JP4174847B2 - Single crystal manufacturing method - Google Patents

Single crystal manufacturing method Download PDF

Info

Publication number
JP4174847B2
JP4174847B2 JP09856898A JP9856898A JP4174847B2 JP 4174847 B2 JP4174847 B2 JP 4174847B2 JP 09856898 A JP09856898 A JP 09856898A JP 9856898 A JP9856898 A JP 9856898A JP 4174847 B2 JP4174847 B2 JP 4174847B2
Authority
JP
Japan
Prior art keywords
seed crystal
growth
single crystal
crystal
lid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP09856898A
Other languages
Japanese (ja)
Other versions
JPH11278985A (en
Inventor
篤人 岡本
尚宏 杉山
俊彦 谷
信雄 神谷
正一 恩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP09856898A priority Critical patent/JP4174847B2/en
Publication of JPH11278985A publication Critical patent/JPH11278985A/en
Application granted granted Critical
Publication of JP4174847B2 publication Critical patent/JP4174847B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、単結晶の製造方法、更に詳しくは、種結晶載置部に設置した種結晶基板上に単結晶を成長させることにより単結晶を製造する方法において、単結晶の成長初期に種結晶の成長表面に少なくとも一つ相対的な低温領域を設けることにより複数個の成長核の生成を妨げ、それにより結晶欠陥の少ない単結晶を製造することができる単結晶の製造方法に関するものである。
【0002】
【従来の技術】
高性能な半導体材料として、高品質,大面積の炭化珪素(SiC)単結晶基板の開発が求められている。集積回路を製造するためには結晶欠陥の少ない単結晶基板が必要であるが、種結晶の上に昇華法や気相成長法により単結晶を成長させる場合、ジャストアングルの種結晶の上に単結晶を成長させると複数個の成長核から単結晶が成長するため、各々の結晶の継ぎ目に相当する部分が生じ、これが結晶欠陥を生じさせる一つの原因となる。
前記結晶欠陥を生じさせないようにするため、従来は成長面の温度分布や成長面に供給される反応ガス量を調整し、更にオフアングル基板との組み合わせにより成長核の制御を行うことで欠陥の低減を図っていた。以下具体例を示す。
【0003】
▲1▼特開平4−16597号公報(シャープ)
主要な成長面方位が[0001]方向から1〜10度傾斜している六方晶系炭化珪素種結晶を使用する。
▲2▼特開平4−357824号公報(三洋電機)
オフアングル基板上に供給される反応ガス量を成長ステップの高さに比例して増加させる。
▲3▼特開平8−245299号公報(三洋電機)
種結晶基板の一方の縁部から対向する他方の縁部にわたって温度勾配を設け、ステップ成長を主体とする成長機構を用いて成長させる。{0001}面から5〜30度傾斜した結晶成長面を有する基板を使用する。
▲4▼特開平8−59389号公報(松下電器)
種結晶の成長表面に、特異点(突起,へこみ,不純物)を少なくとも一つ導入して成長させる。特異点上に成長した部分以外の単結晶成長部分を切り出す工程を含む。
▲5▼特開平5−330995号公報(シャープ)
座繰り構造の蓋体が図示されているが、その効果には触れられていない。
▲6▼特表平3−50118号公報(ノースカロナイナ州立大)
▲5▼と同様。座繰り構造は測温用の光学的開口と明記されているのみである。
【0004】
【発明が解決しようとする課題】
