JP2006096578A - Method for producing silicon carbide single crystal and ingot of silicon carbide single crystal - Google Patents

Method for producing silicon carbide single crystal and ingot of silicon carbide single crystal Download PDF

Info

Publication number
JP2006096578A
JP2006096578A JP2004281503A JP2004281503A JP2006096578A JP 2006096578 A JP2006096578 A JP 2006096578A JP 2004281503 A JP2004281503 A JP 2004281503A JP 2004281503 A JP2004281503 A JP 2004281503A JP 2006096578 A JP2006096578 A JP 2006096578A
Authority
JP
Japan
Prior art keywords
silicon carbide
single crystal
raw material
crystal
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004281503A
Other languages
Japanese (ja)
Inventor
Hiroshi Tsuge
弘志 柘植
Noboru Otani
昇 大谷
Tatsuo Fujimoto
辰雄 藤本
Masakazu Katsuno
正和 勝野
Masashi Nakabayashi
正史 中林
Mitsuru Sawamura
充 澤村
Takashi Aigo
崇 藍郷
Hirokatsu Yashiro
弘克 矢代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2004281503A priority Critical patent/JP2006096578A/en
Publication of JP2006096578A publication Critical patent/JP2006096578A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a silicon carbide single crystal capable of effectively utilizing a charged silicon carbide raw material as a source of a sublimation gas while maintaining the temperature of the raw material and the surface of the growing silicon carbide single crystal at a suitable level. <P>SOLUTION: When a silicon carbide single crystal is produced by using a sublimation-recrystallization method, the silicon carbide single crystal is grown by moving the region to be heated up to the sublimation temperature or higher at least once in the silicon carbide raw material. This heating method maintains the temperature of the crystal and the raw material at a suitable level and can effectively sublimate the raw material. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、電子材料の基板に利用される炭化珪素単結晶基板を作製するのに最適な炭化珪素単結晶及びその製造方法に関する。   The present invention relates to a silicon carbide single crystal that is optimal for producing a silicon carbide single crystal substrate used for a substrate of an electronic material, and a method for manufacturing the same.

高熱伝導率を持ち、バンドギャップの大きい炭化珪素単結晶は、高温で用いられる電子材料や、高耐圧の求められる電子材料の基板として有用な材料である。炭化珪素単結晶の作製法の一つに昇華再結晶法がある(非特許文献1)。昇華再結晶法では、原料部分の温度を炭化珪素が昇華する温度以上に加熱し、一方で、結晶成長を行う部分では昇華ガスが再結晶をする程度に原料部分よりも低温にして、結晶表面で再結晶を起こしながら単結晶の成長を行う。一般に、原料と結晶の温度差を適切に保つことで、炭化珪素結晶の成長が行われている。   A silicon carbide single crystal having high thermal conductivity and a large band gap is a useful material as a substrate for electronic materials used at high temperatures and electronic materials that require high breakdown voltage. One method for producing a silicon carbide single crystal is a sublimation recrystallization method (Non-patent Document 1). In the sublimation recrystallization method, the temperature of the raw material part is heated to a temperature higher than the temperature at which silicon carbide sublimates. A single crystal is grown while recrystallizing. In general, silicon carbide crystals are grown by appropriately maintaining the temperature difference between the raw material and the crystal.

原料部分と結晶部分の温度差が大きいと、珪素が析出したり、安定な結晶成長が行えない程度に再結晶の速度が大きくなったりすることで、結晶成長中に結晶に欠陥が導入され、良質の炭化珪素単結晶が得られないと言う問題がある。一般に、炭化珪素単結晶と炭化珪素原料粉末中で昇華ガスを発生している部分の温度差が大きいと、結晶成長表面に珪素液滴による欠陥が導入されると言う問題が知られている(非特許文献2)。特に、結晶成長の初期の段階では、成長した単結晶の厚さが小さいため、炭化珪素単結晶と炭化珪素原料粉末の温度差が大きくなり易く、成長単結晶中に珪素液滴による欠陥の導入が顕著となり、炭化珪素単結晶の品質が劣化することを本発明者らは見出した。   If the temperature difference between the raw material portion and the crystal portion is large, silicon precipitates or the recrystallization speed increases to such an extent that stable crystal growth cannot be performed, so that defects are introduced into the crystal during crystal growth, There is a problem that a high-quality silicon carbide single crystal cannot be obtained. In general, there is a known problem that defects caused by silicon droplets are introduced into the crystal growth surface when the temperature difference between the silicon carbide single crystal and the silicon carbide raw material powder where the sublimation gas is generated is large ( Non-patent document 2). In particular, since the thickness of the grown single crystal is small at the initial stage of crystal growth, the temperature difference between the silicon carbide single crystal and the silicon carbide raw material powder tends to increase, and defects due to silicon droplets are introduced into the grown single crystal. The inventors have found that the quality of the silicon carbide single crystal deteriorates.

炭化珪素原料を昇華させると、珪素分の多い炭化珪素ガスを発生し、残渣として炭素が残る。原料の同一の部分を加熱すると、炭化珪素の昇華が進み、次第に炭化珪素ガスの発生量が減少し、結晶成長に必要な原料ガスが供給されなくなる。同時に、成長した炭化珪素結晶が逆に昇華を始め、成長単結晶表面が炭化し、良質の炭化珪素単結晶が得られないと言う問題がある。これらの問題を引き起こさないために、成長している結晶の部分の温度と昇華ガスを発生している原料の部分の温度を適切に保ち、常に原料ガスを結晶成長表面に供給しながら、結晶成長を行うことが必要である。   When the silicon carbide raw material is sublimated, silicon carbide gas containing a large amount of silicon is generated, and carbon remains as a residue. When the same portion of the raw material is heated, the sublimation of silicon carbide proceeds, the generation amount of silicon carbide gas gradually decreases, and the raw material gas necessary for crystal growth is not supplied. At the same time, there is a problem that the grown silicon carbide crystal starts sublimation, the surface of the grown single crystal is carbonized, and a high-quality silicon carbide single crystal cannot be obtained. In order not to cause these problems, while maintaining the temperature of the growing crystal part and the temperature of the raw material part generating the sublimation gas appropriately, the crystal growth is performed while constantly supplying the raw material gas to the crystal growth surface. It is necessary to do.

しかしながら、一般に昇華再結晶法では、同一の坩堝内部に原料と成長単結晶が置かれており、原料を加熱すると成長単結晶も同時に加熱される。このため、結晶成長を行う際に、原料部と成長単結晶部の温度を独立に制御することで、原料と成長単結晶の温度を適切に保ちつつ、装填した原料を有効に昇華ガスの供給源として加熱することは難しい。望ましい結晶成長条件である、炭化珪素単結晶と炭化珪素原料粉末の温度差を小さくすることを実現するためには、単結晶に近い部分の原料粉末を昇華温度にまで加熱することが必要である。一方で、単結晶に近い部分を加熱し続けると、加熱部分の原料粉末の昇華が進み、例え原料粉末の他の部分に未昇華の原料が残っていたとしても、結晶成長に必要な昇華ガスが供給されなくなり、結晶成長表面が炭化すると言う問題が生じる。これは、装填した原料が無駄になると言う問題であると同時に、多量の昇華ガスの供給が必要となる結晶の大型化が行えないと言う問題でもある。
Yu. M. Tairov and V. F. Tsvetkov, Journal of Crystal Growth, 52 (1981) p.146 R. V. Drachev et al., Journal of Crystal Growth, 233 (2001) p.541
However, in general, in the sublimation recrystallization method, a raw material and a grown single crystal are placed inside the same crucible, and when the raw material is heated, the grown single crystal is also heated at the same time. For this reason, when performing crystal growth, by independently controlling the temperature of the raw material part and the growing single crystal part, it is possible to effectively supply the sublimation gas while maintaining the temperature of the raw material and the growing single crystal appropriately. It is difficult to heat as a source. In order to reduce the temperature difference between the silicon carbide single crystal and the silicon carbide raw material powder, which is a desirable crystal growth condition, it is necessary to heat the raw material powder close to the single crystal to the sublimation temperature. . On the other hand, if the portion near the single crystal is continuously heated, sublimation of the raw material powder in the heated portion proceeds, and even if unsublimated raw material remains in other portions of the raw material powder, the sublimation gas necessary for crystal growth Is not supplied, and the problem arises that the crystal growth surface is carbonized. This is a problem that the loaded raw material is wasted, and at the same time, it is a problem that a crystal that requires supply of a large amount of sublimation gas cannot be enlarged.
Yu. M.M. Tailov and V.M. F. Tsvetkov, Journal of Crystal Growth, 52 (1981) p. 146 R. V. Drachev et al. , Journal of Crystal Growth, 233 (2001) p. 541

