JPH061698A - Production of silicon carbide bulk single crystal - Google Patents

Production of silicon carbide bulk single crystal

Info

Publication number
JPH061698A
JPH061698A JP16122692A JP16122692A JPH061698A JP H061698 A JPH061698 A JP H061698A JP 16122692 A JP16122692 A JP 16122692A JP 16122692 A JP16122692 A JP 16122692A JP H061698 A JPH061698 A JP H061698A
Authority
JP
Japan
Prior art keywords
silicon carbide
single crystal
silicon
transition metal
silicide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16122692A
Other languages
Japanese (ja)
Inventor
Masaki Furukawa
勝紀 古川
Yoshimitsu Tajima
善光 田島
Akira Suzuki
彰 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP16122692A priority Critical patent/JPH061698A/en
Publication of JPH061698A publication Critical patent/JPH061698A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To obtain an SiC bulk single crystal excellent in crystallinity and homogeneity with good reproducibility by adding the silicon compd. of transition metal to an SiC powder and heating the mixture to grow an SiC single crystal on a seed crystal. CONSTITUTION:An SiC powder mixed with 1-10% of the silicon compd. of transition metal having 1800-2500 deg.C m.p. is filled in a graphite crucible 3. The crucible 3 is then closed with a lid 4 provided with a seed crystal 1 on its inner surface. The crucible 3 is set in a quartz tube 5 by a supporting rod 6, and the crucible 3 is covered with a heat shield 7. An inert gas is introduced into the tube 5 from the branch pipe 9 of a chamber 10, the SiC powder 2 is kept at 2100-2400 deg.C and the seed crystal 1 at 2000-2500 deg.C, the tube 5 us evacuated to <=10Torr by a vacuum pump 13, the condition is kept for 1-12 hr, and an SiC single crystal is grown on the seed crystal 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は炭化珪素バルク単結晶の
製造方法に関する。さらに詳しくは昇華再結晶法を用い
た炭化珪素バルク単結晶の製造方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing a silicon carbide bulk single crystal. More specifically, it relates to a method for manufacturing a silicon carbide bulk single crystal using a sublimation recrystallization method.

【0002】[0002]

【従来の技術】炭化珪素(SiC)は広い禁制帯幅
(2.2〜3.3eV)を有する半導体材料である。ま
た、熱的、化学的かつ機械的に極めて安定であり、放射
線損傷にも強いという優れた特徴を持っている。他方、
珪素のような従来の半導体材料を用いた素子は、特に高
温、高出力駆動、放射線照射等の苛酷な条件下ではその
使用は困難である。炭化珪素を用いた半導体素子は、こ
のような苛酷な条件下でも使用しうる半導体素子として
広範な分野での応用が期待されている。
2. Description of the Related Art Silicon carbide (SiC) is a semiconductor material having a wide band gap (2.2 to 3.3 eV). In addition, it has the excellent characteristics that it is extremely stable thermally, chemically and mechanically and is resistant to radiation damage. On the other hand,
A device using a conventional semiconductor material such as silicon is difficult to use, especially under severe conditions such as high temperature, high output driving, and radiation irradiation. A semiconductor element using silicon carbide is expected to be applied in a wide range of fields as a semiconductor element that can be used even under such severe conditions.

【0003】しかしながら、大面積を有する高品質の炭
化珪素単結晶を、工業的規模で安定に供給しうる結晶成
長技術は、いまだ確立されていない。それゆえ、炭化珪
素は、上述のような多くの利点及び可能性を有する半導
体材料であるにもかかわらず、その実用化が阻まれてい
る。従来、研究室の規模では、例えば昇華再結晶法(レ
ーリー法)で炭化珪素単結晶を成長させ、半導体素子に
利用可能なサイズの炭化珪素単結晶を得ていた。しかし
ながら、この方法では、得られた単結晶の面積が小さ
く、その寸法及び形状を高精度に制御することは困難で
ある。また、炭化珪素が有する結晶多形及び不純物キャ
リヤ濃度の制御も容易ではない。
However, a crystal growth technique capable of stably supplying a high-quality silicon carbide single crystal having a large area on an industrial scale has not been established yet. Therefore, although silicon carbide is a semiconductor material having many advantages and possibilities as described above, its practical use is hindered. Conventionally, in a laboratory scale, a silicon carbide single crystal was grown by, for example, a sublimation recrystallization method (Rayleigh method) to obtain a silicon carbide single crystal of a size usable for a semiconductor device. However, with this method, the area of the obtained single crystal is small, and it is difficult to control the size and shape with high accuracy. Further, it is not easy to control the crystal polymorphism and the impurity carrier concentration of silicon carbide.

【0004】また、化学的気相成長法(CVD法)を用
いて珪素等の異種基板上にヘテロエピタキシャル成長さ
せることにより立方晶の炭化珪素単結晶を成長させる方
法がある。この方法では、大面積の単結晶は得られる
が、基板との格子不整合が約20%もあること等により
多くの欠陥を含む(〜107/cm2)炭化珪素単結晶し
か成長できず、高品質の炭化珪素単結晶を得ることは容
易ではない。
There is also a method of growing a cubic silicon carbide single crystal by performing heteroepitaxial growth on a heterogeneous substrate such as silicon using a chemical vapor deposition method (CVD method). Although a large area single crystal can be obtained by this method, only a silicon carbide single crystal containing many defects (about 10 7 / cm 2 ) can be grown because the lattice mismatch with the substrate is about 20%. It is not easy to obtain a high quality silicon carbide single crystal.

