JPH06191998A - Method for growing silicon carbide single crystal and device for growing the same - Google Patents

Method for growing silicon carbide single crystal and device for growing the same

Info

Publication number
JPH06191998A
JPH06191998A JP34297892A JP34297892A JPH06191998A JP H06191998 A JPH06191998 A JP H06191998A JP 34297892 A JP34297892 A JP 34297892A JP 34297892 A JP34297892 A JP 34297892A JP H06191998 A JPH06191998 A JP H06191998A
Authority
JP
Japan
Prior art keywords
silicon carbide
crucible
single crystal
crystal
carbide single
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34297892A
Other languages
Japanese (ja)
Inventor
Yoshimitsu Tajima
善光 田島
Masaki Furukawa
勝紀 古川
Akira Suzuki
彰 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP34297892A priority Critical patent/JPH06191998A/en
Publication of JPH06191998A publication Critical patent/JPH06191998A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PURPOSE:To save labors for judging the direction of the crystal on the cutting and grinding of the crystal and simplify a process for producing crystal products by subliming silicon carbide raw material powder for the growth of the crystal on a substrate under prescribed conditions in a crucible having a prescribed inner shape. CONSTITUTION:A crucible 1 having a structure in which a part of the cylindrical shape wall of the crucible 1 is flat, the flat part being tilted from the opening side of the crucible toward its bottom side, is prepared. The substrate 3 of a seed crystal is attached to the lid 2 of the crucible 1 so that the direction of the crystal is directed in the rectangular direction against the flat part. The crucible 1 is held at a temperature of 2100-2400 deg.C in an inert gas atmosphere having a pressure of <=27Kpa to sublime the silicon carbide raw material powder 4 charged onto the bottom of the crucible and to grow a silicon carbide single crystal on the substrate 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高品質の炭化珪素単結
晶の成長方法及び成長装置に係り、特に、青色の発光ダ
イオード等の大面積で均質性に富んだ炭化珪素単結晶を
効率良く成長させるための成長方法及び成長装置に係
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for growing a high-quality silicon carbide single crystal, and more particularly to efficiently producing a large area and highly homogeneous silicon carbide single crystal such as a blue light emitting diode. The present invention relates to a growth method and a growth apparatus for growing.

【0002】[0002]

【従来の技術】炭化珪素は、対酸性、対アルカリ性等の
耐薬品性に優れ、且つ高エネルギー線に対する損傷も受
け難い耐久性に優れた材料であり、半導体材料としても
広く使用されている。炭化珪素単結晶は多形という特色
を有し、その多形に従って禁制帯幅を2.2eVから
3.3eVまで任意に選択できるため、またその動作可
能な温度領域も他の材料に比べて極めて範囲が広いた
め、半導体材料への炭化珪素の使用は古く1960年代
以前から行われている。ここで、多形とは化学組成が同
一で結晶構造が異なる現象、またはその現象を示す材料
をいう。
2. Description of the Related Art Silicon carbide is a material which is excellent in chemical resistance such as acid resistance and alkali resistance, and is excellent in durability which is not easily damaged by high energy rays, and is widely used as a semiconductor material. Silicon carbide single crystal has a characteristic of polymorphism, and the forbidden band width can be arbitrarily selected from 2.2 eV to 3.3 eV according to the polymorphism, and its operable temperature range is also extremely higher than that of other materials. Due to its wide range, the use of silicon carbide in semiconductor materials has long been in use before the 1960s. Here, the polymorph means a material having the same chemical composition but different crystal structure, or a material exhibiting the phenomenon.

【0003】ところで、炭化珪素を産業上利用するため
には、ある程度の大きさを有する高品質な単結晶である
ことが要求される。このため従来、アチエソン法と呼ば
れている化学反応を利用するか、又はレーリー法と呼ば
れる昇華再結晶法を利用して目的規模の大きさに単結晶
を成長させる方法、或はこれらの方法により得られた炭
化珪素の単結晶を基板として用い、その基板上に気相エ
ピタキシャル成長法、或は液相エピタキシャル成長法に
より炭化珪素を成長させ、目的規模の単結晶を得る方法
が採用されていた。
By the way, in order to industrially utilize silicon carbide, it is required to be a high quality single crystal having a certain size. Therefore, conventionally, by utilizing a chemical reaction called the Athison method, or by using a sublimation recrystallization method called the Rayleigh method to grow a single crystal to the size of the target scale, or by these methods A method has been adopted in which the obtained single crystal of silicon carbide is used as a substrate and silicon carbide is grown on the substrate by a vapor phase epitaxial growth method or a liquid phase epitaxial growth method to obtain a target single crystal.