本発明では、炭化珪素単結晶と炭化珪素原料粉末の温度を適切に保つと同時に、炭化珪素原料粉末を有効に利用することのできる加熱方法を用いた炭化珪素単結晶の成長方法及び炭化珪素単結晶インゴット、炭化珪素単結晶基板を提供することを課題とする。   In the present invention, the temperature of the silicon carbide single crystal and the silicon carbide raw material powder are appropriately maintained, and at the same time, the silicon carbide single crystal growth method and the silicon carbide single crystal using the heating method capable of effectively using the silicon carbide raw material powder. It is an object of the present invention to provide a crystal ingot and a silicon carbide single crystal substrate.

昇華再結晶法を用いて炭化珪素単結晶を成長する方法であって、結晶成長中に昇華ガスを供給する温度以上の温度まで炭化珪素原料の一部を加熱する際に、炭化珪素原料部の最高温度を有する領域を、原料を装填した坩堝に対して少なくとも1回移動させることを特徴とする炭化珪素単結晶の製造方法である。   A method of growing a silicon carbide single crystal using a sublimation recrystallization method, wherein when a part of a silicon carbide raw material is heated to a temperature equal to or higher than a temperature at which a sublimation gas is supplied during crystal growth, A method for producing a silicon carbide single crystal, wherein a region having the highest temperature is moved at least once with respect to a crucible charged with a raw material.

前記の移動方向が、炭化珪素原料部の最高温度を有する領域と成長している結晶とが離れる方向であり、また、移動速度が10mm/時間以下である炭化珪素単結晶の製造方法である。   The moving direction is a direction in which the region having the highest temperature of the silicon carbide raw material portion is separated from the growing crystal, and the moving speed is a manufacturing method of a silicon carbide single crystal having a moving speed of 10 mm / hour or less.

また、前記の方法で作製した口径50mm〜300mmの炭化珪素単結晶インゴット及びそれを切断、研磨してなる口径50mm〜300mmの炭化珪素単結晶基板とすることで、電子デバイス用の高品位の炭化珪素単結晶基板を提供することが可能となる。   In addition, a silicon carbide single crystal ingot having a diameter of 50 mm to 300 mm manufactured by the above method and a silicon carbide single crystal substrate having a diameter of 50 mm to 300 mm formed by cutting and polishing the ingot can be used for high-quality carbonization for electronic devices. A silicon single crystal substrate can be provided.

本発明によれば、種結晶を用いた改良型レーリー法により、結晶成長の初期における欠陥の発生を抑制し、ポリタイプの安定した成長を行えると同時に、装填した炭化珪素粉末原料を未昇華の状態で残すことなしに、結晶成長を行うことが可能な成長方法が得られる。この方法を用いることで良質の炭化珪素単結晶を再現性良く得ることができる。   According to the present invention, the improved Rayleigh method using a seed crystal suppresses the occurrence of defects at the initial stage of crystal growth, enables stable growth of the polytype, and at the same time, the loaded silicon carbide powder raw material is not sublimated. A growth method capable of performing crystal growth without leaving the state is obtained. By using this method, a good quality silicon carbide single crystal can be obtained with good reproducibility.

昇華再結晶法は、2000℃を超える高温において炭化珪素粉末を昇華させ、その昇華ガスを低温部に再結晶化させることにより、炭化珪素結晶を製造する方法である。この方法で、炭化珪素単結晶からなる種結晶を用いて、炭化珪素単結晶を製造する方法は、特に改良レーリー法と呼ばれ(非特許文献1)、バルク状の炭化珪素単結晶の製造に利用されている。改良レーリー法では、種結晶を用いているため、結晶の核形成過程が制御でき、また、不活性ガスにより雰囲気圧力を10Pa〜15kPa程度に制御することにより、結晶の成長速度等を再現性良くコントロールできる。図1を用いて、改良レーリー法の原理を説明する。種結晶となる炭化珪素単結晶と原料となる炭化珪素結晶粉末(通常、アチソン(Acheson)法で作製された研磨材を洗浄・前処理したものが使用される)は、坩堝(通常黒鉛製)の中に収納され、アルゴン等の不活性ガス雰囲気中(13.3Pa〜13.3kPa)で、原料を昇華させるために2000℃以上に加熱される。この際、原料粉末に比べ種結晶がやや低温になるように温度勾配が設定される。原料は、昇華後、濃度勾配(温度勾配により形成される)により、種結晶方向へ拡散、輸送される。単結晶成長は、種結晶に到着した原料ガスが種結晶上で再結晶化することにより実現される。   The sublimation recrystallization method is a method for producing a silicon carbide crystal by sublimating silicon carbide powder at a high temperature exceeding 2000 ° C. and recrystallizing the sublimation gas into a low temperature part. In this method, a method of manufacturing a silicon carbide single crystal using a seed crystal composed of a silicon carbide single crystal is called an improved Rayleigh method (Non-Patent Document 1), and is used for manufacturing a bulk silicon carbide single crystal. It's being used. In the improved Rayleigh method, since the seed crystal is used, the nucleation process of the crystal can be controlled, and the atmospheric pressure is controlled to about 10 Pa to 15 kPa with an inert gas, so that the growth rate of the crystal can be reproducible. I can control it. The principle of the improved Rayleigh method will be described with reference to FIG. A silicon carbide single crystal used as a seed crystal and a silicon carbide crystal powder used as a raw material (usually used after cleaning and pretreatment of an abrasive prepared by the Acheson method) are crucibles (usually made of graphite) In an inert gas atmosphere (13.3 Pa to 13.3 kPa) such as argon, and heated to 2000 ° C. or higher in order to sublimate the raw material. At this time, the temperature gradient is set so that the seed crystal has a slightly lower temperature than the raw material powder. After sublimation, the raw material is diffused and transported in the direction of the seed crystal by a concentration gradient (formed by a temperature gradient). Single crystal growth is realized by recrystallization of the source gas that has arrived at the seed crystal on the seed crystal.

