JPH07267795A - Growth method of silicon carbide single crystal - Google Patents

Growth method of silicon carbide single crystal

Info

Publication number
JPH07267795A
JPH07267795A JP5603694A JP5603694A JPH07267795A JP H07267795 A JPH07267795 A JP H07267795A JP 5603694 A JP5603694 A JP 5603694A JP 5603694 A JP5603694 A JP 5603694A JP H07267795 A JPH07267795 A JP H07267795A
Authority
JP
Japan
Prior art keywords
crystal
face
single crystal
seed crystal
sic single
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5603694A
Other languages
Japanese (ja)
Inventor
Atsushi Takahashi
淳 高橋
Masatoshi Kanetani
正敏 金谷
Noboru Otani
昇 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP5603694A priority Critical patent/JPH07267795A/en
Publication of JPH07267795A publication Critical patent/JPH07267795A/en
Priority to US08/856,248 priority patent/US5958132A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To provide a method for growing a good-quality SiC single crystal while suppressing generation of crystal grains varying in crystal bearings from a seed crystal by using the specific crystal face of the SiC single crystal as the seed crystal in a sublimation recrystallization method. CONSTITUTION:The hatched face (a) in Fig. is a face inclined by an off angle thetain the (0001) C face direction from the (1100) face. The seed crystal substrate having such face is obtd. by cutting out a SiC single crystal ingot, which is grown on the {0001} face by, for example, the conventional sublimation method, with an inclination by the off angle theta from the angle perpendicular to the {0001} base face. The substrate cut out by inclining only the desired face is mounted as the seed crystal into a crucible of a single crystal producing apparatus and the inside of a vessel is evacuated to vacuum. An inert gas is admitted into the vessel and is kept at 600Torr and the raw material temp. is heated up to 2100 to 2500 deg.C in 10 to 90 minutes from 2000 deg.C under an atmosphere of l to 50Torr to start growth. The seed crystal is kept lower by 40 to 100 deg.C than the raw material temp. and the temp. gradient is kept at 5 to 25 deg.C/cm. The growth speed of the single crystal is so regulated as to attain 0.4 to 1.6mm/ h.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、SiC単結晶育成方法
に関するものである。詳しくは、青色発光ダイオード、
電子デバイスなどの応用面やインゴット育成時の種結晶
基板ウェハとして有用な良質のSiC単結晶を成長させ
る方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for growing a SiC single crystal. For more details, please refer to the blue LED,
The present invention relates to a method for growing a high-quality SiC single crystal which is useful as a seed crystal substrate wafer when applied to an electronic device or when growing an ingot.

【0002】[0002]

【従来の技術】SiC単結晶は、化学的に安定で、しか
も高温、放射線に耐えられる素材であるため、耐環境性
半導体素子材料としての応用が期待されている。また、
禁制帯幅が大きいことより、短波長の発光ダイオード材
料として利用されている。実際に6H−SiC(Hは六
方晶形、6は単位胞中の原子積層の数を意味する)は室
温で約3.0eVの禁制幅をもち、青色発光ダイオード
用材料となっている。
2. Description of the Related Art Since SiC single crystal is a material which is chemically stable and can withstand high temperature and radiation, it is expected to be applied as an environment resistant semiconductor device material. Also,
Due to its large forbidden band width, it is used as a short-wavelength light emitting diode material. Actually, 6H-SiC (H means hexagonal crystal form, 6 means the number of atomic stacks in a unit cell) has a band gap of about 3.0 eV at room temperature, and is a material for blue light emitting diodes.