【0004】特に、バルク状の単結晶を成長させる手段
として、黒鉛製の坩堝の中で、ある適当な大きさの炭化
珪素の単結晶を種結晶とし、原料炭化珪素粉末を減圧雰
囲気中で昇華させ、種結晶上に再結晶させ結晶成長させ
る改良型レーリー法が、広く一般的に用いられている。
In particular, as a means for growing a bulk single crystal, a silicon carbide single crystal of a certain suitable size is used as a seed crystal in a graphite crucible, and the raw material silicon carbide powder is sublimated in a reduced pressure atmosphere. The improved Rayleigh method in which the crystals are recrystallized on a seed crystal and grown is widely used.

【0005】[0005]

【発明が解決しようとする課題】例えば、特公昭59−
48792に示すような従来の方法では良質な単結晶を
得ることが可能である。しかし、結晶成長として得られ
る炭化珪素結晶はほぼ円筒形に近い形状となっており、
成長の結果として得られた結晶を、一旦、成長装置から
外してしまうと結晶の方位が不明瞭となって不都合であ
る。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
The conventional method as shown in 48792 makes it possible to obtain a good quality single crystal. However, the silicon carbide crystal obtained by crystal growth has a shape close to a cylinder,
Once the crystal obtained as a result of growth is removed from the growth apparatus, the crystal orientation is unclear, which is inconvenient.

【0006】炭化珪素基板上に炭化珪素を気相エピタキ
シャル成長する場合基板の結晶面方位によりエピタキシ
ャル成長して得られる結晶膜の表面モルフォロジーや結
晶性に著しい差異の現れることがよく知られている
[S.Nishino et al.、Late Ne
ws Abst.、16th Conf.SSDM、L
D−1−4(1984).]。従って、炭化珪素基板の
面方位の選択には、厳密な正確さが要求される。
It is well known that in the case of vapor phase epitaxial growth of silicon carbide on a silicon carbide substrate, a significant difference appears in the surface morphology and crystallinity of the crystal film obtained by epitaxial growth depending on the crystal plane orientation of the substrate [S. Nishino et al. , Late Ne
ws Abst. , 16th Conf. SSDM, L
D-1-4 (1984). ]. Therefore, strict accuracy is required for selecting the plane orientation of the silicon carbide substrate.

【0007】よって、成長して得られた炭化珪素単結晶
インゴットから特定の結晶面の平面が出ているウェハー
(特に、ある結晶面の特定の方向に数度だけ傾斜したウ
ェハー)を得るために、X線回折法による結晶面方位決
定をした後、結晶の切断、及び、研磨をするという大変
繁雑な工程を経なければならず、不経済であった。
Therefore, in order to obtain a wafer having a plane of a specific crystal plane from the grown silicon carbide single crystal ingot (in particular, a wafer inclined by a few degrees in a specific direction of a certain crystal plane). After the crystal plane orientation was determined by the X-ray diffraction method, a very complicated process of cutting and polishing the crystal had to be performed, which was uneconomical.

【0008】本発明は、係る課題を解決すべくなされた
ものであり、特定の結晶面が厳密に決定されたウェハー
結晶を制御性よく、且つ、効率的に形成できる炭化珪素
単結晶の成長方法及び成長装置を提供することを目的と
する。
The present invention has been made to solve the above problems, and is a method for growing a silicon carbide single crystal capable of efficiently forming a wafer crystal in which a specific crystal plane is strictly determined with good controllability. And a growth apparatus.

【0009】[0009]

【課題を解決するための手段】本発明は上記の目的達成
するため、以下に示す成長方法および成長装置により構
成される。
In order to achieve the above object, the present invention comprises the following growth method and growth apparatus.