【0005】これらの問題点を解決するために、種結晶
を用いて昇華再結晶法を行う改良型レーリー法が提案さ
れている(Yu.M.Tairov and V.F.Tsvetkov,J.Crystal G
rowth,52(1981),pp.146-150)。この方法を用いれば、
結晶多形及び形状を制御しながら、炭化珪素単結晶を成
長させることができる。
In order to solve these problems, an improved Rayleigh method in which a sublimation recrystallization method is performed using a seed crystal has been proposed (Yu.M. Tairov and VFTsvetkov, J. Crystal G.
rowth, 52 (1981), pp.146-150). With this method,
A silicon carbide single crystal can be grown while controlling the crystal polymorphism and shape.

【0006】[0006]

【発明が解決しようとする課題】通常、種結晶を用いた
昇華再結晶法では種結晶の温度、種結晶と原料との間の
温度勾配、圧力を制御して、六方晶系(6H型、4H
型)及び、菱面体晶系(15R型、21R型)の炭化珪
素単結晶を成長させることができる。しかしながら、種
結晶を用いた昇華再結晶法においては、成長に関与する
分子種としてSi、Si2C、SiC2が挙げられるが、
上記分子種の蒸気圧の違い及び成長温度が2000℃以
上と高いことにより成長時間と共に上記分子種の割合が
変化する。特にSiの枯渇が問題になり良質の炭化珪素
単結晶が成長できなくなる。またこの問題を解決するた
めに、改良型の昇華再結晶法において、原料の炭化珪素
粉末に珪素粉末を添加して成長させる方法が提案されて
いる(特開平第3−37195号)が、珪素の融点が約
1400℃であるのに対し成長温度が2000℃以上で
あるので、珪素添加の効果は成長開始時のみであり、均
質な炭化珪素単結晶を製造することはできない。
Usually, in the sublimation recrystallization method using a seed crystal, the temperature of the seed crystal, the temperature gradient between the seed crystal and the raw material, and the pressure are controlled to obtain a hexagonal system (6H type, 4H
Type) and rhombohedral (15R type, 21R type) silicon carbide single crystals can be grown. However, in the sublimation recrystallization method using a seed crystal, Si, Si 2 C, and SiC 2 can be mentioned as molecular species involved in growth.
Due to the difference in vapor pressure of the molecular species and the high growth temperature of 2000 ° C. or higher, the proportion of the molecular species changes with the growth time. In particular, depletion of Si becomes a problem and a good quality silicon carbide single crystal cannot be grown. In order to solve this problem, in the improved sublimation recrystallization method, a method has been proposed in which silicon powder is added to the raw material silicon carbide powder to grow it (Japanese Patent Laid-Open No. 3-37195). Since the melting point is about 1400 ° C., while the growth temperature is 2000 ° C. or higher, the effect of adding silicon is only at the start of growth, and a homogeneous silicon carbide single crystal cannot be manufactured.

【0007】[0007]

【課題を解決するための手段】本発明によれば、昇華再
結晶法によって、種結晶上に炭化珪素単結晶を成長させ
る炭化珪素バルク単結晶の製造方法において、炭化珪素
粉末に遷移金属の珪素化合物を添加することを特徴とす
る炭化珪素バルク単結晶の製造方法が提供される。
According to the present invention, in a method for producing a silicon carbide bulk single crystal in which a silicon carbide single crystal is grown on a seed crystal by a sublimation recrystallization method, a transition metal of silicon is added to silicon carbide powder. There is provided a method for producing a silicon carbide bulk single crystal, which comprises adding a compound.

【0008】本発明に使用される炭化珪素粉末は、市販
の研磨材等に用いられている炭化珪素粉末が使用できる
が、遷移金属の珪素化合物及び遷移金属を含まない高純
度の炭化珪素粉末が望ましい。次に添加する遷移金属の
珪素化合物としては、融点が1800〜2500℃、好
ましくは1900〜2400℃である化合物を用いるこ
とができる。また遷移金属の珪素化合物を添加する方法
としては、遷移金属の珪素化合物をそのまま用いる方
法、もしくは遷移金属及び珪素を炭化珪素粉末に添加し
て、1700〜2200℃で熱処理することによる方法
が挙げられる。このような遷移金属の珪素化合物とし
て、例えば、珪化バナジウム、珪化タングステン、珪化
タンタル、珪化モリブデン、珪化ニオブ、珪化レニウム
及び珪化ジルコニウム等が挙げられる。また炭化珪素粉
末に対する遷移金属の珪素化合物の添加割合は1〜10
%、好ましくは2〜6%である。添加量が1%以下では
遷移金属の珪素化合物を添加した効果が現れず、10%
以上では珪素過剰雰囲気になり良質な炭化珪素単結晶を
成長させることができない。
The silicon carbide powder used in the present invention may be a silicon carbide powder used in commercially available abrasives and the like, but a silicon compound of a transition metal and a high purity silicon carbide powder containing no transition metal may be used. desirable. As the silicon compound of the transition metal to be added next, a compound having a melting point of 1800 to 2500 ° C, preferably 1900 to 2400 ° C can be used. Examples of the method of adding the transition metal silicon compound include a method of using the transition metal silicon compound as it is, and a method of adding the transition metal and silicon to the silicon carbide powder and heat-treating at 1700 to 2200 ° C. . Examples of such transition metal silicon compounds include vanadium silicide, tungsten silicide, tantalum silicide, molybdenum silicide, niobium silicide, rhenium silicide, and zirconium silicide. The addition ratio of the silicon compound of the transition metal to the silicon carbide powder is 1 to 10
%, Preferably 2 to 6%. If the addition amount is 1% or less, the effect of adding the transition metal silicon compound does not appear, and the addition amount is 10%.
In the above case, an excessive silicon atmosphere is created and a good quality silicon carbide single crystal cannot be grown.