従来技術▲1▼においては成長条件によって成長面内のいたる箇所で核生成する可能性があり、成長核生成を完全に制御することは困難である。そのため、欠陥を大幅に低減することができない。また、オフアングル基板を作製しなければならないため、種結晶基板の製造歩留まりが低下するという問題点がある。従来技術▲2▼においては、成長ステップの高さに比例して反応ガス量を厳密に制御することは困難であり、従来技術▲1▼と同様の危惧がある。従来技術▲3▼は、従来技術▲1▼,▲2▼と比較すると成長核生成の制御が良好であるが、反応炉の蓋部の中心から一方向に偏った位置に種結晶基板を配置するため、成長結晶の大口径化を図ろうとした場合、大きなるつぼや反応炉が必要になり、コストの面で難点がある。更に、成長の中期及び後期も成長初期とほぼ等しい温度勾配を有する温度分布を示すため、偏った成長ファセットを呈し、電気的特性を制御する不純物の均一ドーピングには不適当な方法である。従来技術▲4▼においては、形状的な特異点のみで成長核の制御を行うことは困難であり、従来技術▲1▼と同様の危惧がある。従来技術▲5▼,▲6▼では、座繰り構造を有する蓋体が使用されているが、前記蓋体の使用形態は例えば温度測定用の光学的開口である。この目的での使用のためには開口は大きい方が望ましいが、大きい開口では成長表面をスポット的に低温化して核生成を制御することは困難である。
【0005】
本発明は上記従来技術の問題点を解決するためのものであり、その目的とするところは、単結晶の成長初期における成長核の生成を制御し、複数の成長核の生成を抑制することを可能にして、欠陥が少ない単結晶を得ることができ且つ成長結晶の大口径化が容易な単結晶の製造方法を提供することにある。
【0006】
【課題を解決するための手段】
すなわち、本発明の単結晶の製造方法は、反応容器の蓋体の種結晶載置部に種結晶基板を設置し、該反応容器のるつぼに原料粉末を入れて、昇華法により、前記種結晶載置部に設置した前記種結晶基板上に単結晶を成長させることにより単結晶を製造する方法において、
前記種結晶載置部に、水平面に対して傾いた傾斜載置面を設け、該傾斜載置面に前記種結晶基板を設置することにより、単結晶の成長初期には種結晶の成長表面に少なくとも一つ相対的な低温領域を設け、単結晶成長の中後期には成長表面の温度分布が略均一になる状態にて単結晶を成長させることを特徴とする。
ジャストアングルの種結晶の上に単結晶を成長させると複数個の成長核から単結晶が成長するため、結晶の継ぎ目部が生じ、欠陥生成の原因になる。これを防ぐためには、成長面をオフアングルとすることが、ステップフロー成長様式により単結晶を成長させることができるので、有効である。
本発明では、低温領域を設けることにより、低温領域での単結晶の上下の成長を周辺での単結晶の上下の成長よりも増加させ、単結晶の成長初期に実質的にオフアングル状態を形成する。これによって、単結晶の成長初期に単結晶のステップフロー成長を行わせることができる。
そして、前記傾斜載置面の傾き角度θは20°であることが好ましい。
【0007】
【発明の実施の形態】
本発明の方法を適用し得る単結晶は特に限定されず、本発明の方法は、単一元素又は化合物からなる種々の単結晶の製造に用いることができる。本発明の方法を適用し得る好ましい単結晶としては、例えば炭化珪素単結晶が挙げられる。
前記低温領域を設けるための具体的な方法としては、例えば下記の方法が挙げられる。
a)前記低温領域が、種結晶載置部の種結晶基板を設置する面の反対側の面に少なくとも一つの座繰りを有する種結晶載置部構造により実現される方法。
b)前記低温領域が、種結晶載置部の種結晶基板を設置する面が傾斜面である種結晶載置部構造により実現される方法。
c)前記低温領域が、種結晶載置部の側面に少なくとも一条の切り込みを有する種結晶載置部構造により実現される方法。
d)前記低温領域が、種結晶載置部の種結晶基板を設置する面の反対側の面に少なくとも一つの熱伝導性の悪い部位を有する種結晶載置部構造により実現される方法。
e)前記低温領域が、種結晶載置部の種結晶基板を設置する面の周辺部に少なくとも一輪の溝を有する種結晶載置部構造により実現される方法。
f)前記低温領域が、a)ないしe)記載の種結晶載置部構造の組み合わせにより実現される方法。
前記a)〜f)の方法以外にも、例えば、種結晶載置部の所定箇所に温度制御手段(例えば、金属製又はセラミック製の成形体)を配置し、この温度制御手段の温度を制御する(加熱又は冷却する)ことにより本発明の方法における低温領域を設ける等、種々の方法を用いてよい。
【0008】
前記a)の方法における座繰りは、一つ又は二つ以上設けてよい。座繰りの大きさ,形状,深さは適宜選択する。座繰りの径は5mm以下がよい。更に好適には、2mm未満がよい。座繰りの深さは種結晶と成長単結晶との接着面から1〜5mmの位置にその先端が達するようにするとよい。
前記b)の方法における傾斜面の傾斜角は、0〜90度の範囲内で適宜選択する。
前記c)の方法における切り込みは一条又は二条以上設けてよい。切り込みの大きさ,形状,深さは適宜選択する。切り込みの幅は0.1〜5mmがよく、深さは、種結晶載置部を1〜5mm残す程度がよい。
前記d)の方法における熱伝導性の悪い部位は、種結晶載置部の所定箇所に種結晶載置部を構成する材料よりも熱伝導性の悪い材料を用いて形成する。例えば種結晶載置部の所定箇所を前記の熱伝導性の悪い材料で置換するか、又は種結晶載置部の所定箇所に前記の熱伝導性の悪い材料からなる成形体を埋設する。熱伝導性の悪い材料としては、種結晶載置部を構成する材料の熱伝導率に対して熱伝率が1/1.5以下の材料を用いるのがよい。また、熱伝導性の悪い材料は、種結晶載置部を構成する元の材料を載置部の径方向に最大5mm残すように、また軸方向では種結晶と成長単結晶との接着面から1〜5mm程度元の材料を残すように配置するのがよい。