高周波誘導加熱装置を利用して黒鉛坩堝を加熱した際の黒鉛坩堝内部の温度分布を、有限要素法を用いて、数値計算した。誘導加熱のための周波数は7kHzとし、適切な一定の加熱電力を用いた場合のジュール熱による発熱を計算し、この発熱量を基に、熱伝導方程式から黒鉛坩堝内部の温度分布を計算した。この計算では、次の2つを仮定し、計算の簡単化を図った。第一の仮定として、昇華再結晶過程については考慮していない。つまり、原料の炭化珪素粉末が昇華し、ガス流となって炭化珪素単結晶上で再結晶する過程を無視した。このため、炭化珪素粉末の温度は、昇華過程を考慮した場合に比べて、高く計算されている。第二の仮定として、計算に用いた物性値は、軸対称性を仮定しており、結晶の異方性は考慮していない。今回の計算では、黒鉛坩堝内部の温度分布変化の傾向を調べることが目的であるため、これらの仮定をおいても本発明に関する十分な考察が行える。計算に用いた物性値を表1に示す。   The temperature distribution inside the graphite crucible when the graphite crucible was heated using a high frequency induction heating apparatus was numerically calculated using a finite element method. The frequency for induction heating was set to 7 kHz, and the heat generation due to Joule heat when an appropriate constant heating power was used was calculated. Based on the heat generation amount, the temperature distribution inside the graphite crucible was calculated from the heat conduction equation. In this calculation, the following two assumptions were made to simplify the calculation. As a first assumption, the sublimation recrystallization process is not considered. That is, the process of subliming the raw material silicon carbide powder and recrystallizing on the silicon carbide single crystal in a gas flow was ignored. For this reason, the temperature of the silicon carbide powder is calculated to be higher than when the sublimation process is taken into consideration. As a second assumption, the physical property values used in the calculation are assumed to be axially symmetric and do not consider the crystal anisotropy. The purpose of this calculation is to investigate the tendency of the temperature distribution change inside the graphite crucible, so that sufficient consideration can be given to the present invention even with these assumptions. The physical property values used for the calculation are shown in Table 1.

今回の計算では、高周波誘導加熱コイルと黒鉛坩堝の位置を変化させると同時に、成長した炭化珪素単結晶の高さを変化させた。計算結果である黒鉛坩堝内部の温度の等高線図を、図2(a)〜(d)に示す。図2では、軸対称性を利用して、中心軸から片側部分の坩堝内部の温度の等高線図を示した。表2に、計算に用いた炭化珪素単結晶の厚さと、坩堝と高周波誘導加熱コイルの相対的な位置関係を示す。黒鉛坩堝と高周波誘導加熱コイルの位置関係は、0の時を基準の配置として、+20mmの時には、黒鉛坩堝を高周波誘導加熱コイルに対して上方に20mm移動させた場合とした。   In this calculation, the height of the grown silicon carbide single crystal was changed at the same time as the positions of the high-frequency induction heating coil and the graphite crucible were changed. FIGS. 2A to 2D show contour diagrams of the temperature inside the graphite crucible, which is the calculation result. In FIG. 2, the contour map of the temperature inside the crucible at one side portion from the central axis is shown by utilizing axial symmetry. Table 2 shows the thickness of the silicon carbide single crystal used for the calculation and the relative positional relationship between the crucible and the high-frequency induction heating coil. The positional relationship between the graphite crucible and the high-frequency induction heating coil is based on the case where 0 is the reference arrangement, and when it is +20 mm, the graphite crucible is moved 20 mm upward with respect to the high-frequency induction heating coil.

図2(a)と図2(c)から、黒鉛坩堝をコイルに対して+20mm上方に移動させると、最高温度を有する領域が、黒鉛坩堝の下側に移動することが分かる。図2(c)に比べて、図2(a)の方が、単結晶と原料粉末の温度差が小さい。結晶が成長した段階での温度分布を計算した結果の図2(b)と図2(d)を比較すると、図2(a)と図2(c)の場合と同様に、黒鉛坩堝の高周波誘導加熱コイルに対する相対的な位置関係を変化させた場合、最高温度を有する領域が移動し、図2(d)では、黒鉛坩堝の底の部分が最も強く加熱されている。図2(c)に比べて、図2(d)の方が、単結晶と原料粉末の温度差が小さくなっている。これは、単結晶の厚さが厚くなることで、単結晶表面と原料粉末が近づいてくるために、温度差が小さくなったと考えられる。   2 (a) and 2 (c), it can be seen that when the graphite crucible is moved upward by +20 mm with respect to the coil, the region having the highest temperature moves to the lower side of the graphite crucible. The temperature difference between the single crystal and the raw material powder is smaller in FIG. 2A than in FIG. Comparing FIG. 2 (b) and FIG. 2 (d) as a result of calculating the temperature distribution at the stage of crystal growth, the high frequency of the graphite crucible is similar to the case of FIG. 2 (a) and FIG. 2 (c). When the relative positional relationship with the induction heating coil is changed, the region having the highest temperature moves, and in FIG. 2D, the bottom portion of the graphite crucible is heated most strongly. The temperature difference between the single crystal and the raw material powder is smaller in FIG. 2D than in FIG. This is thought to be due to the fact that the surface of the single crystal and the raw material powder approach each other as the thickness of the single crystal increases, so that the temperature difference is reduced.

従来から、結晶成長時に原料粉末と成長単結晶表面の温度差が大きいと、珪素液滴が形成され、欠陥が導入され易いことが知られている。また、結晶成長時に原料粉末と成長単結晶表面の温度差が小さい場合、もしくは、原料粉末が既に長時間高温に加熱されて昇華が進んだ状態にあり、原料粉末から単結晶に成長に必要なガスが供給されない場合には、単結晶の表面が昇華し、炭化することが知られている。   Conventionally, it is known that when the temperature difference between the raw material powder and the growth single crystal surface is large during crystal growth, silicon droplets are formed and defects are easily introduced. Also, if the temperature difference between the raw material powder and the growth single crystal surface is small during crystal growth, or the raw material powder has already been heated to a high temperature for a long time and sublimation has progressed, it is necessary for growth from the raw material powder to the single crystal. It is known that when no gas is supplied, the surface of the single crystal sublimes and carbonizes.

これらの知見と、坩堝内部の温度分布の数値計算結果から、単結晶の厚さが薄い結晶成長の初期の段階では、図2(c)よりも図2(a)の温度分布が望ましい。しかし、図2(a)の配置のまま成長を続けると、単結晶が成長して結晶の厚さが厚くなった際に、図2(b)の温度分布を示す。この温度分布では、原料粉末の上部のみが加熱開始時から長時間にわたり加熱される。その結果、原料粉末の上部の昇華が進み、原料としての機能が小さくなる一方で、原料粉末の下部に装填した炭化珪素粉末が原料として有効に利用されず、原料粉末が坩堝の底部に残るものの、成長している単結晶に昇華ガスが供給されずに、成長単結晶の表面が炭化すると言う問題が生じる。そこで、図2(d)のように、原料部の下部を強く加熱する配置を取ることで、未昇華の原料部分を加熱し、昇華ガスの供給を途切れないようにすることが望ましい。この場合、結晶成長表面と原料の温度差は、図2(c)に比べて小さく、成長結晶表面と原料粉末の温度差が大きくなり過ぎると言うことはない。昇華再結晶法では、昇華ガスが昇華ガスより低温の結晶表面で再結晶することで結晶成長が進むので、結晶成長中の結晶と原料の温度差や温度勾配の変化に比べると、成長表面より高温の昇華ガスが結晶成長表面に途切れることなく供給されることが重要であり、原料の加熱部分を移動させて、未昇華の原料部分を加熱する方法は有用である。   From these findings and the numerical calculation result of the temperature distribution inside the crucible, the temperature distribution of FIG. 2 (a) is preferable to FIG. 2 (c) at the initial stage of crystal growth where the single crystal is thin. However, if the growth is continued with the arrangement of FIG. 2A, the temperature distribution of FIG. 2B is shown when the single crystal grows and the thickness of the crystal increases. In this temperature distribution, only the upper part of the raw material powder is heated for a long time from the start of heating. As a result, the sublimation of the upper part of the raw material powder proceeds and the function as the raw material becomes smaller, while the silicon carbide powder loaded in the lower part of the raw material powder is not effectively used as the raw material, and the raw material powder remains at the bottom of the crucible. The problem arises that the sublimation gas is not supplied to the growing single crystal and the surface of the growing single crystal is carbonized. Therefore, as shown in FIG. 2 (d), it is desirable to heat the lower portion of the raw material portion to heat the non-sublimated raw material portion so that the supply of sublimation gas is not interrupted. In this case, the temperature difference between the crystal growth surface and the raw material is smaller than that in FIG. 2C, and the temperature difference between the growth crystal surface and the raw material powder is not too large. In the sublimation recrystallization method, the sublimation gas recrystallizes on the crystal surface at a temperature lower than that of the sublimation gas, so crystal growth proceeds. Therefore, compared to the temperature difference between the crystal and the raw material during crystal growth and changes in temperature gradient, It is important that the high-temperature sublimation gas is supplied to the crystal growth surface without interruption, and a method of heating the unsublimated raw material portion by moving the heated portion of the raw material is useful.