【0010】本発明は、黒鉛製坩堝内において炭化珪素
粉末を不活性雰囲気中で昇華させて、炭化珪素単結晶基
板上に炭化珪素単結晶を成長させる方法において、黒鉛
製坩堝の円筒形内部構造の一部分が平坦構造をなし、そ
の平坦部分が坩堝開口部側から坩堝底部側に向かって傾
斜した構造を有する坩堝を用い、該坩堝の平坦部に対し
直角方向に合わされた炭化珪素の種結晶を設置し、不活
性ガス雰囲気中で目的の温度に加熱保持し、かつ、坩堝
蓋体および蓋体に取り付けられた炭化珪素単結晶基板を
坩堝底部に充填された炭化珪素原料粉末よりも低い温度
に保持して、減圧雰囲気中で炭化珪素単結晶基板上に炭
素珪素単結晶を成長することを特徴とする。
The present invention is a method for growing a silicon carbide single crystal on a silicon carbide single crystal substrate by sublimating silicon carbide powder in an inert atmosphere in a graphite crucible, wherein the graphite crucible has a cylindrical internal structure. Part of which has a flat structure, and the flat part has a structure in which the flat part is inclined from the crucible opening side toward the crucible bottom side, and a seed crystal of silicon carbide fitted in a direction perpendicular to the flat part of the crucible is used. Installed, heated and maintained at a desired temperature in an inert gas atmosphere, and the crucible lid and the silicon carbide single crystal substrate attached to the lid are heated to a temperature lower than that of the silicon carbide raw material powder filled in the bottom of the crucible. It is characterized by holding and growing a silicon carbide single crystal on a silicon carbide single crystal substrate in a reduced pressure atmosphere.

【0011】特に、バンドギャップの大きく(言い換え
ると4Hや6Hの結晶多形)、高品質な炭化珪素を得る
ためには、上記記載の炭化珪素単結晶の成長方法におい
て、炭化珪素の種結晶を設置した不活性ガス雰囲気を2
100〜2400℃の温度に加熱保持し、27kPa以
下の減圧雰囲気中で炭化珪素単結晶基板上に炭素珪素単
結晶を成長することを特徴とする。
In particular, in order to obtain high-quality silicon carbide having a large band gap (in other words, 4H or 6H polymorph), a seed crystal of silicon carbide is used in the above-mentioned method for growing a silicon carbide single crystal. Set the inert gas atmosphere to 2
The method is characterized in that the silicon carbide single crystal is grown on a silicon carbide single crystal substrate in a reduced pressure atmosphere of 27 kPa or less by heating and holding at a temperature of 100 to 2400 ° C.

【0012】さらに、その成長装置は円筒形内部構造の
一部分が平坦構造をなし、その平坦部分が坩堝の開口部
側から坩堝底部側に向って傾斜した構造を有する黒鉛製
の坩堝本体と、内面側に炭化珪素単結晶基板が取り付け
られる黒鉛製の坩堝蓋体と、該黒鉛製の坩堝組体を加
熱、及び、温度維持する手段と、該黒鉛製の坩堝組体を
高真空雰囲気、乃至、不活性ガス雰囲気に維持・制御す
る手段とで構成されることを特徴とする。
Further, in the growth apparatus, a part of the cylindrical internal structure is a flat structure, and the flat part has a structure in which the flat part is inclined from the opening side of the crucible toward the crucible bottom side, and the inner surface of the crucible. A graphite crucible lid body to which the silicon carbide single crystal substrate is attached to the side, heating the graphite crucible assembly, and means for maintaining the temperature, a high vacuum atmosphere for the graphite crucible assembly, or, And a means for maintaining and controlling in an inert gas atmosphere.

【0013】[0013]

【作用】本発明による炭化珪素単結晶の成長原理は、黒
鉛製の坩堝の内部において、炭化珪素粉末を不活性ガス
の減圧雰囲気中で昇華させ坩堝の蓋部に取り付けられた
炭化珪素の種結晶基板上に再結晶させることで単結晶を
成長させることである。
The principle of growth of a silicon carbide single crystal according to the present invention is that a silicon carbide seed crystal attached to the lid of a crucible is obtained by sublimating silicon carbide powder in a depressurized atmosphere of an inert gas inside a graphite crucible. The purpose is to grow a single crystal by recrystallization on a substrate.

【0014】そして、種結晶をもとに昇華再結晶化する
ことで結晶は種結晶に対して、垂直方向(直交座標系で
Z軸方向と仮定すると)のみならず、2つの水平方向
(X軸方向とY軸方向になる)にも自由に広がった成長
が行われる。しかし、坩堝の内径と種結晶の大きさとの
関係により、自由な成長が妨げられる領域ができてくる
が、結晶はその坩堝形状に沿った形状でしか成長できな
い。よって、本発明では前記現象を利用し、自由な成長
が坩堝形状により妨げられる部分に、予め平坦な壁構造
を形成しておくことで、図3に示すような形状の結晶を
得ることができる。
By sublimation recrystallization based on the seed crystal, the crystal is not only perpendicular to the seed crystal (assuming the Z-axis direction in the Cartesian coordinate system) but also two horizontal directions (X The growth is also freely spread in the axial direction and the Y-axis direction). However, due to the relationship between the inner diameter of the crucible and the size of the seed crystal, a region where free growth is hindered is created, but the crystal can only grow in a shape along the crucible shape. Therefore, in the present invention, a crystal having a shape as shown in FIG. 3 can be obtained by utilizing the above phenomenon and forming a flat wall structure in advance in a portion where free growth is hindered by the crucible shape. .