前記e)の方法における溝は一輪又は二輪以上設けてよい。溝の大きさ,形状,深さは適宜選択する。種結晶載置部の縁と溝との間には5mm以下の載置部分を残すのがよく、載置部上の低温部のために、溝よりも内側に5mm以下の載置部分を残すのがよい。溝の深さは1mm以下がよい。
前記a)ないしe)の方法を適宜組み合わせることにより、種々の単結晶の製造に適応することができる。
【0009】
【実施例】
以下の実施例及び比較例により、本発明を更に詳細に説明する。
本発明の方法に用いる装置
図1は本発明の方法に用いることができる炭化珪素単結晶製造装置の一例の概略構成図である。反応容器は、黒鉛製るつぼ1と黒鉛製蓋体2とにより構成されている。黒鉛製るつぼ1内には炭化珪素原料粉末3が、また種結晶載置部を兼ねる黒鉛製蓋体2には炭化珪素原料粉末3に対向して種結晶4が設置されている。本例では、黒鉛製蓋体2に種結晶の成長面を局所的に低温化するための座繰り6を設けた。種結晶の成長は、黒鉛製の抵抗発熱体(図示せず)による温度調整と、不活性ガス等の圧力調整により行われる。具体的には、原料温度:約2200℃〜2400℃、種結晶温度:約2100℃〜2300℃、雰囲気圧力:約1Torr〜数10Torrにて、炭化珪素単結晶5を成長させる。なお、以下の図において、7は切れ込み,8はポーラスカーボン,9は溝,10は傾斜載置部を示す。
【0010】
参考例1
図2の蓋体(種結晶載置部)を用いて、昇華法で4H多形の炭化珪素バルク単結晶を成長させた。種結晶基板としては、貫通孔欠陥が存在しない4H多形の炭化珪素単結晶の(000)ジャスト面を用いた。
直径25mmの凸型部分を含む蓋体の裏側(種結晶基板を設置する面の反対側の面)に、直径2mm,種結晶接着面からの距離Lが2mmになるように座繰り6を作製した。この座繰り6付き蓋体に種結晶を固定し、図1に示す単結晶製造装置に配置し、従来の昇華法工程を用いて、上記条件にて炭化珪素単結晶を成長させた。この場合、座繰り6のある近傍は熱輻射により周辺部と比較して低温になる。すなわち種結晶の中央部は周辺部と比較して相対的に低温になる。このことは、種結晶中央部に接する炭化珪素ガスの過飽和度が種結晶周辺部と比較して高くなることを意味する。従って、種結晶中央部では成長核の核生成密度が高くなることが予想される。また、成長核同士の成長ステップの接合により導入されるらせん転位による成長ステップの密度もまた増加することが予想される。一方、種結晶周辺部では、中央部のステップの前進により成長が行われるステップフロー成長機構が支配的となる。
参考例1の方法により得られた幾つかの単結晶インゴットを成長方向に垂直に切断・研磨を行い、溶融アルカリエッチング法,直交偏光顕微鏡観察法を用いて欠陥密度の測定を行った。測定の結果、ウェハー全面にわたって貫通孔欠陥の存在は確認されなかった。
次に前記単結晶インゴットについて、らせん転位密度を中央部と周辺部とで比較検討した。らせん転位密度は、単結晶インゴットから切り出した試料に溶融アルカリ(例えば、KOH:500℃×7分)エッチング法を適用してエッチピットを形成し、それを光学顕微鏡で観察することにより測定した。その結果、中央部:102 〜103 cm-2,周辺部:0〜102 cm-2であり、主に中央部では2次元核生成機構により、周辺部ではステップフロー機構により単結晶の成長が行われていることが推察された。これらの成長機構は、中央部と周辺部とで温度差の生じ易い成長初期に顕著である。成長後期には、黒鉛製蓋体(黒鉛多結晶)などと比較して炭化珪素単結晶の熱伝導率が大きいため、成長表面の径方向の温度差は、成長装置(成長るつぼ側壁等)の温度分布に強く拘束されるようになることから、次第に小さくなる。すなわち、成長表面全面にわたって次第にステップフロー機構が支配的になっていくものと推察される。なお、成長中後期に成長面内の温度分布を均一にするには、能動的及び/又は受動的な輻射板を成長面に対向配置させる(図示せず)とその効果が増す。こうして得られた単結晶インゴットは、一つの結晶面で形成されているため、均一ドーピングに使用するためにも適しており、基板の製造歩留まりも向上した。従って、本発明の方法を貫通孔欠陥が無い種結晶に適用した場合、貫通孔欠陥の無い
高品位単結晶を再現性良く製造することが可能となる。
なお、参考例1の方法により得られた単結晶には、らせん転位密度が相対的に高い箇所(中央部)が存在するが、現在、らせん転位がデバイス特性に及ぼす影響については明らかになっておらず、仮に将来、参考例1の方法により得られた単結晶から製作されたデバイスの動作に不具合が生じる可能性が明らかになっても、らせん転位の位置が予め特定できているため、転位密度の低い部分(周辺部)を使用することにより、高性能のデバイスを作製することが可能である。
【0011】
参考例2
