottom plate and the crucible side wall become a heater that heats the raw material powder by induction heating, but if the taper configuration is adopted, as shown in FIG. 2, the heat flow 11 from the crucible side wall to the raw material becomes weaker as it goes above the crucible, The heat flow 12 from the crucible bottom plate becomes relatively strong, and the raw material powder is heated in a balanced manner. Therefore, the temperature distribution of the raw material powder becomes uniform as compared with the prior art 1, and the raw material powder can be sublimated and consumed evenly. The hatched region 10 in FIG. 2 is an image of the fact that the temperature distribution of the entire raw material powder is uniform as compared with the prior art 1, and the sublimation of the raw material powder is increased even in the crucible central axis portion. As shown in FIG. 5, even if the taper is not a strict linear shape, the effect of the present invention can be obtained even if the taper is a gentle curved shape 13.

また従来技術2と比較して熱伝導体18が無いため原料粉末が多く充填でき、結晶成長速度も速く、単結晶の大型化、長尺化にも有利という効果もある。   Further, since there is no thermal conductor 18 as compared with the prior art 2, it can be filled with a large amount of raw material powder, the crystal growth rate is fast, and there is an effect that it is advantageous for increasing the size and length of a single crystal.

実施例1での坩堝の概略寸法を図3にて説明する。坩堝内壁半径r00は30mm、坩堝の外壁半径r10は45mm、坩堝底板の下面から坩堝上蓋の表面までの全高は150mmで、坩堝底板の板厚はh0=15mmである。坩堝内に充填される原料粉末の高さh1は92mm、坩堝底板の底面から円錐フランジまでの高さh2は115mm、原料表面から種結晶基板までの単結晶成長空間は40mm、種結晶基板の厚みは1mmである。   The schematic dimensions of the crucible in Example 1 will be described with reference to FIG. The crucible inner wall radius r00 is 30 mm, the crucible outer wall radius r10 is 45 mm, the total height from the lower surface of the crucible bottom plate to the surface of the crucible upper lid is 150 mm, and the thickness of the crucible bottom plate is h0 = 15 mm. The height h1 of the raw material powder filled in the crucible is 92 mm, the height h2 from the bottom surface of the crucible bottom plate to the conical flange is 115 mm, the single crystal growth space from the raw material surface to the seed crystal substrate is 40 mm, and the thickness of the seed crystal substrate Is 1 mm.

坩堝外壁に設けたテーパー形状については、30mm<r11<45mmの範囲に有る外壁半径r11と原料表面からの高さh3でする。また便宜上、テーパーの傾斜度合いは前記r10、r11、r00を用いて、α=(r11−r00)/(r10−r00)で定義される形状係数αで表す。この形状係数αは、元々の側壁板厚が何割の板厚になったかを表す指標である。それとテーパーの高さは前記h1、h2、h3を用いて、β=h3÷(h2−h1)で定義される形状係数βで表す。   About the taper shape provided in the crucible outer wall, it is the outer wall radius r11 in the range of 30 mm <r11 <45 mm and the height h3 from the raw material surface. For convenience, the inclination degree of the taper is represented by the shape factor α defined by α = (r11−r00) / (r10−r00) using the r10, r11, and r00. This shape factor α is an index representing what percentage of the original side wall plate thickness is. The height of the taper is expressed by a shape factor β defined by β = h3 ÷ (h2−h1) using h1, h2, and h3.

図4は、テーパーの形状係数βと実際の坩堝形状を対比したものである。β=−1.6ならばテーパーの高さは、原料粉末の高さ方向の半分である。β=0ではテーパーの高さは原料粉末の表面と同じ高さ、β=0.5ならばテーパーの高さは原料表面と円錐フランジの付け根との真ん中になる。β=1のときテーパーの高さは円錐フランジの付け根と同じ高さである。また形状係数α=0ならばテーパーを持たない従来技術1と同じ単純な円筒坩堝であり、形状係数αが大きくなるに従いテーパーの傾斜度合いも大きくなって坩堝側壁の板厚が薄くなる。   FIG. 4 shows a comparison between the shape factor β of the taper and the actual crucible shape. If β = −1.6, the taper height is half of the height direction of the raw material powder. When β = 0, the height of the taper is the same height as the surface of the raw material powder, and when β = 0.5, the height of the taper is the middle between the raw material surface and the root of the conical flange. When β = 1, the height of the taper is the same as the root of the conical flange. If the shape factor α = 0, it is the same simple cylindrical crucible as the prior art 1 having no taper, and as the shape factor α increases, the inclination of the taper increases and the thickness of the side wall of the crucible decreases.