【0015】即ち、成長した結晶の自由な結晶が妨げら
れた部分(図3の斜線部分)と種結晶の結晶方位は一致
するため、種結晶を取り付ける際に結晶方位に注意すれ
ば、平坦部分の結晶面を制御出来ることになる。言い換
えると、単結晶の結晶方位をX線回折方法で調べること
なく結晶方位を知ることができ、該バルク単結晶を目的
方向に切断し、研磨することで、作業性良く、且つ、安
価に半導体デバイスの成長に適した炭化珪素単結晶ウェ
ハーを供給することができる。
That is, since the crystal orientation of the seed crystal coincides with the portion of the grown crystal where the free crystal is obstructed (hatched portion in FIG. 3), if the crystal orientation is attached when the seed crystal is attached, the flat portion The crystal plane of can be controlled. In other words, it is possible to know the crystal orientation of a single crystal without investigating the crystal orientation of the single crystal by an X-ray diffraction method, and by cutting the bulk single crystal in a target direction and polishing it, it is possible to obtain a semiconductor with good workability and at low cost. A silicon carbide single crystal wafer suitable for device growth can be supplied.

【0016】[0016]

【実施例】以下、本発明を図1及び図2を参照しながら
詳細に説明する。図1は炭素珪素単結晶の成長セルの概
略図であり、図2は成長装置の該略図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to FIGS. FIG. 1 is a schematic view of a carbon-silicon single crystal growth cell, and FIG. 2 is a schematic view of a growth apparatus.

【0017】まず、炭化珪素の(00・1)面が<11
・0>方向に5°オフした基板で、かつ結晶多形が6H
の炭化珪素単結晶を得るための実施例を示す。図1及び
図2に示すように、平坦部が開口部から底部に向って5
°だけ傾斜した構造の黒鉛製の坩堝体1を用いて、炭化
珪素単結晶の成長を行った。炭化珪素の原料粉末4に
は、研磨材料として市販されている#240番(平均粒
径が約30μm)の炭化珪素粉末を空気中で酸化した後
に、弗化水素酸中で1時間撹拌し、原料中に混入してい
る遷移金属系の不純物元素を溶解除去した後、水による
デカンテーションで十分な洗浄を行い、減圧雰囲気中で
加熱乾燥した。予め、2000℃の高温度で1時間高真
空雰囲気中で熱処理した黒鉛製坩堝1に前記酸処理を施
した原料炭化珪素粉末4を充填し、排気装置5により高
真空にし、高周波誘導加熱炉6を用い、1500℃に3
0分間加熱保持して高温加熱真空熱処理を行なった。
First, the (00.1) plane of silicon carbide is <11.
・ The substrate is 5 ° off in the 0> direction, and the crystal polymorphism is 6H.
An example for obtaining the above silicon carbide single crystal is shown. As shown in FIGS. 1 and 2, the flat portion extends from the opening toward the bottom.
Using a graphite crucible body 1 having a structure inclined at an angle of °, a silicon carbide single crystal was grown. As raw material powder 4 of silicon carbide, commercially available # 240 silicon carbide powder (having an average particle diameter of about 30 μm) as a polishing material was oxidized in air and then stirred in hydrofluoric acid for 1 hour. After the transition metal-based impurity element mixed in the raw material was dissolved and removed, it was sufficiently washed by decantation with water, and dried by heating in a reduced pressure atmosphere. A graphite crucible 1 previously heat-treated at a high temperature of 2000 ° C. for 1 hour in a high vacuum atmosphere was filled with the above-mentioned acid-treated raw material silicon carbide powder 4, and a high-vacuum induction furnace 5 was provided with a high vacuum by an exhaust device 5. To 1500 ° C for 3
A high temperature heating vacuum heat treatment was performed by heating and holding for 0 minutes.