【0009】本発明で用いられる種結晶の炭化珪素単結
晶基板は公知の方法によって製造することができる。例
えば炭化珪素研磨材を工業的に製造する過程で副次的に
得られた単結晶を整形研磨し、さらに酸洗浄によって研
磨傷を除去したものを用いることができる。本発明にお
いて炭化珪素バルク単結晶の製造する方法は昇華再結晶
法によるが、その中でも改良型レーリー法によることが
好ましい。図1に示した図は、改良型レーリー法によっ
て炭化珪素単結晶を成長させる装置の一例である。図1
に基づいて以下に本発明の製造方法を説明する。
The seed crystal silicon carbide single crystal substrate used in the present invention can be manufactured by a known method. For example, a single crystal obtained as a by-product in the process of industrially manufacturing a silicon carbide abrasive may be used after being shaped and polished, and further polishing scratches removed by acid cleaning. In the present invention, a method for producing a silicon carbide bulk single crystal is a sublimation recrystallization method, and among them, an improved Rayleigh method is preferable. The diagram shown in FIG. 1 is an example of an apparatus for growing a silicon carbide single crystal by the improved Rayleigh method. Figure 1
The manufacturing method of the present invention will be described below based on.

【0010】まず黒鉛製るつぼ3の内部に、原料である
遷移金属の珪素化合物を含む炭化珪素粉末を充填する。
次に内面に種結晶である炭化珪素単結晶基板1が、取り
付けられた蓋4で黒鉛製るつぼ3を閉じる。この黒鉛製
るつぼ3を支持棒6によって石英管5の内部に設置し、
黒鉛製るつぼ3を熱シールド7で被覆する。更に不活性
ガス雰囲気中(例えばアルゴンガス)炭化珪素粉末2の
温度を、遷移金属の珪素化合物の種類によっても変わる
が、2100〜2400℃に設定し、種結晶の温度を2
000〜2500℃に設定する。続いて10Torr以
下に減圧し、この状態で1〜12時間維持することによ
って炭化珪素単結晶が得られる。
First, a graphite crucible 3 is filled with silicon carbide powder containing a silicon compound of a transition metal as a raw material.
Next, a silicon carbide single crystal substrate 1, which is a seed crystal, is attached to the inner surface of the graphite crucible 3 with a lid 4 attached thereto. The graphite crucible 3 is installed inside the quartz tube 5 by the support rod 6,
The graphite crucible 3 is covered with a heat shield 7. Further, the temperature of the silicon carbide powder 2 in an inert gas atmosphere (for example, argon gas) is set to 2100 to 2400 ° C. and the seed crystal temperature is set to 2 although it changes depending on the kind of the silicon compound of the transition metal.
Set to 000 to 2500 ° C. Subsequently, the pressure is reduced to 10 Torr or less, and the silicon carbide single crystal is obtained by maintaining this state for 1 to 12 hours.

【0011】[0011]

【作用】本発明のバルク炭化珪素単結晶の製造方法は、
種結晶を用いた昇華再結晶法によって炭化珪素の単結晶
を成長させる工程を含み、原料となる炭化珪素粉末に高
融点の遷移金属の珪素化合物を添加して成長させること
によって良質のバルク炭化珪素単結晶成長が可能とな
る。このとき、添加する遷移金属の珪素化合物の種類及
び原料となる炭化珪素粉末の温度を制御することによっ
てSiの蒸気圧を制御することができ、更に成長と共に
変化する成長に関与する分子種を一定に保ち成長させる
ことにより、炭素に関する異物等の混入を防止できるの
で、良質のバルク炭化珪素単結晶を再現性良く形成する
ことが可能となる。
The method for producing a bulk silicon carbide single crystal of the present invention is
It includes a step of growing a silicon carbide single crystal by a sublimation recrystallization method using a seed crystal, and adds a silicon compound of a transition metal having a high melting point to silicon carbide powder as a raw material to grow the bulk silicon carbide of high quality. Single crystal growth is possible. At this time, the vapor pressure of Si can be controlled by controlling the type of the silicon compound of the transition metal to be added and the temperature of the silicon carbide powder used as the raw material, and the molecular species involved in the growth that change with the growth can be kept constant. By keeping the growth in the above condition, it is possible to prevent foreign matters related to carbon from mixing in, and it is possible to form a good quality bulk silicon carbide single crystal with good reproducibility.