図12aは実施例1の坩堝に関して、熱流体シミュレーションを用いて原料表面温度を半径方向に沿って熱解析した結果で、テーパーの高さ方向の形状を表す形状係数βを0.5に固定した条件で、形状係数αを幾つか変えた結果と従来技術1および従来技術2の結果を比較したもので有る。同様に図12bは原料中央に関して、半径方向に沿って熱解析した結果である。どちらも横軸は半径、縦軸は半径=0に位置する原料粉末の温度に対する各半径での原料粉末との温度比を表したものである。どちらの図でも、半径が大きくなっても温度比が1に近いほど、温度分布が均一であることになる。なお前記原料表面および前記原料中央の位置については図8aおよび図8bに示している。   FIG. 12A shows the result of thermal analysis of the raw material surface temperature along the radial direction using the thermal fluid simulation for the crucible of Example 1, and the shape factor β representing the shape in the height direction of the taper was fixed to 0.5. This is a comparison of the results obtained by changing some of the shape factor α under the conditions with the results of the prior art 1 and the prior art 2. Similarly, FIG. 12b shows the result of thermal analysis along the radial direction with respect to the center of the raw material. In both cases, the horizontal axis represents the radius, and the vertical axis represents the temperature ratio of the raw material powder at each radius to the temperature of the raw material powder located at radius = 0. In both figures, the temperature distribution is more uniform as the temperature ratio is closer to 1 even if the radius is increased. The positions of the raw material surface and the raw material center are shown in FIGS. 8a and 8b.

図13aは実施例1の坩堝に関して、テーパーの半径方向の形状を表す形状係数αを0.5に固定した条件で、形状係数βを幾つか変えた結果と従来技術1および従来技術2の結果を比較したもので有る。同様に図13bは原料中央に関して、半径方向に沿って熱解析した結果である。どちらも横軸は半径、縦軸は半径=0に位置する原料粉末の温度に対する各半径での原料粉末との温度比を表したものである。   FIG. 13a shows the result of changing several shape factors β and the results of prior art 1 and prior art 2 on the condition that the shape factor α representing the radial shape of the taper is fixed to 0.5 for the crucible of example 1. Is a comparison. Similarly, FIG. 13 b shows the result of thermal analysis along the radial direction with respect to the center of the raw material. In both cases, the horizontal axis represents the radius, and the vertical axis represents the temperature ratio of the raw material powder at each radius to the temperature of the raw material powder located at radius = 0.

図12aによれば、通説どおり、2つの従来技術の坩堝に充填された原料粉末の温度分布は坩堝内壁面(半径15mm)が最も高温で、坩堝中心軸(半径0mm)に向かうほど温度が低くなる。テーパーを備えた実施例1の坩堝については、形状係数αが0に近いときは温度比も従来技術1の結果に近いが、形状係数αが大きくなるほど従来技術1の結果から離れていく。原料粉末の温度バラツキは形状係数αが0.5前後で最も小さくなり、これ以上αが大きいと温度バラツキも大きくなる。一方で図12bによれば原料中央の温度分布は、形状係数αが大きくなるほど、温度バラツキは小さくなる。   According to FIG. 12a, as usual, the temperature distribution of the raw material powders filled in the two conventional crucibles is the highest on the inner wall of the crucible (radius 15 mm), and the temperature decreases toward the crucible central axis (radius 0 mm). Become. Regarding the crucible of Example 1 having a taper, when the shape factor α is close to 0, the temperature ratio is also close to the result of the prior art 1, but as the shape factor α increases, the temperature ratio becomes far from the result of the prior art 1. The temperature variation of the raw material powder is the smallest when the shape factor α is around 0.5, and when α is larger than this, the temperature variation increases. On the other hand, according to FIG. 12b, the temperature distribution in the center of the raw material becomes smaller as the shape factor α increases.

図13aによれば、形状係数βが正値のときは原料表面の温度バラツキが小さいが、形状係数βが負値に向かうと温度バラツキが大きくなる。一方で原料中央での原料粉末の温度バラツキは形状係数βが0近傍のとき最小になる。   According to FIG. 13a, when the shape factor β is a positive value, the temperature variation of the raw material surface is small, but when the shape factor β is a negative value, the temperature variation increases. On the other hand, the temperature variation of the raw material powder at the center of the raw material is minimized when the shape factor β is near zero.

図14aは、図12aと図12bの結果を、温度バラツキを示す|(坩堝側壁の内壁に接する原料粉末の温度)/(坩堝中心軸上にある原料粉末の温度)|−1の式より計算する。この式でまとめて合計したもので、テーパーの形状係数αと原料粉末の温度バラツキに関して、全体の傾向を簡単に把握できる。この結果から実施例1のテーパー形状は原料粉末の温度分布の均一化に有効であり、従来技術1および従来技術2の坩堝よりも原料粉末の温度バラツキを小さくできる。とくに0.4<α<0.6が好ましい。   FIG. 14a shows the temperature variation of the results of FIGS. 12a and 12b, calculated from the expression | (temperature of the raw material powder in contact with the inner wall of the crucible side wall) / (temperature of the raw material powder on the crucible central axis) | -1. To do. This is the sum of these equations, and the overall tendency can be easily grasped regarding the taper shape factor α and the temperature variation of the raw material powder. From this result, the tapered shape of Example 1 is effective for uniforming the temperature distribution of the raw material powder, and the temperature variation of the raw material powder can be made smaller than the crucibles of the prior art 1 and the prior art 2. In particular, 0.4 <α <0.6 is preferable.