ここでは、図2(a)に示すように、成長の初期に結晶に近い部分の原料粉末を昇華温度にまで加熱して、再結晶による結晶成長を進め、単結晶に近い部分の原料が昇華し、原料としての機能を果たさなくなるにつれて、図2(d)のように、原料粉末を加熱する部分を未昇華の原料が残っている単結晶から遠い部分に移動させる結晶成長方法を用いることで、単結晶と原料粉末の温度を適切に保ちつつ、欠陥の導入を抑制し、かつ結晶成長表面の炭化を防ぐことのできる、良好な結晶成長条件を実現する方法を見出した。原料粉末中の最高温度を有する領域を移動させることにより、これまで最高温度を有する領域に含まれていなかった未昇華の原料部分が、最高温度有する領域の少なくとも一部分に新たに加わり、昇華ガスを新たに発生することで、結晶成長表面に成長ガスを途切れることなく供給することが可能となる。原料粉末中の最高温度を有する領域を移動させる方法としては、例えば、結晶成長中に原料粉末が昇華し、原料としての機能を果たさなくなる前に、最高温度を有する領域を少なくとも一回移動させ、新たに未昇華の原料粉末の部分を加熱する方法や、結晶成長を大きく、初期、中期、後期に分けて、それぞれの成長の時期に、原料粉末中の最高温度を有する領域を異なった部分に移動する方法等がある。また、成長の初期から後期にかけて多数のステップを分割して、もしくは連続的に、原料粉末中の最高温度を有する領域を移動させる方法もある。本発明は、これらの移動方法や移動回数、移動距離、移動速度を特定のものに規定するものではない。ただし、原料粉末中の最高温度を有する領域を移動する際には、結晶成長を行っている坩堝内部の温度分布が変化し、結晶成長に乱れが生じ、成長した単結晶中に欠陥が導入されることがあるため、最高温度を有する領域を移動させる速度は10mm/時間以下の方がより望ましい。移動速度が小さ過ぎると、最高温度を有する領域を移動した効果が得られる前に加熱部分の原料が昇華してしまい、本発明の効果が得られないので、移動させる場合には0.1mm/時間以上の速度が望ましい。   Here, as shown in FIG. 2 (a), the raw material powder in the portion close to the crystal is heated to the sublimation temperature at the initial stage of growth, and the crystal growth by recrystallization proceeds to sublimate the raw material in the portion close to the single crystal. However, as the function of the raw material is not fulfilled, a crystal growth method is used in which the part for heating the raw material powder is moved to a part far from the single crystal where the unsublimated raw material remains as shown in FIG. The present inventors have found a method for realizing good crystal growth conditions that can suppress the introduction of defects and prevent carbonization of the crystal growth surface while keeping the temperature of the single crystal and the raw material powder appropriately. By moving the region having the highest temperature in the raw material powder, the non-sublimated raw material portion that has not been included in the region having the highest temperature so far is newly added to at least a part of the region having the highest temperature, and sublimation gas is generated. By newly generating, the growth gas can be supplied to the crystal growth surface without interruption. As a method of moving the region having the highest temperature in the raw material powder, for example, before the raw material powder sublimates during crystal growth and does not perform the function as the raw material, the region having the highest temperature is moved at least once, A new method of heating the non-sublimated raw material powder and the crystal growth is greatly divided into the initial, middle and late stages, and the region having the highest temperature in the raw material powder is divided into different parts at each growth stage. There are ways to move. There is also a method of dividing a region having the highest temperature in the raw material powder by dividing a large number of steps from the initial stage to the late stage of growth or continuously. The present invention does not prescribe these movement methods, the number of movements, the movement distance, and the movement speed as specific. However, when moving the region having the highest temperature in the raw material powder, the temperature distribution inside the crucible in which the crystal is growing changes, resulting in disorder in the crystal growth and introducing defects into the grown single crystal. Therefore, the moving speed of the region having the highest temperature is more preferably 10 mm / hour or less. If the moving speed is too low, the raw material of the heated portion is sublimated before the effect of moving the region having the maximum temperature is obtained, and the effect of the present invention cannot be obtained. Speed over time is desirable.

炭化珪素原料粉末中の最高温度を有する領域の移動は、炭化珪素原料を充填した坩堝を中心軸に沿って移動させ、炭化珪素原料を加熱するための加熱用のワークコイルとの相対的な位置を変化させる方法、もしくは、炭化珪素原料を加熱するための加熱用のワークコイルを中心軸に沿って移動させ、炭化珪素原料を充填した坩堝との相対的な位置を変化させる方法によって行うことができる。   The movement of the region having the maximum temperature in the silicon carbide raw material powder is moved relative to the heating work coil for heating the silicon carbide raw material by moving the crucible filled with the silicon carbide raw material along the central axis. Or a method of moving the heating work coil for heating the silicon carbide raw material along the central axis and changing the relative position with the crucible filled with the silicon carbide raw material. it can.

このような、原料を加熱する部分を移動させる結晶成長方法を用いることで、直径50〜300mmの大きさのインゴットを成長させるのに必要な原料ガスを安定して供給することが可能になる。その結果、安定した結晶成長速度を得ることができ、欠陥の発生を抑えることができ、結晶方位の揃った結晶性の高い炭化珪素単結晶インゴットを作製することができる。また、この炭化珪素単結晶インゴットを切断、研磨することにより得られる単結晶基板は、結晶性の高い基板となり、電子デバイスを作製するための基板として有用性の高いものとなる。   By using such a crystal growth method that moves the portion for heating the raw material, it is possible to stably supply the raw material gas necessary for growing an ingot having a diameter of 50 to 300 mm. As a result, a stable crystal growth rate can be obtained, generation of defects can be suppressed, and a silicon carbide single crystal ingot having high crystallinity with uniform crystal orientation can be manufactured. In addition, a single crystal substrate obtained by cutting and polishing the silicon carbide single crystal ingot becomes a highly crystalline substrate and is highly useful as a substrate for manufacturing an electronic device.

以下に、本発明の実施例について述べる。   Examples of the present invention will be described below.