【0003】特開平05−262599には、種結晶と
した(0001)基底面に垂直または垂直に近い結晶面
上に結晶成長させる方法が開示されており、この方法に
よって得られる単結晶はポリタイプ制御が容易な上、非
常に良質であることが示されている。また、Journal of
Crystal Growth 135(1994)61-70では、この方法によっ
て成長した結晶を従来の{0001}面上の成長結晶と
比較しており、{0001}ウェハを貫通する中空状欠
陥(enpty tube)などが取り除かれることが示されてい
る。
Japanese Unexamined Patent Publication (Kokai) No. 05-262599 discloses a method of growing a crystal on a crystal plane perpendicular or nearly perpendicular to a (0001) basal plane used as a seed crystal. A single crystal obtained by this method is polytype. It has been shown to be very good quality as well as easy to control. Also, the Journal of
In Crystal Growth 135 (1994) 61-70, the crystal grown by this method is compared with the conventional grown crystal on the {0001} plane, and a hollow defect (enpty tube) penetrating the {0001} wafer is observed. It has been shown to be removed.

【0004】しかしながら、このような成長方法では、
種結晶と結晶方位の異なった結晶グレインがその結晶表
面に発生することがしばしばみられる。このような結晶
グレインが発生すると成長インゴットには結晶方位の異
なったグレインが含まれることになり、インゴットは完
全な単結晶ではなく多結晶となってしまう。これより切
り出したウェハは、素子を作製したときの歩留まりを著
しく低下させるだけでなく、昇華法の種結晶としての使
用も不可能となる。
However, in such a growth method,
It is often seen that crystal grains having different crystal orientations from the seed crystal are generated on the crystal surface. When such crystal grains are generated, the grown ingot contains grains having different crystal orientations, and the ingot becomes a polycrystal rather than a perfect single crystal. The wafer cut out from this not only significantly reduces the yield when the device is manufactured, but also cannot be used as a seed crystal in the sublimation method.

【0005】[0005]

【発明が解決しようとする課題】そこで、本発明は、種
結晶と結晶方位の異なる結晶グレインの発生を抑え、良
質のSiC単結晶を成長させる方法を提供することを目
的とする。
SUMMARY OF THE INVENTION It is therefore an object of the present invention to provide a method for growing a high quality SiC single crystal while suppressing the generation of crystal grains having different crystal orientations from the seed crystal.

【0006】[0006]

【課題を解決するための手段】上記課題は、昇華再結晶
法において、SiC単結晶の(0001)基底面に
SUMMARY OF THE INVENTION The above-mentioned problems are caused by the (0001) basal plane of SiC single crystal in the sublimation recrystallization method.

【外5】 成長を行なう方法によって解決される。特にオフ角度の
大きさは5−30度が好ましい。
[Outside 5] Solved by the method of growing. Particularly, the off angle is preferably 5 to 30 degrees.

【0007】[0007]

【外6】 傾けた結晶面上に成長を行なう方法によって解決され
る。特にオフ角度の大きさは5−30度が好ましい。
[Outside 6] It is solved by a method of growing on a tilted crystal plane. Particularly, the off angle is preferably 5 to 30 degrees.

【0008】[0008]

【作用】SiCは極性結晶であるため、(0001)基
底面に垂直な結晶面を除き全ての面に面極性が現れる。
この面極性特性は、溶融KOHによるエッチング速度や
熱酸化による酸化膜形成速度などに影響を与えている。
この性質は、結晶成長において、方位の異なる結晶グレ
インの発生のしやすさにも影響を与える。
Since SiC is a polar crystal, the plane polarity appears on all planes except the crystal plane perpendicular to the (0001) basal plane.
This surface polarity property affects the etching rate by molten KOH, the oxide film formation rate by thermal oxidation, and the like.
This property also affects the ease with which crystal grains with different orientations are generated during crystal growth.

【0009】SiC種結晶基板面にSiC結晶を成長さ
せる場合、(0001)基底面に垂直な結晶面から(0
001)Si面方向にオフした面に比べ、
When a SiC crystal is grown on the surface of a SiC seed crystal substrate, the crystal plane perpendicular to the (0001) basal plane is (0
001) Compared to the surface turned off in the Si surface direction,

【外7】 この面極性特性のため種結晶に対し結晶方位の異なる結
晶は発生しにくい。また無極性である(0001)基底
面に垂直な面に比べても、
[Outside 7] Due to this plane polarity property, crystals having different crystal orientations from the seed crystal are unlikely to occur. In addition, compared to the non-polar (0001) basal plane,

【外8】 このようなグレイン発生は少ない。[Outside 8] The occurrence of such grains is small.