【0012】[0012]

【実施例】【Example】

実施例1 図1を用いて説明する。まず、種結晶として、成長面方
位が(0001)方向である六方晶型の6H型の炭化珪
素単結晶からなる基板1を用意した。そして、この基板
1を黒鉛製るつぼ3の蓋4の内面に取り付けた。また、
黒鉛製るつぼ3の内部には、原料2となる高純度の立方
晶型の炭化珪素粉末を25g及び珪化タングステン(W
Si2;融点2160℃)を0.5g充填した。炭化珪
素粉末としては、JIS粒度が#250のものを用い
た。また珪化タングステンの炭化珪素粉末に対する割合
は2%である。
Example 1 will be described with reference to FIG. First, as a seed crystal, a substrate 1 made of a hexagonal 6H-type silicon carbide single crystal having a growth plane orientation in the (0001) direction was prepared. Then, the substrate 1 was attached to the inner surface of the lid 4 of the graphite crucible 3. Also,
Inside the graphite crucible 3, 25 g of high-purity cubic silicon carbide powder as the raw material 2 and tungsten silicide (W
0.5 g of Si 2 ; melting point 2160 ° C.) was filled. The silicon carbide powder used had a JIS grain size of # 250. The ratio of tungsten silicide to silicon carbide powder is 2%.

【0013】次いで原料を充填した黒鉛製るつぼ3を、
種結晶を取り付けた蓋4で閉じ、黒鉛製の支持棒6によ
り二重石英管5の内部に設置した。黒鉛製るつぼ3の周
囲は黒鉛製フェールト7で被覆した。そして、雰囲気ガ
スとしてアルゴンガス(Ar)を、ステンレス製チャン
バー10の枝管9から二重石英管5の内部に流した。A
rガスの流量は1リットル/分に設定した。次に、ワー
クコイル8に高周波電流を流し、高周波電流を調節する
ことで炭化珪素粉末2の温度が2300℃、種結晶の温
度が2200℃になるように調節した。続いて、Arガ
スの流量を調節するとともに、真空ポンプ13を用いて
二重石英管5の内部を減圧した。この減圧を大気圧から
10Torrまで20分かけて徐々に行い、10Tor
rの真空度で保持した。この状態で5時間保持すること
により、約10mmの厚さの炭化珪素単結晶が成長し
た。
Next, a graphite crucible 3 filled with raw materials was
It was closed with a lid 4 to which a seed crystal was attached, and was placed inside a double quartz tube 5 with a support rod 6 made of graphite. The graphite crucible 3 was covered with a graphite felt 7. Then, argon gas (Ar) as an atmospheric gas was flowed from the branch pipe 9 of the stainless steel chamber 10 into the double quartz pipe 5. A
The flow rate of r gas was set to 1 liter / minute. Next, a high frequency current was passed through the work coil 8 to adjust the high frequency current so that the temperature of the silicon carbide powder 2 was 2300 ° C. and the temperature of the seed crystal was 2200 ° C. Then, the flow rate of Ar gas was adjusted and the inside of the double quartz tube 5 was decompressed using the vacuum pump 13. This depressurization is gradually performed from atmospheric pressure to 10 Torr over 20 minutes to 10 Torr.
The vacuum was maintained at r. By holding this state for 5 hours, a silicon carbide single crystal having a thickness of about 10 mm was grown.

【0014】このようにして得られた炭化珪素単結晶を
X線回折法、ラマン分光法により分析したところ、成長
面方位が(0001)である六方晶型の6H型の炭化珪
素単結晶が成長していることがわかった。成長速度は2
mm/時であり、成長した結晶は種結晶上より成長最表
面まで均一で欠陥も少なく、高品質の炭化珪素単結晶で
あることがわかった。
The silicon carbide single crystal thus obtained was analyzed by X-ray diffraction and Raman spectroscopy. As a result, a hexagonal 6H-type silicon carbide single crystal having a growth plane orientation of (0001) was grown. I found out that Growth rate is 2
It was found that the grown crystal was a high-quality silicon carbide single crystal, with the grown crystal being uniform from the seed crystal to the outermost growth surface and having few defects.

【0015】更に、上記と同条件で珪化タンタル(Ta
Si2;融点2200℃)又は珪化ジルコニウム(Zr2
Si;融点2100℃)を添加して成長させた結果、同
様の結晶性に優れた均質な炭化珪素単結晶が成長してい
ることがわかった。
Furthermore, under the same conditions as above, tantalum silicide (Ta
Si 2 ; melting point 2200 ° C. or zirconium silicide (Zr 2
As a result of growing by adding Si: melting point 2100 ° C.), it was found that a similar homogeneous silicon carbide single crystal having excellent crystallinity was grown.