(実施例1)
先ず、実施例で用いる単結晶成長装置について、図3を用いて簡単に説明する。結晶成長は、炭化珪素結晶粉末2を昇華させ、種結晶として用いた炭化珪素単結晶1上で、再結晶化させることにより行われる。種結晶の炭化珪素単結晶1は、高純度黒鉛製坩堝3の蓋4の内面に取り付けられる。原料の炭化珪素結晶粉末2は、高純度黒鉛製坩堝3の内部に充填されている。このような黒鉛製坩堝3は、二重石英管5の内部に、黒鉛の支持棒6により設置される。黒鉛製坩堝3の周囲には、熱シールドのための黒鉛製フェルト7が設置されている。二重石英管5は、真空排気装置により高真空排気(10−3Pa以下)することができ、かつ、内部雰囲気をArガスにより圧力制御することができる。また、二重石英管5の外周には、ワークコイル8が設置されており、高周波電流を流すことにより黒鉛製坩堝3を加熱し、原料及び種結晶を所望の温度に加熱することができる。ワークコイル8と黒鉛製坩堝3の相対的な位置関係を変えるために、黒鉛製坩堝3等を中心軸に沿って移動させることが可能な機構12、もしくは、ワークコイル8を中心軸に沿って移動させることが可能な機構13が設けられている。坩堝温度の計測は、坩堝上部及び下部を覆うフェルトの中央部に直径2〜4mmの光路を設け、坩堝上部及び下部からの光を取り出し、二色温度計を用いて行う。坩堝下部の温度を原料温度、坩堝上部の温度を種温度とする。
Example 1
First, a single crystal growth apparatus used in the examples will be briefly described with reference to FIG. Crystal growth is performed by sublimating silicon carbide crystal powder 2 and recrystallizing on silicon carbide single crystal 1 used as a seed crystal. The seed crystal silicon carbide single crystal 1 is attached to the inner surface of the lid 4 of the high-purity graphite crucible 3. The raw material silicon carbide crystal powder 2 is filled in a high-purity graphite crucible 3. Such a graphite crucible 3 is installed inside a double quartz tube 5 by a support rod 6 made of graphite. Around the graphite crucible 3, a graphite felt 7 for heat shielding is installed. The double quartz tube 5 can be highly evacuated (10 −3 Pa or less) by a vacuum evacuation apparatus, and the internal atmosphere can be pressure controlled by Ar gas. In addition, a work coil 8 is provided on the outer periphery of the double quartz tube 5, and the graphite crucible 3 can be heated by flowing a high-frequency current to heat the raw material and the seed crystal to a desired temperature. In order to change the relative positional relationship between the work coil 8 and the graphite crucible 3, a mechanism 12 capable of moving the graphite crucible 3 or the like along the central axis, or the work coil 8 along the central axis. A mechanism 13 that can be moved is provided. The temperature of the crucible is measured using a two-color thermometer by providing an optical path having a diameter of 2 to 4 mm at the center of the felt covering the upper and lower parts of the crucible, taking out light from the upper and lower parts of the crucible. The temperature at the bottom of the crucible is the raw material temperature, and the temperature at the top of the crucible is the seed temperature.

次に、この結晶成長装置を用いた炭化珪素単結晶の製造について、実施例を説明する。先ず、種結晶として、口径75mmの(0001)面を有した4Hポリタイプの炭化珪素単結晶ウェハを用意した。次に、種結晶1を黒鉛製坩堝3の蓋4の内面に取り付けた。黒鉛製坩堝3の内部には、CVD法により得られた高純度炭化珪素結晶粉末2を充填した。炭化珪素結晶粉末の軸方向の高さは、40mmとなるように充填量を設定した。次いで、原料を充填した黒鉛製坩堝3を、蓋4で閉じ、黒鉛製フェルト7で被覆した後、黒鉛製支持棒6の上に乗せ、二重石英管5の内部に設置した。そして、石英管の内部を真空排気した後、ワークコイルに電流を流し、原料温度を2000℃まで上げた。その後、雰囲気ガスとして高純度Arガスを流入させ、石英管内圧力を約80kPaに保ちながら、原料温度を目標温度である2400℃まで上昇させた。成長圧力である1.3kPaには約30分かけて減圧し、その後、結晶成長を開始した。結晶成長を開始した時点では、原料の炭化珪素結晶粉末の中でも、成長単結晶に近い部分が最高温度を有する領域となるように、黒鉛製坩堝3のワークコイル8に対する位置を設定した。このことは、結晶成長開始直後に加熱を止める実験を別途行い、炭化珪素結晶粉末2の昇華の様子を観察することで確認した。本実施例では、結晶成長が始まった18時間後から、黒鉛製坩堝3をワークコイル8に対して、上側の方向に10mm/時間の速度で、2時間移動させて、結晶成長を行った。2時間の移動を終了した後では、ワークコイル8が原料である炭化珪素単結晶粉末の成長単結晶から最も遠い部分(底部分)を最も強く加熱するような位置関係になるようにし、最高温度を有する領域が炭化珪素原料粉末の底部分となるようにした。結晶成長を始めてから40時間後に結晶成長を終了し、ワークコイルに流す電流を0にまで低下させた。   Next, an example is described about manufacture of a silicon carbide single crystal using this crystal growth device. First, a 4H polytype silicon carbide single crystal wafer having a (0001) plane with a diameter of 75 mm was prepared as a seed crystal. Next, the seed crystal 1 was attached to the inner surface of the lid 4 of the graphite crucible 3. The graphite crucible 3 was filled with high-purity silicon carbide crystal powder 2 obtained by the CVD method. The filling amount was set so that the axial height of the silicon carbide crystal powder was 40 mm. Next, the graphite crucible 3 filled with the raw material was closed with the lid 4 and covered with the graphite felt 7, and then placed on the graphite support rod 6 and installed inside the double quartz tube 5. And after evacuating the inside of a quartz tube, the electric current was sent through the work coil and the raw material temperature was raised to 2000 degreeC. Thereafter, high-purity Ar gas was introduced as the atmospheric gas, and the raw material temperature was raised to the target temperature of 2400 ° C. while maintaining the pressure in the quartz tube at about 80 kPa. The growth pressure was reduced to 1.3 kPa over about 30 minutes, and then crystal growth was started. At the time of starting crystal growth, the position of the graphite crucible 3 relative to the work coil 8 was set so that a portion close to the grown single crystal in the raw material silicon carbide crystal powder would be a region having the highest temperature. This was confirmed by separately conducting an experiment to stop heating immediately after the start of crystal growth and observing the sublimation state of the silicon carbide crystal powder 2. In this example, from 18 hours after the crystal growth started, the graphite crucible 3 was moved with respect to the work coil 8 in the upward direction at a speed of 10 mm / hour for 2 hours to perform crystal growth. After the movement for 2 hours, the work coil 8 is positioned so that the part (bottom part) farthest from the grown single crystal of the silicon carbide single crystal powder as the raw material is heated most strongly, and the maximum temperature is reached. The region having γ was the bottom portion of the silicon carbide raw material powder. Crystal growth was terminated after 40 hours from the start of crystal growth, and the current flowing through the work coil was reduced to zero.

得られた結晶の口径は76mm程度で、高さは35mm程度であった。成長速度は約0.9mm/時であった。残った原料を観察したところ、装填した炭化珪素結晶粉末は、ほぼ完全に昇華し、黒い炭素が残渣として残っていた。こうして得られた炭化珪素単結晶をX線回折及びラマン散乱により分析したところ、4Hの単一のポリタイプからなる欠陥の少ない高品質の炭化珪素単結晶インゴットが成長したことを確認できた。この炭化珪素単結晶インゴットを切断、研磨して、炭化珪素単結晶基板を作製したところ、4Hの単一ポリタイプからなる欠陥の少ない高品質の炭化珪素単結晶の基板が作製できた。炭化珪素単結晶基板上に電子デバイスを作製する場合、基板に存在する欠陥が電子デバイスの特性に影響を与えるため、本発明により得られた欠陥の少ない高品質の炭化珪素単結晶基板は、電子デバイスを作製するための基板として有用である。   The diameter of the obtained crystal was about 76 mm, and the height was about 35 mm. The growth rate was about 0.9 mm / hour. When the remaining raw material was observed, the loaded silicon carbide crystal powder sublimated almost completely, and black carbon remained as a residue. When the silicon carbide single crystal thus obtained was analyzed by X-ray diffraction and Raman scattering, it was confirmed that a high-quality silicon carbide single crystal ingot consisting of a single 4H polytype with few defects was grown. When this silicon carbide single crystal ingot was cut and polished to produce a silicon carbide single crystal substrate, a high-quality silicon carbide single crystal substrate consisting of a single polytype of 4H and having few defects could be produced. When producing an electronic device on a silicon carbide single crystal substrate, defects existing in the substrate affect the characteristics of the electronic device. Therefore, the high-quality silicon carbide single crystal substrate obtained by the present invention has few defects. It is useful as a substrate for manufacturing a device.