【0010】[0010]

【外9】 前述した結晶方位の異なる結晶グレインの発生は抑えら
れるものの、(0001)基底面に垂直または垂直に近
い結晶面上に得られる良質な結晶は成長できなくなる。
つまり、多形の混在が起こりやすくなる上、前記中空状
欠陥や六角形状エッチピットに対応する結晶欠陥が多数
発生するようになり結晶品質を低下させる。そのため、
(0001)基底面に垂直な面からのオフ角度は5〜3
0度が好ましい。
[Outside 9] Although the generation of the above-described crystal grains having different crystal orientations can be suppressed, it becomes impossible to grow a good quality crystal obtained on the crystal plane perpendicular to or near the (0001) basal plane.
That is, polymorphs are likely to be mixed, and a large number of hollow defects and crystal defects corresponding to hexagonal etch pits are generated, which deteriorates the crystal quality. for that reason,
The off angle from the plane perpendicular to the (0001) basal plane is 5 to 3
0 degree is preferable.

【0011】[0011]

【外10】 種結晶基板として使用すると、成長結晶先端部がファセ
ットで覆われ、成長結晶表面の熱エッチングなどによる
欠陥の発生がなくなるため望ましい。
[Outside 10] When used as a seed crystal substrate, the tip of the grown crystal is covered with facets, and defects due to thermal etching on the surface of the grown crystal are eliminated, which is desirable.

【0012】[0012]

【実施例】以下、図面を用いて本発明の実施例を詳細に
説明する。
Embodiments of the present invention will now be described in detail with reference to the drawings.

【0013】図1は、本発明のSiC単結晶の成長方法
において用いられる単結晶成長装置の一例を示すもので
ある。
FIG. 1 shows an example of a single crystal growth apparatus used in the method for growing a SiC single crystal of the present invention.

【0014】図1に示されるように、該単結晶成長装置
に使用される黒鉛製の坩堝は、有底の坩堝1と、SiC
基板種結晶5の取り付け部4を有する前記坩堝1の開口
部を覆う黒鉛製の坩堝蓋3とにより構成され、坩堝1と
坩堝蓋3の側面および上下は黒鉛フェルト製の断熱材6
により覆われており、さらに真空排気装置により真空排
気でき、かつ内部雰囲気Arなどの不活性気体で圧力制
御できる容器に入れられている。加熱は、例えば容器外
に巻装した高周波誘導コイルなどにより行なう。坩堝温
度の計測は、例えば坩堝下部を覆うフェルトの中央部に
直径2〜4mmの光路7aを設け坩堝下部の光を取り出
し、二色温度計を用いて常時行なう。この温度を原料温
度とみなす。また、予め上部フェルトに同じような光路
7bを設け坩堝蓋の温度を測定し、これを種結晶温度と
みなす。
As shown in FIG. 1, the graphite crucible used in the single crystal growth apparatus comprises a bottomed crucible 1 and SiC.
It comprises a graphite crucible lid 3 covering the opening of the crucible 1 having a mounting portion 4 for the substrate seed crystal 5, and the side surface and the upper and lower sides of the crucible 1 and the crucible lid 3 are made of graphite felt heat insulating material 6
It is placed in a container which is covered with a vacuum exhaust device and which can be vacuum-exhausted by a vacuum exhaust device and whose pressure can be controlled by an inert gas such as the internal atmosphere Ar. The heating is performed by, for example, a high frequency induction coil wound outside the container. The crucible temperature is measured, for example, by always using a two-color thermometer by providing an optical path 7a having a diameter of 2 to 4 mm in the center of the felt covering the lower part of the crucible and extracting the light from the lower part of the crucible. This temperature is regarded as the raw material temperature. Further, a similar optical path 7b is previously provided in the upper felt, the temperature of the crucible lid is measured, and this is regarded as the seed crystal temperature.