参考例1と同じ蓋体(種結晶載置部)を用いて、昇華法で4H多形の炭化珪素バルク単結晶を成長させた。種結晶基板としては、貫通孔欠陥(密度:20cm-2)が存在する4H多形の炭化珪素単結晶の(000)ジャスト面(直径25mm)を用いた。この蓋体を使用すると、成長初期において成長端面が凸面状(略円錐状)になる(図示せず)。貫通孔欠陥は成長端面に対して垂直方向に伸びる性質があり、成長が進むにつれて種結晶周辺の貫通孔欠陥は外周部に排出される。参考例2の方法で得られた単結晶の欠陥密度を測定した結果、貫通孔欠陥密度は16cm-2に減少したことが判った。種結晶中の貫通孔欠陥の面内分布にも依存するが、種結晶の周辺部に存在する貫通孔欠陥は参考例2の方法を用いることによって徐々に低減させることが可能である。従って、参考例2の方法を貫通孔欠陥がある種結晶に適用した場合、貫通孔欠陥密度が比較的低い単結晶を再現性良く製造することが可能となる。
上記においては、成長面の中央部を低温化するための蓋体として、座繰りを有する蓋体(種結晶載置部)を示したが、前述のもの以外にも、例えば、側面に少なくとも一条の切れ込みを有する蓋体(図3),種結晶基板を設置する面の反対側の面にポーラスカーボンなど熱伝導体の悪い材料で形成された少なくとも一つの熱伝導性の悪い部位を有する蓋体(中心部分は熱伝導性の良い黒鉛で形成)(図4),種結晶載置部の載置面の周辺部に少なくとも一輪の溝を有する蓋体(図5)、或いはこれらを適宜組み合わせて使用しても、実施例1,2と同様な効果を得ることができる。また、座繰りの形状,寸法は用いる黒鉛の密度や純度、用いる種結晶の大きさによって適宜選定してよい。特に直径100mm以上のウェハーの作製に用いる蓋体としては、図6に示すような階段状の座繰り,図7に示すような略円錐状の座繰り,図8に示すような階段状の溝、を有する蓋体を用いると一層大きな上記の効果を得ることができる。
【0012】
実施例1
図9の蓋体(種結晶載置部)を用いて、昇華法で4H多形の炭化珪素バルク単結晶を成長させた。種結晶基板としては、貫通孔欠陥が存在しない4H多形の炭化珪素単結晶の(000)ジャスト面(直径25mm)を用いた。また、載置面の水平面からの傾き角度θが20゜の傾斜載置面を有する載置体を用いた(図9)。この傾斜載置面を有する蓋体に種結晶を固定し、図1に示す単結晶製造装置に配置し、従来の昇華法工程を用いて、上記条件にて炭化珪素単結晶を成長させた。この場合、A箇所は黒鉛の熱伝導の影響によりB箇所と比較して高温になる。すなわち種結晶のA箇所からB箇所に向かって温度降下が起こる。実施例1との類似により、B箇所からA箇所へ向かってステップフローの成長が支配的となることが予想される。本実施例により得られたいくつかの単結晶インゴットに対して参考例1と同様な手法を用いて欠陥密度の測定を行った。測定の結果、ウェハー全面にわたって貫通孔欠陥の存在は確認されなかった。らせん転位密度に関しても、A箇所:0〜102 cm-2,B箇所:102 〜103 cm-2である。従って、本実施例の方法を貫通孔欠陥が無い種結晶に適用した場合、貫通孔欠陥の無い高品位単結晶を再現性良く製造することが可能となる。参考例1と同様に転位密度が相対的に高い箇所(B箇所)が予め特定できているため、それ以外の箇所を使用することにより、高性能のデバイスを作製することが可能となる。なお、載置面の傾き角度は本実施例の角度に限定されるものではなく、実施例1で用いた座繰りや参考例2で説明した構造を組み合わせて適用することにより(図示せず)、0°<θ<90°の広範囲にわたって適用可能である。
上記においては、成長面の一端を低温化するための蓋体として、傾斜載置面を有する蓋体(種結晶載置部)を示したが、前述のもの以外にも、例えば、一端の周辺部に少なくとも一条の切れ込みを有する蓋体(図10),種結晶基板を設置する面の反対側の面の周辺部にポーラスカーボンなど熱伝導体の悪い材料で形成された少なくとも一つの熱伝導性の悪い部位を有する蓋体(図11),種結晶基板を設置する面の反対側の面の周辺部に座繰りを有する蓋体(図12)、或いはこれらを適宜組み合わせて使用しても、本実施例と同様な効果を得ることができる。また、直径100mm以上のウェハーの作製に用いられる蓋体としては、図13に示すような階段状の座繰りと傾斜載置面を有する蓋体を用いると一層大きな上記の効果を得ることができる。
【0013】
上記実施例では4H多形の炭化珪素種結晶の場合について述べたが、これ以外の多形、例えば6H多形の炭化珪素を用いても同様な効果を得ることができる。
また、上記実施例では種結晶基板を設置する面が突起状部の一端面である蓋体の例を述べたが、蓋体としてはこれに限定されるものではなく、例えば、図1に示したような形状の蓋体でも勿論よい。また、上記実施例では、単結晶成長装置として、上部に種結晶,下部に原料を対向配置する装置について述べたが、これ以外の装置、例えば上部に原料,下部に種結晶を配置する装置も適用可能である。更に、加熱方式に関しても、従来周知の高周波誘導加熱方式を用いても同様の効果を得ることができる。