【0016】実施例2 図1を用いて説明する。まず、黒鉛製るつぼ3の内部
に、原料2となる高純度の立方晶型の炭化珪素粉末を2
5g、珪素粉末を0.37g及びモリブデン粉末を0.
63g充填した。炭化珪素粉末としては、JIS粒度が
#1000のものを用いた。原料を充填した黒鉛製るつ
ぼ3を、種結晶を取り付けていない蓋4で閉じ、黒鉛製
の支持棒6により二重石英管5の内部に設置した。黒鉛
製るつぼ3の周囲には黒鉛製フェールト7で被覆した。
そして、雰囲気ガスとしてアルゴンガス(Ar)を、ス
テンレス製チャンバー10の枝管9から二重石英管5の
内部に流した。Arガスの流量は1リットル/分に設定
した。次に、ワークコイル8に高周波電流を流し、高周
波電流を調節することで炭化珪素粉末2の温度が210
0℃になるように調節し、20分間保持した。この処理
によってモリブデンと珪素が反応して珪化モリブデン
(MoSi2;融点1950℃)が形成される。また珪
化モリブデンの炭化珪素粉末に対する割合は4%であ
る。
Embodiment 2 A description will be given with reference to FIG. First, inside a graphite crucible 3, a high-purity cubic silicon carbide powder 2 serving as a raw material 2 is placed.
5 g, 0.37 g of silicon powder and 0.
63 g was filled. As the silicon carbide powder, one having a JIS particle size of # 1000 was used. The graphite crucible 3 filled with the raw material was closed with a lid 4 to which no seed crystal was attached, and the graphite crucible 3 was placed inside a double quartz tube 5 by a graphite support rod 6. The graphite crucible 3 was covered with a graphite felt 7.
Then, argon gas (Ar) as an atmospheric gas was flowed from the branch pipe 9 of the stainless steel chamber 10 into the double quartz pipe 5. The flow rate of Ar gas was set to 1 liter / minute. Next, a high-frequency current is passed through the work coil 8 to adjust the high-frequency current so that the temperature of the silicon carbide powder 2 becomes 210.
The temperature was adjusted to 0 ° C. and kept for 20 minutes. By this treatment, molybdenum and silicon react to form molybdenum silicide (MoSi 2 ; melting point 1950 ° C.). The ratio of molybdenum silicide to silicon carbide powder is 4%.

【0017】種結晶として、成長面方位が(0001)
方向である六方晶型の4H型の炭化珪素単結晶からなる
基板1を用意した。そして、この基板1を黒鉛製るつぼ
3の蓋4の内面に取り付けた。次いで原料を充填した黒
鉛製るつぼ3を、種結晶を取り付けた蓋4で閉じ、黒鉛
製の支持棒6により二重石英管5の内部に設置した。黒
鉛製るつぼ3の周囲には黒鉛製フェールト7で被覆し
た。そして、雰囲気ガスとしてアルゴンガス(Ar)
を、ステンレス製チャンバー10の枝管9から二重石英
管5の内部に流した。Arガスの流量は1リットル/分
に設定した。次に、ワークコイル8に高周波電流を流
し、高周波電流を調節することで炭化珪素粉末2の温度
が2050℃、種結晶の温度が2100℃になるように
調節した。続いて、Arガスの流量を調節するととも
に、真空ポンプ13を用いて二重石英管5の内部を減圧
した。この減圧を大気圧から1Torrまで60分かけ
て徐々に行い、1Torrの真空度で保持した。この状
態で5時間保持することにより、約5.5mmの厚さの
炭化珪素単結晶が成長した。
As a seed crystal, the growth plane orientation is (0001)
A substrate 1 made of a hexagonal 4H-type silicon carbide single crystal that is oriented was prepared. Then, the substrate 1 was attached to the inner surface of the lid 4 of the graphite crucible 3. Next, the graphite crucible 3 filled with the raw material was closed by the lid 4 having the seed crystal attached thereto, and the graphite crucible 3 was placed inside the double quartz tube 5 by the graphite support rod 6. The graphite crucible 3 was covered with a graphite felt 7. Argon gas (Ar) is used as the atmosphere gas.
Was made to flow from the branch pipe 9 of the stainless steel chamber 10 into the double quartz pipe 5. The flow rate of Ar gas was set to 1 liter / minute. Next, a high-frequency current was passed through the work coil 8 to adjust the high-frequency current so that the temperature of the silicon carbide powder 2 was 2050 ° C. and the temperature of the seed crystal was 2100 ° C. Then, the flow rate of Ar gas was adjusted and the inside of the double quartz tube 5 was decompressed using the vacuum pump 13. The pressure was gradually reduced from atmospheric pressure to 1 Torr over 60 minutes, and the vacuum was maintained at 1 Torr. By holding this state for 5 hours, a silicon carbide single crystal having a thickness of about 5.5 mm grew.

【0018】このようにして得られた炭化珪素単結晶を
X線回折法、ラマン分光法により分析したところ、成長
面方位が(0001)である六方晶型の4H型の炭化珪
素単結晶が成長していることがわかった。成長速度は
1.1mm/時であり、成長した結晶は種結晶上より成
長最表面まで均一で欠陥も少なく、高品質の炭化珪素単
結晶であることがわかった。
The silicon carbide single crystal thus obtained was analyzed by X-ray diffraction and Raman spectroscopy. As a result, a hexagonal 4H-type silicon carbide single crystal having a growth plane orientation of (0001) was grown. I found out that The growth rate was 1.1 mm / hr, and it was found that the grown crystal was a high-quality silicon carbide single crystal with more uniform defects on the seed crystal than the growth outermost surface.