【0015】(0001)基底面に垂直な面は、The plane perpendicular to the (0001) basal plane is

【外11】 無数存在(面指数では{hki0}と表記できる)す
る。本発明で使用する面は、このような面から
[Outside 11] There are an infinite number (it can be expressed as {hki0} in the surface index). The surface used in the present invention is

【外12】 [Outside 12]

【0016】図2は、本発明で使用する結晶面の一例を
説明するための図面である。
FIG. 2 is a drawing for explaining an example of a crystal plane used in the present invention.

【外13】 オフ角度θだけ傾いた面を意味する。この場合、この斜
線面aの裏面は(0001)Si方向にオフ角度θだけ
傾いた面となり、本発明には含まれない。
[Outside 13] It means a surface inclined by an off angle θ. In this case, the back surface of the oblique line surface a is a surface inclined by the off angle θ in the (0001) Si direction and is not included in the present invention.

【0017】このような面をもつ種結晶の基板は、例え
ば従来の昇華法により{0001}面上に成長させたS
iC単結晶インゴットを、(0001)基底面に垂直な
方向からオフ角度θだけ傾けて切り出し加工することに
より得られる。この所望の面を出した基板を種結晶5と
して坩堝蓋3の取り付け部4に取り付け、例えば下記の
ように結晶成長を行なう。
The seed crystal substrate having such a surface is, for example, S grown on the {0001} surface by the conventional sublimation method.
It is obtained by cutting an iC single crystal ingot by inclining it by an off angle θ from a direction perpendicular to the (0001) basal plane. The substrate having this desired surface is mounted as a seed crystal 5 on the mounting portion 4 of the crucible lid 3, and crystal growth is performed as follows, for example.

【0018】容器内を真空とし、原料温度を約2000
℃まで上げる。その後、不活性気体を流入させながら約
600Torrに保ち、原料温度を目標温度に上昇させ
る。減圧は10〜90分かけて行ない、雰囲気圧力を1
〜50Torr、より好ましくは5〜20Torr、原
料温度を2100〜2500℃、より好ましくは220
0〜2400℃に設定し、成長を開始するのが望まし
い。これより低温では原料が気化しにくくなり、これよ
り高温では熱エッチングなどにより良質の単結晶が成長
しにくくなる。また、種結晶温度は原料温度より40〜
100℃、より好ましくは50〜70℃低く、温度勾配
は5〜25℃/cm、より好ましくは10〜20℃/c
mとなるように設定するのが望ましい。さらに温度と圧
力の関係は、単結晶の成長速度が0.4〜1.6mm/
h、より好ましくは0.7〜1.3mm/hとなるよう
にすることが望ましい。これより高速では結晶性が低下
するため適当ではなく、これより低速では生産性が良く
ない。
The container is evacuated and the raw material temperature is about 2000.
Raise to ℃. After that, while keeping the inert gas at about 600 Torr, the raw material temperature is raised to the target temperature. Decompression takes 10 to 90 minutes, and the atmospheric pressure is 1
˜50 Torr, more preferably 5˜20 Torr, raw material temperature 2100˜2500 ° C., more preferably 220
It is desirable to set the temperature to 0 to 2400 ° C. and start the growth. If the temperature is lower than this, the raw material is less likely to be vaporized, and if the temperature is higher than this, it is difficult to grow a good quality single crystal due to thermal etching or the like. Further, the seed crystal temperature is 40 to
100 ° C., more preferably 50 to 70 ° C. lower, temperature gradient 5 to 25 ° C./cm, more preferably 10 to 20 ° C./c
It is desirable to set m. Furthermore, the relationship between temperature and pressure is that the growth rate of a single crystal is 0.4 to 1.6 mm /
h, more preferably 0.7 to 1.3 mm / h. If the speed is higher than this, the crystallinity is deteriorated, which is not suitable, and if the speed is lower than this, the productivity is not good.