図14bは、図14a同様に、図13aと図13bの結果を式5でまとめて合計したものである。図14bを用いると、テーパーの形状係数βと原料粉末の温度バラツキの関係が簡単に把握できる。この結果からテーパー形状は原料粉末の温度分布の均一化に有効であり、従来技術1および従来技術2の坩堝よりも原料粉末の温度バラツキを小さくできる。とくに0.3<β<0.6が最適である。   FIG. 14b is the sum of the results of FIG. 13a and FIG. Using FIG. 14b, the relationship between the taper shape factor β and the temperature variation of the raw material powder can be easily grasped. From this result, the tapered shape is effective for uniforming the temperature distribution of the raw material powder, and the temperature variation of the raw material powder can be made smaller than that of the crucibles of the prior art 1 and the prior art 2. In particular, 0.3 <β <0.6 is optimal.

これらの効果を、原料表面における中心軸付近の原料温度が概略2200℃の時で説明する。図14aにおいて、α=0.5の場合、原料表面の温度バラツキは0.3℃、原料中央での温度バラツキは1.1℃である。これを従来技術1と比較すると、原料表面での2.2℃、原料中央での3.0℃より改善されており、従来技術の課題で目標とした温度バラツキ2℃以内も達成している。図14bにおいても、β=0.6の場合、原料表面の温度バラツキは0.3℃、原料中央での温度バラツキは0.9℃であり、従来技術1および従来技術2より温度バラツキは改善されており、かつ従来技術の課題で掲げた目標値も達成している。   These effects will be described when the raw material temperature in the vicinity of the central axis on the raw material surface is approximately 2200 ° C. In FIG. 14a, when α = 0.5, the temperature variation on the surface of the raw material is 0.3 ° C., and the temperature variation at the center of the raw material is 1.1 ° C. Compared with the prior art 1, it is improved from 2.2 ° C. at the surface of the raw material and 3.0 ° C. at the center of the raw material, and the target temperature variation within 2 ° C. is also achieved by the problem of the prior art. . Also in FIG. 14b, when β = 0.6, the temperature variation on the surface of the raw material is 0.3 ° C., the temperature variation at the center of the raw material is 0.9 ° C., and the temperature variation is improved from the prior art 1 and the prior art 2. And the target values set forth in the problems of the prior art have been achieved.

さらに0.4<α<0.6かつ0.3<β<0.6を満たすテーパー形状は、一層、坩堝側壁から原料粉末へ流れる熱11を抑制して坩堝底板からの原料粉末へ流れる熱12を相対的に増やすことができるので、原料粉末の温度分布が均一となって原料を満遍なく昇華・消耗できる。   Further, the tapered shape satisfying 0.4 <α <0.6 and 0.3 <β <0.6 further suppresses the heat 11 flowing from the crucible side wall to the raw material powder, and the heat flowing from the crucible bottom plate to the raw material powder. Since 12 can be relatively increased, the temperature distribution of the raw material powder becomes uniform and the raw material can be sublimated and consumed evenly.

また、図9に示すように円錐フランジが無いときでも、坩堝側壁から原料粉末へ流れる熱11を抑制して相対的に坩堝底板から原料粉末へ流れる熱12を増やす作用は有効であり、原料粉末の温度分布を従来技術1および従来技術2よりも均一にできる。したがって図9の坩堝形状でも原料粉末を満遍なく昇華・消耗できるので結晶成長速度の高速化が可能である。   Moreover, even when there is no conical flange as shown in FIG. 9, the action of suppressing the heat 11 flowing from the crucible side wall to the raw material powder and relatively increasing the heat 12 flowing from the crucible bottom plate to the raw material powder is effective. Can be made more uniform than the prior art 1 and the prior art 2. Therefore, even in the crucible shape of FIG. 9, the raw material powder can be sublimated and consumed evenly, so that the crystal growth rate can be increased.

図6は、本発明の実施例2の単結晶製造装置用坩堝の断面図を示す。図6において、実施例1の構成と異なるところはテーパー14を坩堝側壁2の内側に設けた点と、従来から使用されている第2の形態の円錐フランジ15を坩堝側壁に付設したことである。   FIG. 6 shows a cross-sectional view of a crucible for a single crystal production apparatus of Example 2 of the present invention. In FIG. 6, the difference from the configuration of the first embodiment is that a taper 14 is provided inside the crucible side wall 2 and that a conical flange 15 of the second form conventionally used is attached to the crucible side wall. .

実施例2の坩堝の概略寸法は、坩堝内壁半径r00が30mm、坩堝の外壁半径r10は45mm、高さ方向は実施例1と同じである。   The approximate dimensions of the crucible of Example 2 are as follows: crucible inner wall radius r00 is 30 mm, crucible outer wall radius r10 is 45 mm, and the height direction is the same as in Example 1.