【0014】
比較例
図14の蓋体(種結晶載置部)を用いて、昇華法で4H多形の炭化珪素バルク単結晶を成長させた。種結晶基板としては、貫通孔欠陥が存在しない4H多形の炭化珪素単結晶の(0001)ジャスト面(直径25mm)を用いた。本比較例で得られたいくつかの単結晶の欠陥密度を測定した結果、貫通孔欠陥密度は約10cm-2、らせん転位密度は約104 cm-2であり、しかもそれらの欠陥は面内に不均一に分布していた。
【0015】
本発明の上記実施例では、炭化珪素の単結晶成長について述べたが、それ以外の結晶、例えばGaN,ZnSe,ZnS,CdS,CdTe,AlN,BN等の製造にも適用することが可能である。
【0016】
本発明の方法における種結晶の成長表面の低温部と高温部との温度差の規定について
以下、炭化珪素の場合を例として、本発明の方法における種結晶の成長表面の低温部と高温部との温度差の規定について更に詳しく述べる。
本発明の方法における炭化珪素の成長は、従来の成長方法と同様に、高温側に配置された原料SiC粉末から原料ガス種が昇華し、それらが低温側に配置された種結晶上に拡散輸送されて再結晶化することにより行われる。反応るつぼ内の各点の温度は、熱輻射とそれぞれの材質の熱伝導により決定される。このうち、原料粉末温度と種結晶との間の温度差は良質の炭化珪素単結晶を製造する際、一つの重要な要件である。本実施例で述べた、成長初期段階における温度差の詳細は以下の通りである。なお、以下の記号X,Y,U,Vは図15中の記号X,Y,U,Vを示す。
1)種結晶中央部Xと原料中央部Uとの間の温度差:20〜40℃、望ましくは20〜30℃
2)種結晶周辺部Yと原料周辺部Vとの間の温度差:0〜20℃、望ましくは5〜15℃
3)種結晶中央部Xと種結晶周辺部Yとの間の温度差:10〜40℃、望ましくは10〜30℃
【0017】
本実施例では、成長初期の段階においては、
1′)種結晶中央部Xと原料中央部Uとの間の温度差:25℃
2′)種結晶周辺部Yと原料周辺部Vとの間の温度差:5℃
3′)種結晶中央部Xと種結晶周辺部Yとの間の温度差:20℃
に設定し、成長時間の経過とともに、炭化珪素の熱伝導性が増加すること及び新たなるつぼ内の温度制御により、種結晶中央部Xと種結晶周辺部Yとの間の温度差が解消するように、従って
1″)種結晶中央部Xと原料中央部Uとの間の温度差:25℃
2″)種結晶周辺部Yと原料周辺部Vとの間の温度差:20℃
3″)種結晶中央部Xと種結晶周辺部Yとの間の温度差:5℃以下、望ましくは0℃
となるように温度制御を行った。これらの温度差、特に種結晶中央部Xと原料中央部Uとの間の温度差,種結晶周辺部Yと原料周辺部Vとの間の温度差は、上述したように得られる単結晶の結晶性に大きな影響を及ぼすため、特定のデバイスとして望まれる品質に応じて決定される。また、あまり低い欠陥密度が要求されない基板用の結晶を成長させる場合には、製造コストを考慮して、種結晶と原料との間の温度差を徐々に大きくする成長プログラムを採用してもよい。
【0018】
【発明の効果】
本発明の方法では、例えば、特定構造の種結晶載置部を使用することにより、単結晶の成長初期には種結晶の成長表面に少なくとも一つ相対的な低温領域を設けるので、単結晶の成長初期において成長核の生成を制御することができ(例えば、複数の成長核の生成を抑制することができ)、しかもステップフローの成長モードを実現することができるので、成長結晶の結晶性が飛躍的に向上する。特に、中央部分を相対的に低温化する種結晶載置部の構造を採用する場合には、成長初期に略円錐形の結晶外形で成長が行われるため、種結晶の周辺に存在していた貫通孔欠陥が外部に排出されることになり、欠陥密度を低減することができる。更に、単結晶の成長中後期には、成長表面の温度分布が略均一になるため、均一ドーピングが可能となり、基板の製造歩留まりも飛躍的に向上する。
本発明の方法に用いる種結晶載置部(例えば、蓋体)は種々の形態のものを比較的容易に準備することができ、また種結晶として(0001)面ジャスト基板を使用することができるため、本発明の方法は低コストで実施可能であり、しかも成長結晶の大口径化プロセスにも適用可能である。
従って、本発明の方法によると、大面積の単結晶インゴットを高品質にしかも再現性良く製造することが可能である。そのため、得られた単結晶を半導体材料として使用すれば、歩留まりよく高性能の半導体デバイスを作製することができる。
【図面の簡単な説明】
【図1】 本発明及び参考例の方法に用いることができる炭化珪素単結晶製造装置の一例の概略構成図である。
【図2】図1の装置の蓋体の別の例の断面図である。
【図3】図1の装置の蓋体の別の例の断面図である。
【図4】図1の装置の蓋体の別の例の断面図である。
【図5】図1の装置の蓋体の別の例の断面図である。
【図6】図1の装置の蓋体の別の例の断面図である。
【図7】図1の装置の蓋体の別の例の断面図である。
【図8】図1の装置の蓋体の別の例の断面図である。
【図9】図1の装置の蓋体の別の例の断面図である。