【0019】結晶方位の異なる結晶グレインは、成長結
晶表面を目視で観測することによって容易に判定でき
る。さらに結晶の内部を調べるためには、成長インゴッ
トから{0001}ウェハを切り出し鏡面研磨したもの
を偏光顕微鏡で観測する。
Crystal grains having different crystal orientations can be easily determined by visually observing the surface of the grown crystal. Furthermore, in order to examine the inside of the crystal, a {0001} wafer cut out from the growth ingot and mirror-polished is observed with a polarization microscope.

【0020】実施例1Example 1

【外14】 15度のオフ角度をつけた種結晶基板上に、原料温度を
2340℃、基板温度を2280℃、雰囲気圧力を10
Torrとして成長を行なった。成長速度は基板面に垂
直方向に約1mm/hであった。
[Outside 14] On a seed crystal substrate with an off angle of 15 degrees, the raw material temperature was 2340 ° C, the substrate temperature was 2280 ° C, and the atmospheric pressure was 10
Growth was performed as Torr. The growth rate was about 1 mm / h in the direction perpendicular to the substrate surface.

【0021】成長結晶先端部は基板にほぼ平行に、多数
のファセット面で覆われていた。その表面には種結晶と
方位の異なる結晶グレインは全く観察できなかった。ま
た、このインゴットから{0001}ウェハを切り出し
鏡面加工したものを偏光顕微鏡で観察しても、そのよう
な結晶グレインは観察できなかった。
The front end of the grown crystal was covered with a large number of facets substantially parallel to the substrate. No crystal grain having a different orientation from that of the seed crystal was observed on the surface. In addition, even if a {0001} wafer was cut out from this ingot and mirror-polished, the crystal grain could not be observed with a polarizing microscope.

【0022】同じ条件で成長を数度行なったが、種結晶
と方位の異なる結晶グレインの発生は認められなかっ
た。
Growth was carried out several times under the same conditions, but generation of crystal grains having a different orientation from that of the seed crystal was not recognized.

【0023】実施例2Example 2

【外15】 20度のオフ角度をつけた種結晶基板上に、原料温度を
2340℃、基板温度を2280℃、雰囲気圧力を10
Torrとして成長を行なった。成長速度は基板面に垂
直方向に約1mm/hであった。
[Outside 15] On a seed crystal substrate with an off angle of 20 degrees, the raw material temperature was 2340 ° C., the substrate temperature was 2280 ° C., and the atmospheric pressure was 10.
Growth was performed as Torr. The growth rate was about 1 mm / h in the direction perpendicular to the substrate surface.

【0024】成長結晶先端部には基板にほぼ平行な面が
現れた。その表面には種結晶と方位の異なる結晶グレイ
ンは全く観察できなかった。また、このインゴットから
{0001}ウェハを切り出し鏡面加工したものを偏光
顕微鏡で観察しても、そのような結晶グレインは観察で
きなかった。
A plane almost parallel to the substrate appeared at the tip of the grown crystal. No crystal grain having a different orientation from that of the seed crystal was observed on the surface. In addition, even if a {0001} wafer was cut out from this ingot and mirror-polished, the crystal grain could not be observed with a polarizing microscope.

【外16】 種結晶に使用しても同じ結果が得られた。[Outside 16] The same result was obtained when used for seed crystals.

【0025】比較例1Comparative Example 1

【外17】 15度のオフ角度をつけた種結晶基板上に、原料温度を
2340℃、基板温度を2280℃、雰囲気圧力を10
Torrとして成長を行なった。成長速度は基板面に垂
直方向に約1mm/hであった。
[Outside 17] On a seed crystal substrate with an off angle of 15 degrees, the raw material temperature was 2340 ° C, the substrate temperature was 2280 ° C, and the atmospheric pressure was 10
Growth was performed as Torr. The growth rate was about 1 mm / h in the direction perpendicular to the substrate surface.