坩堝内壁に設けたテーパー形状については、30mm<r20<45mmの範囲に有る内壁半径r20と原料表面から高さh3で定義する。また便宜上、テーパーの傾斜度合いは前記r20、r10、r00を用いて、α=(r10−r20)/(r10−r00)で定義される形状係数α、テーパーの高さは前記h1、h2、h3を用いて、β=h3÷(h2−h1)で定義される形状係数βで表す。   The taper shape provided on the inner wall of the crucible is defined by the inner wall radius r20 in the range of 30 mm <r20 <45 mm and the height h3 from the raw material surface. For the sake of convenience, the degree of taper inclination is r20, r10, r00, and the shape factor α defined by α = (r10−r20) / (r10−r00), and the taper height is h1, h2, h3. Is represented by a shape factor β defined by β = h3 ÷ (h2−h1).

形状係数αおよび形状係数βと原料粉末の温度バラツキの関係は実施例1と概ね同じであり、0.4<α<0.6、そして0.3<β<0.6とすれば原料粉末の温度分布を均一にできる。   The relationship between the shape factor α and the shape factor β and the temperature variation of the raw material powder is substantially the same as in Example 1. If 0.4 <α <0.6 and 0.3 <β <0.6, the raw material powder The temperature distribution can be made uniform.

図7は、本発明の実施例3の単結晶製造装置用坩堝の断面図を示す。図7において、実施例1の構成と異なるところは、坩堝側壁の両側にテーパー1とテーパー14を設けたことと、従来から使用されている第3の形態の円錐フランジ16を坩堝内壁に付設したことである。   FIG. 7: shows sectional drawing of the crucible for single crystal manufacturing apparatuses of Example 3 of this invention. In FIG. 7, the difference from the configuration of the first embodiment is that the taper 1 and the taper 14 are provided on both sides of the crucible side wall, and the conical flange 16 of the third form conventionally used is attached to the crucible inner wall. That is.

実施例3の坩堝の概略寸法は、坩堝内壁半径r00が30mm、坩堝の外壁半径r10は45mm、高さ方向は実施例1と同じである。   The outline dimensions of the crucible of the third embodiment are the same as those of the first embodiment in the crucible inner wall radius r00 of 30 mm, the crucible outer wall radius r10 of 45 mm, and the height direction.

坩堝内壁に設けたテーパーの傾斜度合いは前記r20、r11、r10、r00を用いて、α=(r11−r20)/(r10−r00)で定義される形状係数αで表す。またテーパーの高さについてはh1、h2、h3を用いて、β=h3÷(h2−h1)で定義される形状係数βで表す。   The degree of inclination of the taper provided on the inner wall of the crucible is represented by the shape factor α defined by α = (r11−r20) / (r10−r00) using the r20, r11, r10, and r00. The height of the taper is represented by a shape factor β defined by β = h3 ÷ (h2−h1) using h1, h2, and h3.

形状係数αおよび形状係数βと原料粉末の温度バラツキの関係は実施例1と概ね同じであり、0.4<α<0.6、及び0.3<β<0.6とすれば原料粉末の温度分布を均一にできる。   The relationship between the shape factor α and the shape factor β and the temperature variation of the raw material powder is substantially the same as in Example 1. If 0.4 <α <0.6 and 0.3 <β <0.6, the raw material powder The temperature distribution can be made uniform.

本発明にかかる単結晶製造装置用坩堝は、原料粉末の昇華・消耗の均一化と、結晶成長速度の向上を同時に達成し、高品質な炭化珪素単結晶基板を効率よく製造できる坩堝として有用である。   The crucible for a single crystal production apparatus according to the present invention is useful as a crucible capable of efficiently producing a high-quality silicon carbide single crystal substrate by simultaneously achieving uniform sublimation / consumption of the raw material powder and improving the crystal growth rate. is there.

本発明にかかる単結晶製造装置用坩堝は、昇華法により製造する他の材料素材にも適用できる。     The crucible for a single crystal manufacturing apparatus according to the present invention can be applied to other material materials manufactured by a sublimation method.