【0019】実施例3 図1を用いて説明する。まず、種結晶として、成長面方
位が(0001)方向である六方晶型の6H型の炭化珪
素単結晶からなる基板1を用意した。そして、この基板
1を黒鉛製るつぼ3の蓋4の内面に取り付けた。また、
黒鉛製るつぼ3の内部には、原料2となる高純度の立方
晶型の炭化珪素粉末を25g、珪化タンタル(TaSi
2;融点2200℃)を0.5g及び珪化ニオブ(Nb
Si2;融点2160℃)を0.25g充填した。炭化
珪素粉末としては、JIS粒度が#100のものを用い
た。珪化タンタルと珪化ニオブの炭化珪素粉末に対する
割合はそれぞれ3%である。
Example 3 will be described with reference to FIG. First, as a seed crystal, a substrate 1 made of a hexagonal 6H-type silicon carbide single crystal having a growth plane orientation in the (0001) direction was prepared. Then, the substrate 1 was attached to the inner surface of the lid 4 of the graphite crucible 3. Also,
Inside the graphite crucible 3, 25 g of high-purity cubic silicon carbide powder as the raw material 2 and tantalum silicide (TaSi) were used.
2 ; 0.5 g of melting point 2200 ° C. and niobium silicide (Nb)
0.25 g of Si 2 ; melting point 2160 ° C.) was charged. The silicon carbide powder used had a JIS particle size of # 100. The ratio of tantalum silicide and niobium silicide to the silicon carbide powder is 3%, respectively.

【0020】次いで原料を充填した黒鉛製るつぼ3を、
種結晶を取り付けた蓋4で閉じ、黒鉛製の支持棒6によ
り二重石英管5の内部に設置した。黒鉛製るつぼ3の周
囲は黒鉛製フェールト7で被覆した。そして、雰囲気ガ
スとしてアルゴンガス(Ar)を、ステンレス製チャン
バー10の枝管9から二重石英管5の内部に流した。A
rガスの流量は1リットル/分に設定した。次に、ワー
クコイル8に高周波電流を流し、高周波電流を調節する
ことで炭化珪素粉末2の温度が2100℃、種結晶の温
度が2050℃になるように調節した。続いて、Arガ
スの流量を調節するとともに、真空ポンプ13を用いて
二重石英管5の内部を減圧した。この減圧を大気圧から
35Torrまで60分かけて徐々に行い、35Tor
rの真空度で保持した。この状態で6時間保持すること
により、約4.2mmの厚さの炭化珪素単結晶が成長し
た。
Next, a graphite crucible 3 filled with raw materials was
It was closed with a lid 4 to which a seed crystal was attached, and was placed inside a double quartz tube 5 with a support rod 6 made of graphite. The graphite crucible 3 was covered with a graphite felt 7. Then, argon gas (Ar) as an atmospheric gas was flowed from the branch pipe 9 of the stainless steel chamber 10 into the double quartz pipe 5. A
The flow rate of r gas was set to 1 liter / minute. Next, a high-frequency current was passed through the work coil 8 to adjust the high-frequency current so that the temperature of the silicon carbide powder 2 was 2100 ° C and the temperature of the seed crystal was 2050 ° C. Then, the flow rate of Ar gas was adjusted and the inside of the double quartz tube 5 was decompressed using the vacuum pump 13. This decompression is gradually performed from atmospheric pressure to 35 Torr over 60 minutes to obtain 35 Torr.
The vacuum was maintained at r. By holding this state for 6 hours, a silicon carbide single crystal having a thickness of about 4.2 mm was grown.

【0021】このようにして得られた炭化珪素単結晶を
X線回折法、ラマン分光法により分析したところ、結晶
面方位が(0001)方向である六方晶型の6H型炭化
珪素単結晶が成長していることがわかった。成長速度は
0.7mm/時であり、成長した結晶は種結晶上より成
長最表面まで均一で欠陥も少なく、高品質の炭化珪素単
結晶であることがわかった。
The silicon carbide single crystal thus obtained was analyzed by X-ray diffraction and Raman spectroscopy. As a result, a hexagonal 6H-type silicon carbide single crystal having a crystal plane orientation in the (0001) direction was grown. I found out that The growth rate was 0.7 mm / hour, and it was found that the grown crystal was a high-quality silicon carbide single crystal with more uniform defects on the seed crystal than the growth outermost surface.

【0022】比較例 遷移金属の珪素化合物を原料炭化珪素粉末に添加しない
こと以外は、前記の実施例1と同様にして炭化珪素単結
晶を成長させた。この炭化珪素単結晶は成長中に発生す
る炭素に関する穴構造や欠陥が多数観測され、結晶性に
劣る結晶しか得られなかった。
Comparative Example A silicon carbide single crystal was grown in the same manner as in Example 1 except that the silicon compound of the transition metal was not added to the raw material silicon carbide powder. In this silicon carbide single crystal, many hole structures and defects relating to carbon generated during growth were observed, and only a crystal having poor crystallinity was obtained.

【0023】また、珪素を2%添加して炭化珪素単結晶
を成長させた場合では、成長開始から約2mmまでは均
質な単結晶が得られるが、成長とともに珪素の枯渇によ
って穴構造や欠陥が多数発生し、均質な単結晶が得られ
なくなった。
Further, when a silicon carbide single crystal is grown by adding 2% of silicon, a uniform single crystal is obtained from the start of growth to about 2 mm, but a hole structure and defects are caused by the depletion of silicon during the growth. A large number of them were generated, and a uniform single crystal could not be obtained.