【0026】成長結晶表面には基板にほぼ平行に、多数
のファセット面で覆われていた。その表面には、種結晶
と方位の異なる結晶グレインを数個観察できた。また、
このインゴットから{0001}ウェハを切り出し鏡面
加工したものを偏光顕微鏡で観察すると、そのような結
晶グレインが成長方向に拡大している部分が観察でき
た。
The surface of the grown crystal was covered with a large number of facets substantially parallel to the substrate. Several crystal grains having different orientations from the seed crystal could be observed on the surface. Also,
When a {0001} wafer was cut out from this ingot and mirror-polished, it was observed with a polarization microscope, and a portion in which such crystal grains expanded in the growth direction could be observed.

【0027】比較例2Comparative Example 2

【外18】 原料温度を2340℃、基板温度を2280℃、雰囲気
圧力を10Torrとして成長を行なった。成長速度は
基板面に垂直方向に約1mm/hであった。成長結晶表
面には基板にほぼ平行に、
[Outside 18] Growth was performed at a source temperature of 2340 ° C., a substrate temperature of 2280 ° C., and an atmospheric pressure of 10 Torr. The growth rate was about 1 mm / h in the direction perpendicular to the substrate surface. Almost parallel to the substrate on the surface of the grown crystal,

【外19】 その表面には、種結晶と方位の異なる結晶グレインを数
個観察できた。また、このインゴットから{0001}
ウェハを切り出し鏡面加工したものを偏光顕微鏡で観察
すると、そのような結晶グレインが成長方向に拡大して
いる部分が観察できた。
[Outside 19] Several crystal grains having different orientations from the seed crystal could be observed on the surface. Also, from this ingot {0001}
When the wafer was cut out and mirror-finished, it was observed with a polarization microscope, and a portion in which such crystal grains were enlarged in the growth direction was observed.

【0028】[0028]

【発明の効果】本発明を用いることにより、種結晶と結
晶方位の異なる結晶グレインの含まない良質のSiC単
結晶インゴットを育成することができ、SiC単結晶を
用いた青色発光ダイオード、耐環境用電子デバイスなど
の各種応用面に有用な高品質単結晶ウェハの供給が可能
となる。
By using the present invention, it is possible to grow a good-quality SiC single crystal ingot that does not contain crystal grains whose crystal orientation is different from that of the seed crystal. It is possible to supply high quality single crystal wafers useful for various applications such as electronic devices.

【図面の簡単な説明】[Brief description of drawings]

【図1】は、本発明のSiC単結晶成長に用いられる単
結晶成長装置の構造の一例を模式的に示す断面図であ
る。
FIG. 1 is a cross-sectional view schematically showing an example of the structure of a single crystal growth apparatus used for growing a SiC single crystal of the present invention.

【図2】は、本発明で使用する種結晶の結晶面の一例を
説明するための図面である。
FIG. 2 is a drawing for explaining an example of a crystal plane of a seed crystal used in the present invention.

【符号の説明】[Explanation of symbols]

1…坩堝、 2…SiC原料粉末、 3…坩堝蓋、 4…種結晶取り付け部、 5…種結晶、 6…断熱フェルト、 7a,7b…光路、 8…SiC単結晶。 DESCRIPTION OF SYMBOLS 1 ... Crucible, 2 ... SiC raw material powder, 3 ... Crucible lid, 4 ... Seed crystal attachment part, 5 ... Seed crystal, 6 ... Adiabatic felt, 7a, 7b ... Optical path, 8 ... SiC single crystal.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 昇華再結晶法において、 種結晶としてSiC単結晶の(0001)基底面に垂直
な面から 【外1】 SiC単結晶の成長方法。
1. In the sublimation recrystallization method, as a seed crystal, a surface perpendicular to a (0001) basal plane of a SiC single crystal is used. Method for growing SiC single crystal.
【請求項2】 昇華再結晶法において、 種結晶としてSiC単結晶の(0001)基底面に垂直
な面から 【外2】 使用することを特徴とするSiC単結晶の成長方法。
2. In the sublimation recrystallization method, as a seed crystal, a plane perpendicular to a (0001) basal plane of a SiC single crystal is used. A method for growing a SiC single crystal, which is used.
【請求項3】 昇華再結晶法において、 【外3】 傾けた結晶面を使用することを特徴とするSiC単結晶
の成長方法。
3. A sublimation recrystallization method comprising: A method for growing a SiC single crystal, which comprises using an inclined crystal plane.
【請求項4】 昇華再結晶法において、 【外4】 5−30度オフ角度をつけた結晶面を使用することを特
徴とするSiC単結晶の成長方法。
4. A sublimation recrystallization method comprising: A method for growing a SiC single crystal, which comprises using a crystal plane having an off angle of 5 to 30 degrees.
JP5603694A 1991-04-18 1994-03-25 Growth method of silicon carbide single crystal Withdrawn JPH07267795A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP5603694A JPH07267795A (en) 1994-03-25 1994-03-25 Growth method of silicon carbide single crystal
US08/856,248 US5958132A (en) 1991-04-18 1997-05-14 SiC single crystal and method for growth thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5603694A JPH07267795A (en) 1994-03-25 1994-03-25 Growth method of silicon carbide single crystal