本発明の実施例1における単結晶製造装置の断面を模式的に示す図The figure which shows typically the cross section of the single-crystal manufacturing apparatus in Example 1 of this invention. 本発明の実施例1における単結晶製造装置用坩堝において坩堝から原料への熱の流れを示す模式的に説明するための図The figure for demonstrating typically the heat flow from a crucible to a raw material in the crucible for single crystal manufacturing apparatuses in Example 1 of this invention. 本発明の実施例1における単結晶製造装置用坩堝の主要寸法を示す図The figure which shows the main dimensions of the crucible for single-crystal manufacturing apparatuses in Example 1 of this invention 本発明の実施例1における単結晶製造装置用坩堝において、形状係数βと坩堝形状の関係を説明するための図The figure for demonstrating the relationship between shape factor (beta) and a crucible shape in the crucible for single crystal manufacturing apparatuses in Example 1 of this invention. 本発明の実施例1における他の単結晶製造装置用坩堝の断面図Sectional drawing of the crucible for other single crystal manufacturing apparatuses in Example 1 of this invention 本発明の実施例2における単結晶製造装置用坩堝の断面図Sectional drawing of the crucible for single-crystal manufacturing apparatuses in Example 2 of this invention 本発明の実施例3における単結晶製造装置用坩堝の断面図Sectional drawing of the crucible for single-crystal manufacturing apparatuses in Example 3 of this invention 単結晶製造装置用坩堝の温度分布の熱流体シミュレーションの位置を説明するための図The figure for demonstrating the position of the thermofluid simulation of the temperature distribution of the crucible for single crystal manufacturing apparatuses 本発明の実施例1における更に他の単結晶製造装置用坩堝の断面図Sectional drawing of the crucible for further another single crystal manufacturing apparatus in Example 1 of this invention 本発明に至る前に予備検討した単結晶製造装置用坩堝の断面図Cross-sectional view of a crucible for a single crystal production apparatus, which was preliminarily studied before reaching the present invention 本発明に至る前に予備検討した単結晶製造装置用坩堝の形状係数βと坩堝形状の関係を説明するための図The figure for demonstrating the relationship between the shape factor (beta) of the crucible for single crystal manufacturing apparatuses and the crucible shape which were preliminary examined before reaching this invention 単結晶製造装置用坩堝の形状係数αと温度分布の関係を示す図The figure which shows the relationship between the shape factor α and temperature distribution of the crucible for single crystal manufacturing equipment 単結晶製造装置用坩堝の形状係数βと温度分布の関係を示す図Figure showing the relationship between the shape factor β and temperature distribution of a crucible for a single crystal manufacturing device 単結晶製造装置用坩堝の形状係数α及びβに対する原料中央及び原料表面の温度バラツキとの関係を示す図The figure which shows the relationship with the temperature variation of the raw material center and the raw material surface with respect to the shape factors (alpha) and (beta) of the crucible for single crystal manufacturing apparatuses. 予備検討した単結晶製造装置用坩堝の形状係数βと温度分布の関係を示す図Figure showing the relationship between the shape factor β and the temperature distribution of the crucible for single crystal manufacturing equipment that was studied in advance 予備検討した単結晶製造装置用坩堝の形状係数α及びβに対する原料中央及び原料表面の温度バラツキとの関係を示す図The figure which shows the relationship with the temperature variation of the raw material center with respect to the shape factors (alpha) and (beta) of the crucible for single crystal manufacturing apparatuses examined preliminary. 従来の単結晶製造装置用坩堝において坩堝から原料への熱の流れを示す模式的に説明するための図The figure for demonstrating typically the flow of the heat | fever from a crucible to a raw material in the crucible for conventional single crystal manufacturing apparatuses. 従来の他の単結晶製造装置用坩堝において坩堝から原料への熱の流れを示す模式的に説明するための図The figure for demonstrating typically the flow of the heat | fever from a crucible to a raw material in the other conventional crucible for single crystal manufacturing apparatuses. 従来の単結晶製造装置用坩堝の断面図Cross-sectional view of a conventional crucible for single crystal manufacturing equipment 従来の単結晶製造装置の断面図Sectional view of conventional single crystal manufacturing equipment 従来の構成の熱流体シミュレーションの解析結果を示す図The figure which shows the analysis result of the thermal fluid simulation of the conventional constitution

符号の説明Explanation of symbols

1 テーパー
2 坩堝側壁
3 坩堝底板
4 原料粉末
5 坩堝上蓋
6、15、16 円錐フランジ
7 種結晶基板
8 高周波コイル
9 支持台
10 原料粉末の昇華・消耗が多い領域
11 坩堝側壁から原料粉末への熱流を表すベクトル
12 坩堝底板から原料粉末への熱流を表すベクトル
13 曲線形状
14 テーパー
17 段付き側壁
18 熱伝導体
19 坩堝側壁から原料粉末への熱流を表すベクトル
20 熱伝導体から原料粉末への熱流を表すベクトル
21 原料粉末の昇華・消耗が多い領域
22 坩堝底板から原料粉末への熱流を表すベクトル
23 断熱材
24 坩堝
25 種結晶基板取付部
26 単結晶成長空間
27 単結晶
28 V溝

DESCRIPTION OF SYMBOLS 1 Taper 2 Crucible side wall 3 Crucible bottom plate 4 Raw material powder 5 Crucible top cover 6, 15, 16 Conical flange 7 Seed crystal substrate 8 High frequency coil 9 Support stand 10 Area | region where there is much sublimation and consumption of raw material powder 11 Heat flow from crucible side wall to raw material powder 12 representing the heat flow from the crucible bottom plate to the raw material powder 13 curve shape 14 taper 17 stepped side wall 18 heat conductor 19 vector representing the heat flow from the crucible side wall to the raw material powder 20 heat flow from the heat conductor to the raw material powder 21 representing a region where the sublimation / consumption of the raw material powder is large 22 a vector representing a heat flow from the crucible bottom plate to the raw material powder 23 heat insulating material 24 crucible 25 seed crystal substrate mounting portion 26 single crystal growth space 27 single crystal 28 V groove