【0024】[0024]

【発明の効果】本発明の製造方法によれば、種結晶を用
いた昇華再結晶法により、良質の炭化珪素単結晶、特に
バルク炭化珪素単結晶を再現性及び均質性もよく成長さ
せることができる。このような炭化珪素単結晶を成長用
基板として用い、気相エピタキシャル成長法により、こ
の基板上に炭化珪素単結晶を成長させれば、電気的特性
に優れた青色発行素子及び炭化珪素半導体装置(例え
ば、電界効果トランジスタ(FET)、相補性モス集積
回路(C−MOS)、及び各種パワー素子等)を制作す
ることができる。しかも、上記のような炭化珪素単結晶
を再現性良く得られるので、電気的特性に優れた上記の
各種炭化珪素半導体装置を、工業的規模で歩留り良く生
産することができる。
According to the manufacturing method of the present invention, a high-quality silicon carbide single crystal, particularly a bulk silicon carbide single crystal, can be grown with good reproducibility and homogeneity by the sublimation recrystallization method using a seed crystal. it can. When such a silicon carbide single crystal is used as a growth substrate and a silicon carbide single crystal is grown on this substrate by a vapor phase epitaxial growth method, a blue emitting element and a silicon carbide semiconductor device having excellent electrical characteristics (for example, , Field effect transistors (FETs), complementary moss integrated circuits (C-MOS), and various power devices) can be manufactured. Moreover, since the above silicon carbide single crystal can be obtained with good reproducibility, the above various silicon carbide semiconductor devices having excellent electrical characteristics can be produced on an industrial scale with a high yield.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の製造方法に用いられる結晶成長装置の
一例を示す概略断面図である。
FIG. 1 is a schematic sectional view showing an example of a crystal growth apparatus used in a manufacturing method of the present invention.

【符号の説明】[Explanation of symbols]

1 炭化珪素単結晶基板 2 遷移金属の珪素化合物を含む炭化珪素粉末 3 黒鉛性るつぼ 4 黒鉛性るつぼ蓋 5 石英管 6 支持棒 7 熱シールド 8 ワークコイル 9 枝管 10 チャンバー 11 枝管 12 チャンバー 13 真空ポンプ 1 Silicon Carbide Single Crystal Substrate 2 Silicon Carbide Powder Containing Silicon Compound of Transition Metal 3 Graphite Crucible 4 Graphite Crucible Lid 5 Quartz Tube 6 Support Rod 7 Heat Shield 8 Work Coil 9 Branch Tube 10 Chamber 11 Branch Tube 12 Chamber 13 Vacuum pump

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 昇華再結晶法によって、種結晶上に炭化
珪素単結晶を成長させる炭化珪素バルク単結晶の製造方
法において、炭化珪素粉末に遷移金属の珪素化合物を添
加することを特徴とする炭化珪素バルク単結晶の製造方
法。
1. A method for producing a silicon carbide bulk single crystal in which a silicon carbide single crystal is grown on a seed crystal by a sublimation recrystallization method, wherein a silicon compound of a transition metal is added to silicon carbide powder. Manufacturing method of silicon bulk single crystal.
【請求項2】 添加する遷移金属の珪素化合物の融点が
1800〜2500℃である請求項1記載の炭化珪素バ
ルク単結晶の製造方法。
2. The method for producing a silicon carbide bulk single crystal according to claim 1, wherein the melting point of the added transition metal silicon compound is 1800 to 2500 ° C.
【請求項3】 遷移金属の珪素化合物が、遷移金属の珪
素合金である請求項1記載の炭化珪素バルク単結晶の製
造方法。
3. The method for producing a silicon carbide bulk single crystal according to claim 1, wherein the transition metal silicon compound is a transition metal silicon alloy.
【請求項4】 炭化珪素粉末に遷移金属の珪素化合物を
添加する方法が、遷移金属、珪素及び炭化珪素粉末の混
合物を熱処理することによる請求項1記載の炭化珪素バ
ルク単結晶の製造方法。
4. The method for producing a silicon carbide bulk single crystal according to claim 1, wherein the method for adding the silicon compound of the transition metal to the silicon carbide powder is to heat-treat a mixture of the transition metal, silicon and the silicon carbide powder.
【請求項5】 遷移金属の珪素化合物が、珪化バナジウ
ム、珪化タングステン、珪化タンタル、珪化モリブデ
ン、珪化ニオブ、珪化レニウム及び珪化ジルコニウムか
らなる請求項3及び4記載の炭化珪素バルク単結晶の製
造方法。
5. The method for producing a silicon carbide bulk single crystal according to claim 3, wherein the transition metal silicon compound comprises vanadium silicide, tungsten silicide, tantalum silicide, molybdenum silicide, niobium silicide, rhenium silicide and zirconium silicide.
【請求項6】 遷移金属の珪素化合物を1種以上添加す
る請求項1記載の炭化珪素バルク単結晶の製造方法。
6. The method for producing a silicon carbide bulk single crystal according to claim 1, wherein one or more transition metal silicon compounds are added.
【請求項7】 炭化珪素粉末に対する遷移金属の珪素化
合物の割合が1〜10%である請求項1記載の炭化珪素
バルク単結晶の製造方法。
7. The method for producing a silicon carbide bulk single crystal according to claim 1, wherein the ratio of the silicon compound of the transition metal to the silicon carbide powder is 1 to 10%.
JP16122692A 1992-06-19 1992-06-19 Production of silicon carbide bulk single crystal Pending JPH061698A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16122692A JPH061698A (en) 1992-06-19 1992-06-19 Production of silicon carbide bulk single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16122692A JPH061698A (en) 1992-06-19 1992-06-19 Production of silicon carbide bulk single crystal