(実施例2)
実施例1と同様にして、先ず、種結晶として、口径50mmの(0001)面を有した6Hポリタイプの炭化珪素単結晶ウェハを用意した。次に、種結晶1を黒鉛製坩堝3の蓋4の内面に取り付けた。黒鉛製坩堝3の内部には、アチソン法により作製された炭化珪素結晶原料粉末2を充填した。炭化珪素原料粉末の軸方向の高さは、30mmとなるように充填量を設定した。次いで、アチソン法により作製された炭化珪素原料を充填した黒鉛製坩堝3を、蓋4で閉じ、黒鉛製フェルト7で被覆した後、黒鉛製支持棒6の上に乗せ、二重石英管5の内部に設置した。そして、石英管の内部を真空排気した後、ワークコイルに電流を流し、原料温度を2000℃まで上げた。その後、雰囲気ガスとして高純度Arガスを流入させ、石英管内圧力を約80kPaに保ちながら、原料温度を目標温度である2400℃まで上昇させた。成長圧力である1.3kPaには約30分かけて減圧し、その後、結晶成長を開始した。結晶成長中は、種温度が2000℃程度になるように、ワークコイルに流す電流を調整した。結晶成長を開始した時点では、原料の炭化珪素結晶粉末の中でも、成長単結晶に近い部分が最高温度を有する領域となるように、黒鉛製坩堝3のワークコイル8に対する位置を設定した。このことは、結晶成長開始直後に加熱を止める実験を別途行い、炭化珪素結晶粉末2の昇華の様子を観察することで確認した。本実施例では、以下のように、2段階で加熱部分を移動させた。先ず、結晶成長が始まった15時間後から黒鉛製坩堝3をワークコイル8に対して上側の方向に2mm/時間の速度で5時間移動させ、その後、10時間移動を止めた後に、さらに、上方に5mm/時間の速度で3時間移動させた。加熱部分の移動が終了した時点では、ワークコイル8が、原料である炭化珪素単結晶粉末の成長単結晶から最も遠い部分(底部分)を最も強く加熱するような位置関係になるようにし、最高温度を有する領域が炭化珪素原料粉末の底部分となるようにした。結晶成長を始めてから40時間後に結晶成長を終了し、ワークコイルに流す電流を0にまで低下させた。
(Example 2)
In the same manner as in Example 1, first, a 6H polytype silicon carbide single crystal wafer having a (0001) plane with a diameter of 50 mm was prepared as a seed crystal. Next, the seed crystal 1 was attached to the inner surface of the lid 4 of the graphite crucible 3. The graphite crucible 3 was filled with silicon carbide crystal raw material powder 2 produced by the Atchison method. The filling amount was set so that the axial height of the silicon carbide raw material powder was 30 mm. Next, the graphite crucible 3 filled with the silicon carbide raw material produced by the Atchison method is closed with the lid 4 and covered with the graphite felt 7, and then placed on the graphite support rod 6. Installed inside. And after evacuating the inside of a quartz tube, the electric current was sent through the work coil and the raw material temperature was raised to 2000 degreeC. Thereafter, high-purity Ar gas was introduced as the atmospheric gas, and the raw material temperature was raised to the target temperature of 2400 ° C. while maintaining the pressure in the quartz tube at about 80 kPa. The growth pressure was reduced to 1.3 kPa over about 30 minutes, and then crystal growth was started. During crystal growth, the current passed through the work coil was adjusted so that the seed temperature was about 2000 ° C. At the time of starting crystal growth, the position of the graphite crucible 3 relative to the work coil 8 was set so that a portion close to the grown single crystal in the raw material silicon carbide crystal powder would be a region having the highest temperature. This was confirmed by separately conducting an experiment to stop heating immediately after the start of crystal growth and observing the sublimation state of the silicon carbide crystal powder 2. In this example, the heating part was moved in two steps as follows. First, after 15 hours from the start of crystal growth, the graphite crucible 3 is moved in the upper direction with respect to the work coil 8 at a speed of 2 mm / hour for 5 hours, and then the movement is stopped for 10 hours. For 3 hours at a speed of 5 mm / hour. When the movement of the heated part is completed, the work coil 8 is positioned so that the part (bottom part) farthest from the grown single crystal of the silicon carbide single crystal powder as the raw material is heated most strongly. The region having the temperature was made to be the bottom portion of the silicon carbide raw material powder. Crystal growth was terminated after 40 hours from the start of crystal growth, and the current flowing through the work coil was reduced to zero.

得られた結晶の口径は51mm程度で、高さは30mm程度であった。成長速度は約0.8mm/時であった。残った原料を観察したところ、装填した炭化珪素結晶粉末は、ほぼ完全に昇華し、黒い炭素が残渣として残っていた。こうして得られた炭化珪素単結晶をX線回折及びラマン散乱により分析したところ、6Hの単一のポリタイプからなる欠陥の少ない高品質の炭化珪素単結晶が成長したことを確認できた。この炭化珪素単結晶インゴットを切断、研磨して、炭化珪素単結晶基板を作製したところ、6Hの単一ポリタイプからなる欠陥の少ない高品質の炭化珪素単結晶の基板が作製できた。炭化珪素単結晶基板上に電子デバイスを作製する場合、基板に存在する欠陥が電子デバイスの特性に影響を与えるため、本発明により得られた欠陥の少ない高品質の炭化珪素単結晶基板は、電子デバイスを作製するための基板として有用である。   The diameter of the obtained crystal was about 51 mm and the height was about 30 mm. The growth rate was about 0.8 mm / hour. When the remaining raw material was observed, the loaded silicon carbide crystal powder sublimated almost completely, and black carbon remained as a residue. When the silicon carbide single crystal thus obtained was analyzed by X-ray diffraction and Raman scattering, it was confirmed that a high-quality silicon carbide single crystal consisting of a single 6H polytype with few defects was grown. When this silicon carbide single crystal ingot was cut and polished to produce a silicon carbide single crystal substrate, a high-quality silicon carbide single crystal substrate consisting of a single polytype of 6H with few defects could be produced. When producing an electronic device on a silicon carbide single crystal substrate, defects existing in the substrate affect the characteristics of the electronic device. Therefore, the high-quality silicon carbide single crystal substrate obtained by the present invention has few defects. It is useful as a substrate for manufacturing a device.