Claims (4)

単結晶を成長させる原料粉末を円筒形容器の坩堝内に収容し、当該単結晶の原料粉末を加熱昇華させ単結晶からなる種結晶基板上に供給し、この種結晶基板上に単結晶を成長させる単結晶成長装置用坩堝において、
前記坩堝内部の蓋部に単結晶からなる種結晶基板を設置するための種結晶取り付け部と、
当該種結晶基板に対して原料粉末からの昇華ガスを種結晶基板近傍に集約させるための原料粉末側が種結晶基板側より大きい開口部を有する円錐形状のフランジと、
前記坩堝体全体を覆う断熱材と、
前記種結晶と原料を加熱するために前記坩堝体全体の周囲に配置される断熱材の外側に配置される高周波コイルと、
を備え、
熱伝導体の前記坩堝の側壁は、前記原材料粉末に対する熱伝導を均一にするために当該坩堝底部から坩堝内に収納された原料粉末表面と前記円錐形状フランジ底部の間の位置までの厚さを連続的に変化していることを特徴とする単結晶成長装置用坩堝。
The raw material powder for growing a single crystal is stored in a crucible of a cylindrical container, and the single crystal raw material powder is heated and sublimated and supplied onto a seed crystal substrate made of a single crystal, and the single crystal is grown on the seed crystal substrate. In a crucible for a single crystal growth apparatus,
A seed crystal mounting part for installing a seed crystal substrate made of a single crystal in the lid part inside the crucible;
A conical flange having a larger opening than the seed crystal substrate side on the source powder side for concentrating the sublimation gas from the source powder in the vicinity of the seed crystal substrate with respect to the seed crystal substrate;
A heat insulating material covering the entire crucible body;
A high-frequency coil disposed outside a heat insulating material disposed around the entire crucible body to heat the seed crystal and the raw material;
With
The side wall of the crucible of the heat conductor has a thickness from the bottom of the crucible to the position between the raw material powder surface stored in the crucible and the bottom of the conical flange in order to make the heat conduction to the raw material powder uniform. A crucible for a single crystal growth apparatus, characterized by continuously changing.
前記坩堝の側壁の厚さは、当該坩堝底部の側壁の方が前記円錐形状フランジ底部の側壁より厚いことを特徴とする請求項1に記載の単結晶製造装置用坩堝。 The crucible for a single crystal production apparatus according to claim 1, wherein the side wall of the crucible is thicker at the bottom of the crucible than at the bottom of the conical flange. 前記坩堝の内壁半径をr00、坩堝底面の外壁半径をr10、前記坩堝の最も小さい外壁半径r11とし、α=(r10−r11)÷(r10−r00)で定義したとき、0.4<α<0.6であることを特徴とする請求項1記載の単結晶製造装置用坩堝。 When the inner wall radius of the crucible is r00, the outer wall radius of the crucible bottom is r10, and the smallest outer wall radius r11 of the crucible is defined as α = (r10−r11) ÷ (r10−r00), 0.4 <α < The crucible for a single crystal manufacturing apparatus according to claim 1, wherein the crucible is 0.6. 坩堝底面から原料粉末表面までの高さh1、坩堝底面から前記円錐フランジまでの高さh2、前記原料の表面位置から前記坩堝の最も小さい外壁半径r11となる場所までの高さh3とし、β=h3÷(h2−h1)で定義したとき、0.3<β<0.6であることを特徴とする請求項3記載の単結晶製造装置用坩堝。

The height h1 from the bottom of the crucible to the raw material powder surface, the height h2 from the bottom of the crucible to the conical flange, the height h3 from the surface position of the raw material to the place where the crucible has the smallest outer wall radius r11, β = The crucible for a single crystal manufacturing apparatus according to claim 3, wherein 0.3 <β <0.6 when defined by h3 ÷ (h2-h1).