【0018】他方、種結晶である炭化珪素単結晶基板3
には、炭化珪素研磨材を工業的に製造する過程で副次的
に得られた単結晶を種結晶にして、昇華再結晶法により
得られたキャリア濃度の極めて少ない単結晶を切り出
し、研磨し、湿潤酸素雰囲気中で熱酸化して研磨傷を取
り除き、酸による表面処理を施した後、水洗、乾燥した
ものを用いた。
On the other hand, a silicon carbide single crystal substrate 3 which is a seed crystal
In addition, a single crystal obtained as a by-product in the process of industrially manufacturing a silicon carbide abrasive is used as a seed crystal, and a single crystal with an extremely low carrier concentration obtained by the sublimation recrystallization method is cut out and polished. The product was thermally oxidized in a wet oxygen atmosphere to remove polishing scratches, surface-treated with an acid, washed with water and dried.

【0019】原料炭化珪素粉末の高温加熱真空処理した
単結晶成長装置1の蓋体2に種結晶基板を結晶の<11
・0>方向が、坩堝の平坦部に対し直角方向になるよう
に取り付け、単結晶成長装置1、及びチャンバー7を8
0μPa(0.6μTorr)の真空度にまで高真空排
気装置5を用いて排気し、残留ガスを除去した。雰囲気
ガス供給装置8により高純度のArガスをチャンバー7
内に導入し、93kPa(700Torr)の圧力で、
ガス流量が200sccmの流速となるように圧力制御
装置9を用いて制御し、高周波誘導加熱装置6により坩
堝蓋体2の表面温度が2100℃となるように放射温度
計10で測温し、温度制御装置11、及び、保温材12
を用いて、温度が±3℃以内なるように制御加熱した系
全体が定常状態になるまで約30分間この状態を維持し
た。その後、圧力制御装置9を操作して雰囲気圧力を3
0分の時間をかけて、4.6kPa(35Torr)に
まで徐々に減圧した。この圧力雰囲気で4時間の結晶成
長を行なったところ、長さ10mmのバルク結晶が得ら
れた。
The seed crystal substrate is placed on the lid 2 of the single crystal growth apparatus 1 in which the raw material silicon carbide powder is heated and vacuum-treated at a high temperature <11.
-Install so that the 0> direction is perpendicular to the flat part of the crucible, and set the single crystal growth apparatus 1 and the chamber 7 to 8
The residual gas was removed by evacuation to a vacuum degree of 0 μPa (0.6 μTorr) using the high vacuum evacuation device 5. High-purity Ar gas is supplied to the chamber 7 by the atmosphere gas supply device 8.
Introduced inside, at a pressure of 93 kPa (700 Torr),
The gas flow rate is controlled using the pressure control device 9 so that the flow rate is 200 sccm, and the radiation thermometer 10 measures the surface temperature of the crucible lid body 2 by the high frequency induction heating device 6 to 2100 ° C. Control device 11 and heat insulating material 12
This was maintained for about 30 minutes until the whole system, which was controlled and heated so that the temperature was within ± 3 ° C., reached a steady state. Then, the pressure control device 9 is operated to reduce the atmospheric pressure to 3
The pressure was gradually reduced to 4.6 kPa (35 Torr) over a period of 0 minutes. When crystal growth was carried out for 4 hours in this pressure atmosphere, a bulk crystal having a length of 10 mm was obtained.

【0020】得られた結晶を坩堝から取り出したとこ
ろ、図3の斜線で示したように一部分が平坦となってい
る円筒状結晶であった。図3の斜線部分をX線回折装置
により、結晶面の方位を調べたところ(11・0)面が
<00・1>方向に5°だけ傾斜した面であることがわ
かった。
When the obtained crystal was taken out from the crucible, it was a cylindrical crystal having a flat part as shown by the slanted lines in FIG. When the crystallographic orientation of the shaded area in FIG. 3 was examined by an X-ray diffractometer, it was found that the (11.0) plane was a plane tilted by 5 ° in the <00.1> direction.

【0021】次に、この結晶の平坦となっている部分
(図3の斜線部分)で固定して、切断機で切断した後、
表面粗さが1μm以下にまで研磨した厚さ0.5mmの
平板状のウェハー結晶を作製した。このウェハーを湿潤
酸素雰囲気で熱酸化後、酸処理により表面処理を施して
から、X線回折装置により結晶面の方位を調べた。その
結果、このウェハーの面は、(00・1)面が<11・
0>方向に5°だけ傾斜した面であることが判った。
Next, after fixing the flat portion (hatched portion in FIG. 3) of this crystal and cutting it with a cutting machine,
A flat wafer crystal having a thickness of 0.5 mm was prepared by polishing the surface roughness to 1 μm or less. This wafer was subjected to thermal oxidation in a wet oxygen atmosphere, surface treatment by acid treatment, and then the orientation of crystal planes was examined by an X-ray diffractometer. As a result, the surface of this wafer is <11.
It was found that the surface was inclined by 5 ° in the 0> direction.