(比較例)
実施例1と同様にして、先ず、種結晶として、口径75mmの(0001)面を有した4Hポリタイプの炭化珪素単結晶ウェハを用意した。次に、種結晶1を黒鉛製坩堝3の蓋4の内面に取り付けた。黒鉛製坩堝3の内部には、CVD法により得られた高純度炭化珪素結晶粉末2を充填した。炭化珪素結晶粉末の軸方向の高さは、40mmとなるように充填量を設定した。次いで、原料を充填した黒鉛製坩堝3を、蓋4で閉じ、黒鉛製フェルト7で被覆した後、黒鉛製支持棒6の上に乗せ、二重石英管5の内部に設置した。そして、石英管の内部を真空排気した後、ワークコイルに電流を流し、原料温度を2000℃まで上げた。その後、雰囲気ガスとして高純度Arガスを流入させ、石英管内圧力を約80kPaに保ちながら、原料温度を目標温度である2400℃まで上昇させた。成長圧力である1.3kPaには約30分かけて減圧し、その後、結晶成長を開始した。結晶成長を開始した時点では、原料の炭化珪素結晶粉末の中でも、成長単結晶に近い部分が最高温度を有する領域となるように、黒鉛製坩堝3のワークコイル8に対する位置を設定した。このことは、結晶成長開始直後に加熱を止める実験を別途行い、炭化珪素結晶粉末2の昇華の様子を観察することで確認した。本比較例では、実施例1と比較するために、黒鉛製坩堝3をワークコイル8に対して移動させずに、40時間加熱を続け、その後に、ワークコイルに流す電流を0にまで低下させた。
(Comparative example)
In the same manner as in Example 1, first, a 4H polytype silicon carbide single crystal wafer having a (0001) plane with a diameter of 75 mm was prepared as a seed crystal. Next, the seed crystal 1 was attached to the inner surface of the lid 4 of the graphite crucible 3. The graphite crucible 3 was filled with high-purity silicon carbide crystal powder 2 obtained by the CVD method. The filling amount was set so that the axial height of the silicon carbide crystal powder was 40 mm. Next, the graphite crucible 3 filled with the raw material was closed with the lid 4 and covered with the graphite felt 7, and then placed on the graphite support rod 6 and installed inside the double quartz tube 5. And after evacuating the inside of a quartz tube, the electric current was sent through the work coil and the raw material temperature was raised to 2000 degreeC. Thereafter, high-purity Ar gas was introduced as the atmospheric gas, and the raw material temperature was raised to the target temperature of 2400 ° C. while maintaining the pressure in the quartz tube at about 80 kPa. The growth pressure was reduced to 1.3 kPa over about 30 minutes, and then crystal growth was started. At the time of starting crystal growth, the position of the graphite crucible 3 relative to the work coil 8 was set so that a portion close to the grown single crystal in the raw material silicon carbide crystal powder would be a region having the highest temperature. This was confirmed by separately conducting an experiment to stop heating immediately after the start of crystal growth and observing the sublimation state of the silicon carbide crystal powder 2. In this comparative example, in order to compare with Example 1, heating was continued for 40 hours without moving the graphite crucible 3 with respect to the work coil 8, and then the current flowing through the work coil was reduced to zero. It was.

得られた結晶の口径は75mm程度で、高さは6mm程度であり、結晶表面からインゴットの内部に昇華が進み、インゴットが炭化し、結晶品質の劣化が観察された。残った原料を観察したところ、原料部の上部(成長単結晶に近い部分)では、完全に昇華し、黒い炭素が残渣として残っており、原料の下部(成長単結晶から遠い部分)では、炭化珪素が再結晶して残っていた。   The diameter of the obtained crystal was about 75 mm and the height was about 6 mm. Sublimation progressed from the crystal surface to the inside of the ingot, the ingot was carbonized, and deterioration of the crystal quality was observed. When the remaining raw material was observed, the upper part of the raw material part (part close to the growing single crystal) was completely sublimated, and black carbon remained as a residue, and the lower part of the raw material (part far from the growing single crystal) was carbonized. Silicon was recrystallized and remained.

改良レーリー法の原理を説明する図面である。It is drawing explaining the principle of an improved Rayleigh method. 誘導加熱法を用いて黒鉛坩堝を加熱した際の坩堝内部の温度分布を有限要素法を用いて数値的に解析した坩堝内部の温度の等高線の一例を示す図面(等温線に付した数値は温度(℃))である。Drawing showing an example of the contour lines of the temperature inside the crucible obtained by numerically analyzing the temperature distribution inside the crucible when the graphite crucible is heated using the induction heating method using the finite element method (the numerical value attached to the isotherm is the temperature (° C)). 誘導加熱法を用いて黒鉛坩堝を加熱した際の坩堝内部の温度分布を有限要素法を用いて数値的に解析した坩堝内部の温度の等高線のその他の例を示す図面(等温線に付した数値は温度(℃))である。Drawing showing other examples of temperature contours inside crucible, numerical analysis of temperature distribution inside crucible when heating graphite crucible using induction heating method (numerical values attached to isotherm) Is temperature (° C.). 誘導加熱法を用いて黒鉛坩堝を加熱した際の坩堝内部の温度分布を有限要素法を用いて数値的に解析した坩堝内部の温度の等高線の別の例を示す図面(等温線に付した数値は温度(℃))である。Drawing showing another example of temperature contours inside crucible obtained by numerical analysis of temperature distribution inside crucible when graphite crucible is heated using induction heating method (numerical values attached to isotherm) Is temperature (° C.). 誘導加熱法を用いて黒鉛坩堝を加熱した際の坩堝内部の温度分布を有限要素法を用いて数値的に解析した坩堝内部の温度の等高線のその他の一例を示す図面(等温線に付した数値は温度(℃))である。Drawing showing other examples of temperature contours inside crucible obtained by numerically analyzing the temperature distribution inside the crucible when the graphite crucible is heated using the induction heating method using the finite element method (values attached to the isotherm) Is temperature (° C.). 本実施例の単結晶成長装置を説明する図面である。It is drawing explaining the single crystal growth apparatus of a present Example.

符号の説明Explanation of symbols

1 種結晶(炭化珪素単結晶)
2 炭化珪素結晶粉末原料
3 黒鉛製坩堝
4 黒鉛製坩堝蓋
5 二重石英管
6 支持棒
7 黒鉛製フェルト(断熱材)
8 ワークコイル
9 高純度Arガス配管
10 高純度Arガス用マスフローコントローラ
11 真空排気装置
12 坩堝等移動機構
13 ワークコイル移動機構。
1 Seed crystal (silicon carbide single crystal)
2 Raw material of silicon carbide crystal powder 3 Graphite crucible 4 Graphite crucible lid 5 Double quartz tube 6 Support rod 7 Graphite felt (heat insulation)
8 Work Coil 9 High Purity Ar Gas Pipe 10 Mass Flow Controller for High Purity Ar Gas 11 Vacuum Exhaust Device 12 Crucible Movement Mechanism 13 Work Coil Movement Mechanism

Claims (5)

昇華再結晶法を用いて炭化珪素単結晶を成長する方法であって、結晶成長中に昇華ガスを供給する温度以上の温度まで炭化珪素原料の一部を加熱する際に、炭化珪素原料部の最高温度を有する領域を、原料を装填した坩堝に対して少なくとも1回移動させることを特徴とする炭化珪素単結晶の製造方法。   A method of growing a silicon carbide single crystal using a sublimation recrystallization method, wherein when a part of a silicon carbide raw material is heated to a temperature equal to or higher than a temperature at which a sublimation gas is supplied during crystal growth, A method for producing a silicon carbide single crystal, wherein a region having a maximum temperature is moved at least once with respect to a crucible charged with a raw material. 前記移動方向が、炭化珪素原料部の最高温度を有する領域と成長している結晶とが離れる方向である請求項1に記載の炭化珪素単結晶の製造方法。   2. The method for producing a silicon carbide single crystal according to claim 1, wherein the moving direction is a direction in which a region having the highest temperature of the silicon carbide raw material portion is separated from a growing crystal. 前記移動速度が10mm/時間以下である請求項1又は2に記載の炭化珪素単結晶の製造方法。   The method for producing a silicon carbide single crystal according to claim 1, wherein the moving speed is 10 mm / hour or less. 請求項1〜3のいずれかに記載の方法で作製した口径50mm〜300mmの炭化珪素単結晶インゴット。   A silicon carbide single crystal ingot having a diameter of 50 mm to 300 mm produced by the method according to claim 1. 請求項4に記載の炭化珪素単結晶インゴットを切断、研磨してなる口径50mm〜300mmの炭化珪素単結晶基板。   A silicon carbide single crystal substrate having a diameter of 50 mm to 300 mm obtained by cutting and polishing the silicon carbide single crystal ingot according to claim 4.
JP2004281503A 2004-09-28 2004-09-28 Method for producing silicon carbide single crystal and ingot of silicon carbide single crystal Pending JP2006096578A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004281503A JP2006096578A (en) 2004-09-28 2004-09-28 Method for producing silicon carbide single crystal and ingot of silicon carbide single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004281503A JP2006096578A (en) 2004-09-28 2004-09-28 Method for producing silicon carbide single crystal and ingot of silicon carbide single crystal