JP2006057418A 2006-03-03 2006-03-03 Crucible for single crystal producing apparatus Pending JP2007230846A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006057418A JP2007230846A (en) 2006-03-03 2006-03-03 Crucible for single crystal producing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006057418A JP2007230846A (en) 2006-03-03 2006-03-03 Crucible for single crystal producing apparatus

Publications (1)

Publication Number Publication Date
JP2007230846A true JP2007230846A (en) 2007-09-13

Family

ID=38551819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006057418A Pending JP2007230846A (en) 2006-03-03 2006-03-03 Crucible for single crystal producing apparatus

Country Status (1)

Country Link
JP (1) JP2007230846A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008074662A (en) * 2006-09-21 2008-04-03 Nippon Steel Corp Apparatus for producing silicon carbide single crystal
JP2010013296A (en) * 2008-07-01 2010-01-21 Showa Denko Kk Container structure for silicon carbide single crystal growth and method for producing silicon carbide single crystal
JP2010076991A (en) * 2008-09-26 2010-04-08 Bridgestone Corp Manufacturing apparatus for silicon carbide single crystal and manufacturing method of silicon carbide single crystal
EP2351878A1 (en) * 2008-10-28 2011-08-03 Bridgestone Corporation Method for manufacturing silicon carbide single crystal
KR101101984B1 (en) * 2008-12-12 2012-01-02 에스케이씨 주식회사 Apparatus for growing a single crystal
JP2012136391A (en) * 2010-12-27 2012-07-19 Mitsubishi Electric Corp Method for producing silicon carbide single crystal
WO2015001847A1 (en) * 2013-07-03 2015-01-08 住友電気工業株式会社 Silicon carbide single-crystal substrate and method for manufacturing same
US8936680B2 (en) 2009-03-06 2015-01-20 Nippon Steel & Sumitomo Metal Corporation Crucible vessel and crucible cover having grooves for producing single-crystal silicon carbide, production apparatus and method
KR101543920B1 (en) 2013-12-26 2015-08-12 주식회사 포스코 Apparatus and method for large single crystal growth using artificial graphite
US20160040317A1 (en) * 2014-08-08 2016-02-11 Sumitomo Electric Industries, Ltd. Method for producing single crystal
JP2016034880A (en) * 2014-08-01 2016-03-17 住友電気工業株式会社 Production method of monocrystal
JP2018048053A (en) * 2016-09-23 2018-03-29 昭和電工株式会社 CRUCIBLE FOR SiC SINGLE CRYSTAL GROWTH
US20200224328A1 (en) * 2019-01-10 2020-07-16 Showa Denko K.K. SiC SINGLE CRYSTAL GROWTH CRUCIBLE, SiC SINGLE CRYSTAL MANUFACTURING METHOD, AND SiC SINGLE CRYSTAL MANUFACTURING APPARATUS
CN114657634A (en) * 2022-03-16 2022-06-24 齐鲁工业大学 Crucible device for preparing aluminum nitride prefabricated material

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0214371U (en) * 1988-07-14 1990-01-29
JPH06191998A (en) * 1992-12-24 1994-07-12 Sharp Corp Method for growing silicon carbide single crystal and device for growing the same
JPH08325099A (en) * 1996-06-24 1996-12-10 Sanyo Electric Co Ltd Method for growing silicon carbide single crystal
JP2000219595A (en) * 1999-01-28 2000-08-08 Shikusuon:Kk Crucible, crystal growth device and crystal growth method
JP2001072491A (en) * 1999-08-31 2001-03-21 Agency Of Ind Science & Technol Method and apparatus for producing single crystal
JP2005343715A (en) * 2004-06-01 2005-12-15 Sumitomo Electric Ind Ltd Method for producing compound semiconductor single crystal

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0214371U (en) * 1988-07-14 1990-01-29
JPH06191998A (en) * 1992-12-24 1994-07-12 Sharp Corp Method for growing silicon carbide single crystal and device for growing the same
JPH08325099A (en) * 1996-06-24 1996-12-10 Sanyo Electric Co Ltd Method for growing silicon carbide single crystal
JP2000219595A (en) * 1999-01-28 2000-08-08 Shikusuon:Kk Crucible, crystal growth device and crystal growth method
JP2001072491A (en) * 1999-08-31 2001-03-21 Agency Of Ind Science & Technol Method and apparatus for producing single crystal
JP2005343715A (en) * 2004-06-01 2005-12-15 Sumitomo Electric Ind Ltd Method for producing compound semiconductor single crystal