Publications (1)

Publication Number Publication Date
JPH07267795A true JPH07267795A (en) 1995-10-17

Family

ID=13015860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5603694A Withdrawn JPH07267795A (en) 1991-04-18 1994-03-25 Growth method of silicon carbide single crystal

Country Status (1)

Country Link
JP (1) JPH07267795A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001294499A (en) * 2000-04-06 2001-10-23 Nippon Steel Corp Small silicon carbide single crystal wafer having mosaic property
EP1233085A1 (en) * 1999-09-06 2002-08-21 Sixon Inc. SiC SINGLE CRYSTAL AND METHOD FOR GROWING THE SAME
EP1243674A1 (en) * 1999-09-06 2002-09-25 Sixon Inc. SiC SINGLE CRYSTAL AND METHOD FOR GROWING THE SAME
EP1215730A4 (en) * 1999-09-07 2003-02-05 Sixon Inc SiC WAFER, SiC SEMICONDUCTOR DEVICE AND PRODUCTION METHOD OF SiC WAFER
JP2008001532A (en) * 2006-06-20 2008-01-10 Nippon Steel Corp Silicon carbide single crystal ingot and its producing method
US7768017B2 (en) 2003-12-03 2010-08-03 The Kansai Electric Co., Inc. Silicon carbide semiconductor device and manufacturing method therefor
JP2011016721A (en) * 2010-10-08 2011-01-27 Nippon Steel Corp Method for producing small silicon carbide single crystal wafer having mosaic property
US9096947B2 (en) 2011-06-05 2015-08-04 Kabushiki Kaisha Toyota Chuo Kenkyusho SiC single crystal, production method therefor, SiC wafer and semiconductor device