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010207126A Division JP5375783B2 (en) 2010-09-15 2010-09-15 Method for producing silicon carbide single crystal

Publications (1)

Publication Number Publication Date
JP2006096578A true JP2006096578A (en) 2006-04-13

Family

ID=36236740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004281503A Pending JP2006096578A (en) 2004-09-28 2004-09-28 Method for producing silicon carbide single crystal and ingot of silicon carbide single crystal

Country Status (1)

Country Link
JP (1) JP2006096578A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007314358A (en) * 2006-05-23 2007-12-06 Bridgestone Corp Apparatus and method for producing silicon carbide single crystal
JP2008074662A (en) * 2006-09-21 2008-04-03 Nippon Steel Corp Apparatus for producing silicon carbide single crystal
JP2010076991A (en) * 2008-09-26 2010-04-08 Bridgestone Corp Manufacturing apparatus for silicon carbide single crystal and manufacturing method of silicon carbide single crystal
WO2011074588A1 (en) * 2009-12-15 2011-06-23 ジャパンスーパークォーツ株式会社 Method for calculating temperature distribution in crucible
JP2013212952A (en) * 2012-04-02 2013-10-17 Sumitomo Electric Ind Ltd Method for manufacturing silicon carbide single crystal
JP2014108915A (en) * 2012-12-04 2014-06-12 Nippon Steel & Sumitomo Metal Production method of silicon carbide single crystal, and production apparatus therefor
JP2022041903A (en) * 2020-08-31 2022-03-11 セニック・インコーポレイテッド Method for manufacturing silicon carbide ingot and silicon carbide ingot manufactured thereby
CN115261977A (en) * 2022-08-04 2022-11-01 福建北电新材料科技有限公司 Silicon carbide pretreatment method and device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0710697A (en) * 1993-06-28 1995-01-13 Nisshin Steel Co Ltd Device for producing silicon carbide single crystal
JP2003104798A (en) * 2001-09-28 2003-04-09 Nippon Steel Corp Silicon carbide single crystal and its manufacturing method and raw material for silicon carbide crystal for growing silicon carbide single crystal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0710697A (en) * 1993-06-28 1995-01-13 Nisshin Steel Co Ltd Device for producing silicon carbide single crystal
JP2003104798A (en) * 2001-09-28 2003-04-09 Nippon Steel Corp Silicon carbide single crystal and its manufacturing method and raw material for silicon carbide crystal for growing silicon carbide single crystal

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007314358A (en) * 2006-05-23 2007-12-06 Bridgestone Corp Apparatus and method for producing silicon carbide single crystal
JP2008074662A (en) * 2006-09-21 2008-04-03 Nippon Steel Corp Apparatus for producing silicon carbide single crystal
JP2010076991A (en) * 2008-09-26 2010-04-08 Bridgestone Corp Manufacturing apparatus for silicon carbide single crystal and manufacturing method of silicon carbide single crystal
KR101227044B1 (en) 2009-12-15 2013-01-28 각코호진 시바우라고교다이가쿠 Method for calculating temperature distribution in crucible
CN102341355A (en) * 2009-12-15 2012-02-01 日本超精石英株式会社 Method for calculating temperature distribution in crucible
JP4875230B2 (en) * 2009-12-15 2012-02-15 ジャパンスーパークォーツ株式会社 Crucible temperature distribution calculation method
WO2011074588A1 (en) * 2009-12-15 2011-06-23 ジャパンスーパークォーツ株式会社 Method for calculating temperature distribution in crucible
TWI425124B (en) * 2009-12-15 2014-02-01 Japan Super Quartz Corp Calculation method of crucible temperature distribution
US8774959B2 (en) 2009-12-15 2014-07-08 Japan Super Quartz Corporation Method of calculating temperature distribution of crucible
JP2013212952A (en) * 2012-04-02 2013-10-17 Sumitomo Electric Ind Ltd Method for manufacturing silicon carbide single crystal
JP2014108915A (en) * 2012-12-04 2014-06-12 Nippon Steel & Sumitomo Metal Production method of silicon carbide single crystal, and production apparatus therefor
JP2022041903A (en) * 2020-08-31 2022-03-11 セニック・インコーポレイテッド Method for manufacturing silicon carbide ingot and silicon carbide ingot manufactured thereby
JP7057014B2 (en) 2020-08-31 2022-04-19 セニック・インコーポレイテッド A method for manufacturing a silicon carbide ingot and a silicon carbide ingot manufactured by the method.
US11339497B2 (en) 2020-08-31 2022-05-24 Senic Inc. Silicon carbide ingot manufacturing method and silicon carbide ingot manufactured thereby
CN115261977A (en) * 2022-08-04 2022-11-01 福建北电新材料科技有限公司 Silicon carbide pretreatment method and device

Similar Documents

Publication Publication Date Title
JP4388538B2 (en) Silicon carbide single crystal manufacturing equipment
JP5402798B2 (en) Method for producing silicon carbide single crystal ingot
JP6111873B2 (en) Method for producing silicon carbide single crystal ingot
JP6861555B2 (en) Silicon Carbide Single Crystal Ingot Manufacturing Equipment and Manufacturing Method
JP6338439B2 (en) Method for producing silicon carbide single crystal ingot
KR20110112410A (en) Crucible, apparatus, and method for producing silicon carbide single crystals
WO2016152813A1 (en) Method for producing silicon carbide single crystal
JP4954596B2 (en) Method for producing silicon carbide single crystal ingot
JP2006131433A (en) Method of producing silicon carbide single crystal
JP5375783B2 (en) Method for producing silicon carbide single crystal
JP6015397B2 (en) Method for manufacturing silicon carbide single crystal and apparatus for manufacturing the same
JP6321836B2 (en) Silicon carbide crystal ingot, silicon carbide wafer, silicon carbide crystal ingot, and method of manufacturing silicon carbide wafer
JP6681687B2 (en) Graphite crucible for producing silicon carbide single crystal ingot and method for producing silicon carbide single crystal ingot
JP2006096578A (en) Method for producing silicon carbide single crystal and ingot of silicon carbide single crystal
JP6910168B2 (en) Silicon Carbide Single Crystal Ingot Manufacturing Equipment and Manufacturing Method
WO2009107188A1 (en) METHOD FOR GROWING SINGLE CRYSTAL SiC
JP5167947B2 (en) Method for producing silicon carbide single crystal thin film
JP4833780B2 (en) Lid graphite crucible and silicon carbide single crystal growth apparatus
JP2018140903A (en) Method for manufacturing silicon carbide single crystal ingot
JP6335716B2 (en) Method for producing silicon carbide single crystal ingot
JP7056979B2 (en) Silicon Carbide Ingot Manufacturing Method and Silicon Carbide Ingot Manufacturing System
JP5761264B2 (en) Method for manufacturing SiC substrate
JP6190070B2 (en) Crystal production method
JP6424806B2 (en) Method of manufacturing SiC single crystal
JP2008280206A (en) Single crystal growing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090721

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090915

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100915

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100928

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20110401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120723