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008074662A (en) * 2006-09-21 2008-04-03 Nippon Steel Corp Apparatus for producing silicon carbide single crystal
JP2010013296A (en) * 2008-07-01 2010-01-21 Showa Denko Kk Container structure for silicon carbide single crystal growth and method for producing silicon carbide single crystal
JP2010076991A (en) * 2008-09-26 2010-04-08 Bridgestone Corp Manufacturing apparatus for silicon carbide single crystal and manufacturing method of silicon carbide single crystal
EP2351878A1 (en) * 2008-10-28 2011-08-03 Bridgestone Corporation Method for manufacturing silicon carbide single crystal
EP2351878A4 (en) * 2008-10-28 2014-11-12 Bridgestone Corp Method for manufacturing silicon carbide single crystal
KR101101984B1 (en) * 2008-12-12 2012-01-02 에스케이씨 주식회사 Apparatus for growing a single crystal
US8936680B2 (en) 2009-03-06 2015-01-20 Nippon Steel & Sumitomo Metal Corporation Crucible vessel and crucible cover having grooves for producing single-crystal silicon carbide, production apparatus and method
JP2012136391A (en) * 2010-12-27 2012-07-19 Mitsubishi Electric Corp Method for producing silicon carbide single crystal
WO2015001847A1 (en) * 2013-07-03 2015-01-08 住友電気工業株式会社 Silicon carbide single-crystal substrate and method for manufacturing same
JP2015013761A (en) * 2013-07-03 2015-01-22 住友電気工業株式会社 Silicon carbide single crystal substrate and method of manufacturing the same
KR101543920B1 (en) 2013-12-26 2015-08-12 주식회사 포스코 Apparatus and method for large single crystal growth using artificial graphite
JP2016034880A (en) * 2014-08-01 2016-03-17 住友電気工業株式会社 Production method of monocrystal
US9777400B2 (en) 2014-08-01 2017-10-03 Sumitomo Electric Industries, Ltd. Method for producing single crystal
US20160040317A1 (en) * 2014-08-08 2016-02-11 Sumitomo Electric Industries, Ltd. Method for producing single crystal
US9777401B2 (en) * 2014-08-08 2017-10-03 Sumitomo Electric Industries, Ltd. Method for producing single crystal
JP2018048053A (en) * 2016-09-23 2018-03-29 昭和電工株式会社 CRUCIBLE FOR SiC SINGLE CRYSTAL GROWTH
WO2018055917A1 (en) * 2016-09-23 2018-03-29 昭和電工株式会社 SiC-MONOCRYSTAL GROWTH CRUCIBLE
CN109715868A (en) * 2016-09-23 2019-05-03 昭和电工株式会社 Crucible is used in SiC single crystal growth
US20200224328A1 (en) * 2019-01-10 2020-07-16 Showa Denko K.K. SiC SINGLE CRYSTAL GROWTH CRUCIBLE, SiC SINGLE CRYSTAL MANUFACTURING METHOD, AND SiC SINGLE CRYSTAL MANUFACTURING APPARATUS
JP2020111481A (en) * 2019-01-10 2020-07-27 昭和電工株式会社 SiC SINGLE CRYSTAL GROWTH CRUCIBLE, AND METHOD AND APPARATUS FOR MANUFACTURING SiC SINGLE CRYSTAL
JP7286970B2 (en) 2019-01-10 2023-06-06 株式会社レゾナック SiC Single Crystal Growth Crucible, SiC Single Crystal Manufacturing Method, and SiC Single Crystal Manufacturing Apparatus
US11946156B2 (en) 2019-01-10 2024-04-02 Resonac Corporation SiC single crystal growth crucible, SiC single crystal manufacturing method, and SiC single crystal manufacturing apparatus
CN114657634A (en) * 2022-03-16 2022-06-24 齐鲁工业大学 Crucible device for preparing aluminum nitride prefabricated material

Similar Documents

Publication Publication Date Title
JP2007230846A (en) Crucible for single crystal producing apparatus
JP4748067B2 (en) Method and apparatus for producing silicon carbide single crystal
KR102505546B1 (en) semiconductor crystal growth device
JP6111873B2 (en) Method for producing silicon carbide single crystal ingot
JP2007076928A (en) Method and device for manufacturing single crystal
JP5925319B2 (en) SiC single crystal manufacturing apparatus and SiC single crystal manufacturing method
JP6302192B2 (en) Single crystal growth apparatus and method
CN108779577B (en) Method for producing silicon single crystal
JP2018168023A (en) Device and method for manufacturing silicon carbide single crystal ingot
CN111424311B (en) Crucible for growing SiC single crystal, method for producing SiC single crystal, and SiC single crystal production apparatus
CN113122917A (en) Graphite thermal field single crystal growth device for preparing silicon carbide crystals
JP6033650B2 (en) Single crystal manufacturing apparatus and single crystal manufacturing method
JP6853445B2 (en) Heater insulation structure and single crystal manufacturing equipment
JP5162330B2 (en) Single crystal manufacturing apparatus and manufacturing method
KR101333791B1 (en) Apparatus for growing single crystal
JP2006096578A (en) Method for producing silicon carbide single crystal and ingot of silicon carbide single crystal
KR102490095B1 (en) Manufacturing apparatus for siliconcarbide single crystal and manufacturing method of siliconcarbide single crystal
JP2013216549A (en) Manufacturing apparatus of silicon carbide single crystal and manufacturing method of silicon carbide single crystal
CN214782260U (en) Graphite thermal field single crystal growth device for preparing silicon carbide crystals
JP7242989B2 (en) SiC single crystal manufacturing equipment
CN220579440U (en) Heating structure of silicon carbide crystal growth device
JP7115592B1 (en) Single crystal manufacturing equipment
KR102609885B1 (en) Manufacturing apparatus for siliconcarbide single crystal
KR20210004642A (en) Single crystal growth device and single crystal growth method of using the same
JP5867335B2 (en) Silicon carbide single crystal manufacturing apparatus and manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080917

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091127

A977 Report on retrieval

Effective date: 20100721

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100901

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110125