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1233085A1 (en) * 1999-09-06 2002-08-21 Sixon Inc. SiC SINGLE CRYSTAL AND METHOD FOR GROWING THE SAME
EP1243674A1 (en) * 1999-09-06 2002-09-25 Sixon Inc. SiC SINGLE CRYSTAL AND METHOD FOR GROWING THE SAME
EP1243674A4 (en) * 1999-09-06 2003-02-05 Sixon Inc SiC SINGLE CRYSTAL AND METHOD FOR GROWING THE SAME
EP1233085A4 (en) * 1999-09-06 2003-02-05 Sixon Inc SiC SINGLE CRYSTAL AND METHOD FOR GROWING THE SAME
US6660084B1 (en) 1999-09-06 2003-12-09 Sixon, Inc. Sic single crystal and method for growing the same
EP1215730A4 (en) * 1999-09-07 2003-02-05 Sixon Inc SiC WAFER, SiC SEMICONDUCTOR DEVICE AND PRODUCTION METHOD OF SiC WAFER
US6734461B1 (en) 1999-09-07 2004-05-11 Sixon Inc. SiC wafer, SiC semiconductor device, and production method of SiC wafer
JP4664464B2 (en) * 2000-04-06 2011-04-06 新日本製鐵株式会社 Silicon carbide single crystal wafer with small mosaic
JP2001294499A (en) * 2000-04-06 2001-10-23 Nippon Steel Corp Small silicon carbide single crystal wafer having mosaic property
US7960738B2 (en) 2003-12-03 2011-06-14 The Kansai Electric Power Co., Inc. Silicon carbide semiconductor device and manufacturing method therefor
US7768017B2 (en) 2003-12-03 2010-08-03 The Kansai Electric Co., Inc. Silicon carbide semiconductor device and manufacturing method therefor
US7960257B2 (en) 2003-12-03 2011-06-14 The Kansai Electric Power Co., Inc. Silicon carbide semiconductor device and manufacturing method therefor
US7960737B2 (en) 2003-12-03 2011-06-14 The Kansai Electric Power Co., Inc. Silicon carbide semiconductor device and manufacturing method therefor
JP2008001532A (en) * 2006-06-20 2008-01-10 Nippon Steel Corp Silicon carbide single crystal ingot and its producing method
JP2011016721A (en) * 2010-10-08 2011-01-27 Nippon Steel Corp Method for producing small silicon carbide single crystal wafer having mosaic property
US9096947B2 (en) 2011-06-05 2015-08-04 Kabushiki Kaisha Toyota Chuo Kenkyusho SiC single crystal, production method therefor, SiC wafer and semiconductor device

Similar Documents

Publication Publication Date Title
JP2804860B2 (en) SiC single crystal and growth method thereof
US6936357B2 (en) Bulk GaN and ALGaN single crystals
JP5068423B2 (en) Silicon carbide single crystal ingot, silicon carbide single crystal wafer, and manufacturing method thereof
JP4603386B2 (en) Method for producing silicon carbide single crystal
EP0937790A2 (en) Method of making GaN single crystal and apparatus for making GaN single crystal
JP4818754B2 (en) Method for producing silicon carbide single crystal ingot
JP4174847B2 (en) Single crystal manufacturing method
WO2010007867A1 (en) Process for producing group iii nitride crystal and group iii nitride crystal
JP2007217227A (en) METHOD FOR PRODUCING GaN CRYSTAL, GaN CRYSTAL SUBSTRATE, AND SEMICONDUCTOR DEVICE
JPH09268096A (en) Production of single crystal and seed crystal
JP4664464B2 (en) Silicon carbide single crystal wafer with small mosaic
JP3532978B2 (en) Method for growing SiC single crystal
JP4253974B2 (en) SiC single crystal and growth method thereof
JP2003104798A (en) Silicon carbide single crystal and its manufacturing method and raw material for silicon carbide crystal for growing silicon carbide single crystal
JPH07267795A (en) Growth method of silicon carbide single crystal
JP4408247B2 (en) Seed crystal for growing silicon carbide single crystal and method for producing silicon carbide single crystal using the same
JP5614387B2 (en) Silicon carbide single crystal manufacturing method and silicon carbide single crystal ingot
JP2005343722A (en) METHOD FOR GROWING AlN CRYSTAL, AlN CRYSTAL SUBSTRATE AND SEMICONDUCTOR DEVICE
JP2868328B2 (en) Method for producing large diameter silicon carbide single crystal ingot and silicon carbide single crystal for seed crystal
JP7182262B2 (en) RAMO4 SUBSTRATE AND MANUFACTURING METHOD THEREOF, AND GROUP III NITRIDE SEMICONDUCTOR
JP2006021964A (en) Ain single crystal and its growth method
JP3848446B2 (en) Method for growing low resistance SiC single crystal
JPH0797299A (en) Method for growing sic single crystal
JPH0639360B2 (en) Method for growing 6H-type and 4H-type silicon carbide single crystals
JP2009102187A (en) Crucible for growth of silicon carbide single crystal, method of manufacturing silicon carbide single crystal using the same, and silicon carbide single crystal ingot

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010605