【0022】前記実施例においては、(00・1)面が
<11・0>方向に5°だけ傾斜した面を得るための成
長方法と成長装置を説明したが、本発明はこれに限られ
ることはなく、平坦部が開口部から底部に向って何度傾
斜した構造の黒鉛製の坩堝体を用いるかにより、目的に
応じ任意に設定することが可能である。
Although the growth method and the growth apparatus for obtaining the plane in which the (00.1) plane is inclined by 5 ° in the <11.0> direction have been described in the above embodiments, the present invention is not limited to this. However, the flat portion can be arbitrarily set according to the purpose depending on how many times the graphite crucible having the structure in which the flat portion is inclined from the opening to the bottom is used.

【0023】一般に、炭化珪素の昇華再結晶法による結
晶の成長速度は成長雰囲気圧力により左右されることが
知られているが、さらに、本発明における成長方法の研
究の結果、特に今目的とするバンドギャップが大きく高
品質な炭化珪素、言い換えると3Cが含まれず、4H、
もしくは6Hの単一の結晶多形のみで構成される炭化珪
素単結晶を得るためには、本発明における成長方法にお
いて、炭化珪素の種結晶を設置した不活性ガス雰囲気を
2100〜2400℃の温度に加熱保持し、27kPa
以下の減圧雰囲気中で炭化珪素単結晶基板上に炭素珪素
単結晶を成長することが望ましいことがわかった。
In general, it is known that the growth rate of crystals by the sublimation recrystallization method of silicon carbide depends on the pressure of the growth atmosphere. Furthermore, as a result of the research on the growth method in the present invention, it is aimed at now. High-quality silicon carbide with a large band gap, in other words, 3C is not included, 4H,
Alternatively, in order to obtain a silicon carbide single crystal composed of only a single crystal polymorph of 6H, in the growth method of the present invention, an inert gas atmosphere in which a seed crystal of silicon carbide is installed is set to a temperature of 2100 to 2400 ° C. Heated and held at 27 kPa
It has been found that it is desirable to grow a silicon carbide single crystal on a silicon carbide single crystal substrate in the following reduced pressure atmosphere.

【0024】[0024]

【発明の効果】本発明によれば、結晶の方位判定といっ
た工程を経ることなく、大面積の炭化珪素単結晶ウェハ
ーが得ることができるため、従来必要であった繁雑な工
程を省くことができる。つまり、簡便な成長方法により
安価に半導体部品形成用に適した基板を供給することが
可能となる。
According to the present invention, a large-area silicon carbide single crystal wafer can be obtained without going through a process such as crystal orientation determination, and thus the complicated process which is conventionally required can be omitted. . That is, it becomes possible to inexpensively supply a substrate suitable for semiconductor component formation by a simple growth method.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例で使用した炭化珪素単結晶の成
長セルの概略図である。
FIG. 1 is a schematic view of a silicon carbide single crystal growth cell used in an example of the present invention.

【図2】本発明の実施例で使用した結晶成長システムの
概略図である。
FIG. 2 is a schematic view of a crystal growth system used in an example of the present invention.

【図3】本発明実施例で得られたバルク単結晶インゴッ
トの概略図である。
FIG. 3 is a schematic view of a bulk single crystal ingot obtained in an example of the present invention.

【符号の説明】[Explanation of symbols]

1 黒鉛製坩堝体 2 黒鉛製坩堝蓋体 3 炭化珪素単結晶基板 4 炭化珪素原料粉末 5 真空排気装置 6 高周波誘導加熱装置 7 チャンバー 8 雰囲気ガス供給装置 9 圧力制御装置 10 放射温度計 11 温度制御装置 12 保温材 1 Graphite Crucible 2 Graphite Crucible Lid 3 Silicon Carbide Single Crystal Substrate 4 Silicon Carbide Raw Material Powder 5 Vacuum Evacuation Device 6 High Frequency Induction Heating Device 7 Chamber 8 Atmosphere Gas Supply Device 9 Pressure Control Device 10 Radiation Thermometer 11 Temperature Control Device 12 Thermal insulation