【図10】図1の装置の蓋体の別の例の断面図である。
【図11】図1の装置の蓋体の別の例の断面図である。
【図12】図1の装置の蓋体の別の例の断面図である。
【図13】図1の装置の蓋体の別の例の断面図である。
【図14】比較例の蓋体の断面図である。
【図15】本発明の方法における種結晶の成長表面の低温部と高温部との温度差について説明するための図である。
【符号の説明】
1 黒鉛製るつぼ
2 黒鉛製蓋体
3 炭化珪素原料粉末
4 種結晶
5 炭化珪素単結晶
6 座繰り
7 切れ込み
8 ポーラスカーボン
9 溝
10 傾斜載置面
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a single crystal, and more particularly, in a method for producing a single crystal by growing a single crystal on a seed crystal substrate placed on a seed crystal mounting portion, The present invention relates to a method for producing a single crystal that can prevent the formation of a plurality of growth nuclei by providing at least one relative low temperature region on the growth surface of the material, thereby producing a single crystal with few crystal defects.
[0002]
[Prior art]
Development of a high-quality, large-area silicon carbide (SiC) single crystal substrate is demanded as a high-performance semiconductor material. In order to manufacture an integrated circuit, a single crystal substrate with few crystal defects is required. However, when a single crystal is grown on a seed crystal by a sublimation method or a vapor phase growth method, the single crystal substrate is formed on a just angle seed crystal. When a crystal is grown, since a single crystal grows from a plurality of growth nuclei, a portion corresponding to a seam of each crystal is generated, and this becomes one cause of crystal defects.
In order to prevent the occurrence of the crystal defects, conventionally, the temperature distribution of the growth surface and the amount of the reaction gas supplied to the growth surface are adjusted, and further, the growth nuclei are controlled by combining with the off-angle substrate, thereby controlling the defects. We tried to reduce it. Specific examples are shown below.
[0003]
(1) Japanese Patent Laid-Open No. 4-16597 (Sharp)
A hexagonal silicon carbide seed crystal whose main growth plane orientation is inclined by 1 to 10 degrees from the [0001] direction is used.
(2) JP-A-4-357824 (Sanyo Electric)
The amount of reaction gas supplied on the off-angle substrate is increased in proportion to the height of the growth step.