Publications (1)

Publication Number Publication Date
JPH061698A true JPH061698A (en) 1994-01-11

Family

ID=15731030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16122692A Pending JPH061698A (en) 1992-06-19 1992-06-19 Production of silicon carbide bulk single crystal

Country Status (1)

Country Link
JP (1) JPH061698A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03194859A (en) * 1989-12-25 1991-08-26 Mitsui Mining & Smelting Co Ltd Battery and its anode active material, and manufacture of manganese dioxide used for anode active material
US5964944A (en) * 1996-03-29 1999-10-12 Kabushiki Kaisha Toyota Chuo Kenkyusho Method of producing silicon carbide single crystal
US7501208B2 (en) 2001-06-01 2009-03-10 Eveready Battery Company, Inc. Doped manganese dioxides
JP2013028475A (en) * 2011-07-27 2013-02-07 Kyocera Corp Single crystal substrate and semiconductor element using the same
CN106591952A (en) * 2016-12-09 2017-04-26 河北同光晶体有限公司 Preparation method of SiC wafer
US11111599B2 (en) * 2018-09-06 2021-09-07 Showa Denko K.K. Single crystal growth method which includes covering a part of a surface of a raw material for sublimation with a metal carbide powder
US11814749B2 (en) 2018-09-06 2023-11-14 Resonac Corporation Single crystal growth crucible and single crystal growth method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03194859A (en) * 1989-12-25 1991-08-26 Mitsui Mining & Smelting Co Ltd Battery and its anode active material, and manufacture of manganese dioxide used for anode active material
US5964944A (en) * 1996-03-29 1999-10-12 Kabushiki Kaisha Toyota Chuo Kenkyusho Method of producing silicon carbide single crystal
US7501208B2 (en) 2001-06-01 2009-03-10 Eveready Battery Company, Inc. Doped manganese dioxides
JP2013028475A (en) * 2011-07-27 2013-02-07 Kyocera Corp Single crystal substrate and semiconductor element using the same
CN106591952A (en) * 2016-12-09 2017-04-26 河北同光晶体有限公司 Preparation method of SiC wafer
US11111599B2 (en) * 2018-09-06 2021-09-07 Showa Denko K.K. Single crystal growth method which includes covering a part of a surface of a raw material for sublimation with a metal carbide powder
US11814749B2 (en) 2018-09-06 2023-11-14 Resonac Corporation Single crystal growth crucible and single crystal growth method

Similar Documents

Publication Publication Date Title
US5433167A (en) Method of producing silicon-carbide single crystals by sublimation recrystallization process using a seed crystal
KR101379941B1 (en) Silicon carbide single crystal and silicon carbide single crystal wafer
JPH06316499A (en) Production of sic single crystal
US4623425A (en) Method of fabricating single-crystal substrates of silicon carbide
JP5068423B2 (en) Silicon carbide single crystal ingot, silicon carbide single crystal wafer, and manufacturing method thereof
JP4733485B2 (en) Method for producing seed crystal for silicon carbide single crystal growth, seed crystal for silicon carbide single crystal growth, method for producing silicon carbide single crystal, and silicon carbide single crystal
US20050244997A1 (en) Bulk GaN and AIGaN single crystals
JP4603386B2 (en) Method for producing silicon carbide single crystal
JP4122548B2 (en) Method for producing silicon carbide single crystal
WO2006070480A1 (en) Silicon carbide single crystal, silicon carbide single crystal wafer, and process for producing the same
JP4733882B2 (en) Silicon carbide single crystal, method for producing the same, and silicon carbide crystal raw material for growing silicon carbide single crystal
JP2004099340A (en) Seed crystal for silicon carbide single crystal growth, silicon carbide single crystal ingot and method of manufacturing the same
JP4460236B2 (en) Silicon carbide single crystal wafer
JP3637157B2 (en) Method for producing silicon carbide single crystal and seed crystal used therefor
JP2005239496A (en) Silicon carbide raw material for growing silicon carbide single crystal, silicon carbide single crystal, and method for producing the same
JPH061698A (en) Production of silicon carbide bulk single crystal
JP3128179B2 (en) Method for producing n-type silicon carbide single crystal
JP5131262B2 (en) Silicon carbide single crystal and method for producing the same
JPH05178698A (en) Apparatus and process for production of silicon carbide bulk single crystal
JPH04292499A (en) Production of silicon carbide single crystal
JP3590464B2 (en) Method for producing 4H type single crystal silicon carbide
JP5333363B2 (en) Silicon carbide raw material for growing silicon carbide single crystal and method for producing silicon carbide single crystal using the same
JP2002121099A (en) Seed crystal for growing silicon carbide single crystal, silicon carbide single crystal ingot, silicon carbide single crystal wafer, and method for producing silicon carbide single crystal
JPH0416597A (en) Production of silicon carbide single crystal
JPS6120514B2 (en)