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 黒鉛製坩堝内において炭化珪素粉末を不
活性雰囲気中で昇華させて、炭化珪素単結晶基板上に炭
化珪素単結晶を成長させる方法において、黒鉛製坩堝の
円筒形内部構造の一部分が平坦構造をなし、その平坦部
分が坩堝開口部側から坩堝底部側に向かって傾斜した構
造を有する坩堝を用い、該坩堝の平坦部に対し直角方向
に合わされた炭化珪素の種結晶を設置し、不活性ガス雰
囲気中で目的の温度に加熱保持し、かつ、坩堝蓋体およ
び蓋体に取り付けられた炭化珪素単結晶基板を坩堝底部
に充填された炭化珪素原料粉末よりも低い温度に保持し
て、減圧雰囲気中で炭化珪素単結晶基板上に炭素珪素単
結晶を成長することを特徴とする炭化珪素単結晶の成長
方法。
1. A method for growing a silicon carbide single crystal on a silicon carbide single crystal substrate by sublimating silicon carbide powder in an inert atmosphere in a graphite crucible, wherein a part of a cylindrical internal structure of the graphite crucible is provided. Using a crucible having a flat structure, the flat portion of which has a structure inclined from the crucible opening side toward the crucible bottom side, and a silicon carbide seed crystal aligned in a direction perpendicular to the flat portion of the crucible is installed. , Heating and holding at a desired temperature in an inert gas atmosphere, and holding the crucible lid and the silicon carbide single crystal substrate attached to the lid at a temperature lower than the silicon carbide raw material powder filled in the bottom of the crucible. And growing a silicon carbide single crystal on a silicon carbide single crystal substrate in a reduced pressure atmosphere.
【請求項2】 請求項1記載の炭化珪素単結晶の成長方
法において、炭化珪素の種結晶を設置した不活性ガス雰
囲気を2100〜2400℃の温度に加熱保持し、27
kPa以下の減圧雰囲気中で炭化珪素単結晶基板上に炭
素珪素単結晶を成長することを特徴とする炭化珪素単結
晶の成長方法。
2. The method for growing a silicon carbide single crystal according to claim 1, wherein an inert gas atmosphere in which a seed crystal of silicon carbide is installed is heated and maintained at a temperature of 2100 to 2400 ° C., and 27
A method for growing a silicon carbide single crystal, which comprises growing a silicon carbide single crystal on a silicon carbide single crystal substrate in a reduced pressure atmosphere of kPa or less.
【請求項3】 円筒形内部構造の一部分が平坦構造をな
し、その平坦部分が坩堝の開口部側から坩堝底部側に向
って傾斜した構造を有する黒鉛製の坩堝本体と、内面側
に炭化珪素単結晶基板が取り付けられる黒鉛製の坩堝蓋
体と、該黒鉛製の坩堝組体を加熱、及び、温度維持する
手段と、該黒鉛製の坩堝組体を高真空雰囲気、乃至、不
活性ガス雰囲気に維持・制御する手段と、で構成される
ことを特徴とする炭化珪素単結晶の成長装置。
3. A crucible body made of graphite having a structure in which a part of a cylindrical internal structure has a flat structure, and the flat part is inclined from the opening side of the crucible toward the crucible bottom side, and silicon carbide is provided on the inner surface side. A graphite crucible lid to which the single crystal substrate is attached, a means for heating the graphite crucible assembly, and maintaining the temperature, a high vacuum atmosphere for the graphite crucible assembly, or an inert gas atmosphere And a means for maintaining and controlling the silicon carbide single crystal growth apparatus.
JP34297892A 1992-12-24 1992-12-24 Method for growing silicon carbide single crystal and device for growing the same Pending JPH06191998A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34297892A JPH06191998A (en) 1992-12-24 1992-12-24 Method for growing silicon carbide single crystal and device for growing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34297892A JPH06191998A (en) 1992-12-24 1992-12-24 Method for growing silicon carbide single crystal and device for growing the same

Publications (1)

Publication Number Publication Date
JPH06191998A true JPH06191998A (en) 1994-07-12

Family

ID=18357987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34297892A Pending JPH06191998A (en) 1992-12-24 1992-12-24 Method for growing silicon carbide single crystal and device for growing the same

Country Status (1)