(3) JP-A-8-245299 (Sanyo Electric)
A temperature gradient is provided from one edge of the seed crystal substrate to the other opposite edge, and the seed crystal substrate is grown using a growth mechanism mainly composed of step growth. A substrate having a crystal growth surface inclined by 5 to 30 degrees from the {0001} plane is used.
(4) JP-A-8-59389 (Matsushita Electric)
At least one singular point (protrusion, dent, impurity) is introduced and grown on the growth surface of the seed crystal. A step of cutting a single crystal growth portion other than the portion grown on the singular point.
(5) JP-A-5-330995 (Sharp)
The cover of the countersink structure is shown, but the effect is not touched.
(6) Special Table No.3-50118 (North Carolina State University)
Same as (5). The countersink structure is only specified as an optical aperture for temperature measurement.
[0004]
[Problems to be solved by the invention]
In the prior art {circle around (1)}, there is a possibility that nucleation may occur at any part of the growth surface depending on the growth conditions, and it is difficult to completely control the growth nucleation. For this reason, the defects cannot be significantly reduced. In addition, since an off-angle substrate has to be manufactured, there is a problem in that the production yield of the seed crystal substrate is lowered. In the prior art {circle around (2)}, it is difficult to strictly control the amount of the reaction gas in proportion to the height of the growth step, and there is the same concern as the prior art {circle around (1)}. Compared with the prior art (1) and (2), the conventional technique (3) has better control of growth nucleation, but the seed crystal substrate is placed at a position that is offset in one direction from the center of the lid of the reactor. Therefore, when trying to increase the diameter of the grown crystal, a large crucible and a reaction furnace are required, which is difficult in terms of cost. Further, since the middle and late stages of the growth show a temperature distribution having a temperature gradient substantially equal to that of the initial stage of growth, the method exhibits a biased growth facet and is not suitable for uniform doping of impurities for controlling electrical characteristics. In the prior art {circle over (4)}, it is difficult to control the growth nuclei only with the shape singular points, and there is a concern similar to the prior art {circle around (1)}. In the prior arts (5) and (6), a lid having a countersink structure is used. The usage of the lid is, for example, an optical aperture for temperature measurement. A larger opening is desirable for use for this purpose, but it is difficult to control nucleation by spot-cooling the growth surface with a large opening.
[0005]
The present invention is for solving the above-mentioned problems of the prior art, and its object is to control the generation of growth nuclei in the initial stage of single crystal growth and to suppress the generation of a plurality of growth nuclei. An object of the present invention is to provide a method for producing a single crystal that can obtain a single crystal with few defects and can easily increase the diameter of a grown crystal.
[0006]
[Means for Solving the Problems]
That is, in the method for producing a single crystal of the present invention, a seed crystal substrate is placed on a seed crystal mounting portion of a lid of a reaction vessel, a raw material powder is put in a crucible of the reaction vessel, and the seed crystal is obtained by a sublimation method. In the method for producing a single crystal by growing the single crystal on the seed crystal substrate placed on the mounting part,
The seed crystal mounting portion is provided with an inclined mounting surface that is inclined with respect to a horizontal plane, and the seed crystal substrate is installed on the inclined mounting surface, so that a seed crystal growth surface is formed at the initial stage of single crystal growth. At least one relative low temperature region is provided, and the single crystal is grown in a state in which the temperature distribution on the growth surface becomes substantially uniform in the middle and later stages of single crystal growth.
When a single crystal is grown on a just-angle seed crystal, the single crystal grows from a plurality of growth nuclei, so that a seam portion of the crystal is generated, which causes a defect. In order to prevent this, it is effective to make the growth surface off-angle because a single crystal can be grown in a step flow growth mode.
In the present invention, by providing the low temperature region, the upper and lower growth of the single crystal in the low temperature region is increased more than the upper and lower growth of the single crystal in the periphery, and a substantially off-angle state is formed at the initial stage of the single crystal growth. To do. As a result, single crystal step flow growth can be performed in the initial stage of single crystal growth.
And it is preferable that inclination | tilt angle (theta) of the said inclination mounting surface is 20 degrees.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The single crystal to which the method of the present invention can be applied is not particularly limited, and the method of the present invention can be used for production of various single crystals composed of a single element or a compound. A preferable single crystal to which the method of the present invention can be applied includes, for example, a silicon carbide single crystal.