Country Link
JP (1) JPH06191998A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007230846A (en) * 2006-03-03 2007-09-13 Matsushita Electric Ind Co Ltd Crucible for single crystal producing apparatus
JP2009269776A (en) * 2008-05-01 2009-11-19 Bridgestone Corp Apparatus and method for growing single crystal
KR20130073696A (en) * 2011-12-23 2013-07-03 엘지이노텍 주식회사 Apparatus for fabricating ingot and method for fabricating ingot
KR20130074705A (en) * 2011-12-26 2013-07-04 엘지이노텍 주식회사 Apparatus and method for fabricating single crystal
US20200224328A1 (en) * 2019-01-10 2020-07-16 Showa Denko K.K. SiC SINGLE CRYSTAL GROWTH CRUCIBLE, SiC SINGLE CRYSTAL MANUFACTURING METHOD, AND SiC SINGLE CRYSTAL MANUFACTURING APPARATUS
JP2021070623A (en) * 2019-10-29 2021-05-06 エスケイシー・カンパニー・リミテッドSkc Co., Ltd. Silicon carbide wafer, method of manufacturing silicon carbide ingot, and method of manufacturing silicon carbide wafer
CN115434007A (en) * 2022-08-29 2022-12-06 福建北电新材料科技有限公司 Crucible structure and crystal growth apparatus

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007230846A (en) * 2006-03-03 2007-09-13 Matsushita Electric Ind Co Ltd Crucible for single crystal producing apparatus
JP2009269776A (en) * 2008-05-01 2009-11-19 Bridgestone Corp Apparatus and method for growing single crystal
KR20130073696A (en) * 2011-12-23 2013-07-03 엘지이노텍 주식회사 Apparatus for fabricating ingot and method for fabricating ingot
KR20130074705A (en) * 2011-12-26 2013-07-04 엘지이노텍 주식회사 Apparatus and method for fabricating single crystal
US20200224328A1 (en) * 2019-01-10 2020-07-16 Showa Denko K.K. SiC SINGLE CRYSTAL GROWTH CRUCIBLE, SiC SINGLE CRYSTAL MANUFACTURING METHOD, AND SiC SINGLE CRYSTAL MANUFACTURING APPARATUS
US11946156B2 (en) * 2019-01-10 2024-04-02 Resonac Corporation SiC single crystal growth crucible, SiC single crystal manufacturing method, and SiC single crystal manufacturing apparatus
JP2021070623A (en) * 2019-10-29 2021-05-06 エスケイシー・カンパニー・リミテッドSkc Co., Ltd. Silicon carbide wafer, method of manufacturing silicon carbide ingot, and method of manufacturing silicon carbide wafer
US11474012B2 (en) 2019-10-29 2022-10-18 Senic Inc. Method for preparing silicon carbide wafer and silicon carbide wafer
CN115434007A (en) * 2022-08-29 2022-12-06 福建北电新材料科技有限公司 Crucible structure and crystal growth apparatus

Similar Documents

Publication Publication Date Title
JP5779171B2 (en) Method and apparatus for sublimation growth of SiC single crystal
US6391109B2 (en) Method of making SiC single crystal and apparatus for making SiC single crystal
JP2804860B2 (en) SiC single crystal and growth method thereof
JP3165685B2 (en) Sublimation growth of silicon carbide single crystal
US20060174826A1 (en) Tantalum based crucible
JPH06316499A (en) Production of sic single crystal
WO2006070480A1 (en) Silicon carbide single crystal, silicon carbide single crystal wafer, and process for producing the same
JP4733882B2 (en) Silicon carbide single crystal, method for producing the same, and silicon carbide crystal raw material for growing silicon carbide single crystal
JP3637157B2 (en) Method for producing silicon carbide single crystal and seed crystal used therefor
JP3491436B2 (en) Method for producing silicon carbide single crystal
JPH06191998A (en) Method for growing silicon carbide single crystal and device for growing the same
JPH0230699A (en) Growing method of silicon carbide single crystal and device therefor
JPH04292499A (en) Production of silicon carbide single crystal
JP2868328B2 (en) Method for producing large diameter silicon carbide single crystal ingot and silicon carbide single crystal for seed crystal
JPH05178698A (en) Apparatus and process for production of silicon carbide bulk single crystal
JPH0412096A (en) Method for growing 6h-type and 4h-type silicon carbide single crystal
JP3590464B2 (en) Method for producing 4H type single crystal silicon carbide
JPH06219898A (en) Production of n-type silicon carbide single crystal
JPH07267795A (en) Growth method of silicon carbide single crystal
JPH07330493A (en) Method for growing 4h type silicon carbide single crystal
JPH0977594A (en) Production of low resistance single crystal silicon carbide
JPH061698A (en) Production of silicon carbide bulk single crystal
JPH0416597A (en) Production of silicon carbide single crystal
JP3717562B2 (en) Single crystal manufacturing method
JP2003137694A (en) Seed crystal for growing silicon carbide single crystal, silicon carbide single crystal ingot and method of producing the same