Specific examples of the method for providing the low temperature region include the following methods.
a) A method in which the low temperature region is realized by a seed crystal mounting portion structure having at least one countersink on a surface opposite to a surface on which the seed crystal substrate of the seed crystal mounting portion is placed.
b) A method in which the low temperature region is realized by a seed crystal mounting portion structure in which a surface on which a seed crystal substrate of the seed crystal mounting portion is installed is an inclined surface.
c) The method in which the low temperature region is realized by a seed crystal mounting portion structure having at least one notch on the side surface of the seed crystal mounting portion.
d) A method in which the low-temperature region is realized by a seed crystal mounting portion structure having at least one site with poor thermal conductivity on the surface opposite to the surface on which the seed crystal substrate of the seed crystal mounting portion is placed.
e) A method in which the low temperature region is realized by a seed crystal mounting portion structure having at least one groove on the periphery of the surface on which the seed crystal substrate of the seed crystal mounting portion is to be placed.
f) A method in which the low temperature region is realized by a combination of the seed crystal mounting part structures described in a) to e).
In addition to the methods a) to f), for example, a temperature control means (for example, a metal or ceramic molded body) is disposed at a predetermined location of the seed crystal mounting portion, and the temperature of the temperature control means is controlled. Various methods may be used such as providing a low temperature region in the method of the present invention by heating (cooling).
[0008]
One or more countersinks in the method a) may be provided. The size, shape, and depth of the countersink are selected as appropriate. The diameter of the countersink is preferably 5 mm or less. More preferably, it is less than 2 mm. The depth of the countersink is preferably such that the tip reaches a position of 1 to 5 mm from the bonding surface between the seed crystal and the grown single crystal.
The inclination angle of the inclined surface in the method b) is appropriately selected within the range of 0 to 90 degrees.
The notch in the method c) may be provided in one or two or more. The size, shape, and depth of the cut are selected as appropriate. The width of the cut is preferably 0.1 to 5 mm, and the depth is preferably such that the seed crystal placement portion is left 1 to 5 mm.
The part having poor thermal conductivity in the method d) is formed at a predetermined position of the seed crystal mounting part using a material having lower thermal conductivity than the material constituting the seed crystal mounting part. For example, a predetermined portion of the seed crystal mounting portion is replaced with the material having poor heat conductivity, or a molded body made of the material having poor heat conductivity is embedded in the predetermined portion of the seed crystal mounting portion. As a material having poor thermal conductivity, it is preferable to use a material having a thermal conductivity of 1 / 1.5 or less with respect to the thermal conductivity of the material constituting the seed crystal mounting portion. In addition, the material having poor thermal conductivity is such that the original material constituting the seed crystal mounting portion is left at a maximum of 5 mm in the radial direction of the mounting portion, and in the axial direction from the bonding surface between the seed crystal and the grown single crystal. It is preferable to arrange the original material so as to leave about 1 to 5 mm.
The groove in the method e) may be provided with one or two or more wheels. The size, shape, and depth of the groove are selected as appropriate. It is better to leave a placement part of 5 mm or less between the edge of the seed crystal placement part and the groove, and a placement part of 5 mm or less is left inside the groove for the low temperature part on the placement part. It is good. The depth of the groove is preferably 1 mm or less.
Appropriate combinations of the methods a) to e) can be applied to the production of various single crystals.
[0009]
【Example】
The following examples and comparative examples explain the present invention in more detail.
Apparatus used in the method of the present invention FIG. 1 is a schematic configuration diagram of an example of a silicon carbide single crystal manufacturing apparatus that can be used in the method of the present invention. The reaction vessel is composed of a graphite crucible 1 and a graphite lid 2. A silicon carbide raw material powder 3 is placed in the graphite crucible 1, and a seed crystal 4 is placed opposite to the silicon carbide raw material powder 3 in the graphite lid 2 that also serves as a seed crystal placement portion. In this example, the graphite lid 2 is provided with a counterbore 6 for locally lowering the growth surface of the seed crystal. The seed crystal is grown by adjusting the temperature with a graphite resistance heating element (not shown) and adjusting the pressure of an inert gas or the like. Specifically, the silicon carbide single crystal 5 is grown at a raw material temperature: about 2200 ° C. to 2400 ° C., a seed crystal temperature: about 2100 ° C. to 2300 ° C., and an atmospheric pressure: about 1 Torr to several tens of Torr. In the following drawings, 7 is a notch, 8 is porous carbon, 9 is a groove, and 10 is an inclined mounting portion.
[0010]
Reference example 1
A 4H polymorphous silicon carbide bulk single crystal was grown by a sublimation method using the lid (seed crystal placement portion) of FIG. As the seed crystal substrate, a (000 1 ) just plane of 4H polymorphic silicon carbide single crystal having no through-hole defects was used.
A counterbore 6 is prepared on the back side of the lid including the convex part with a diameter of 25 mm (the surface opposite to the surface on which the seed crystal substrate is placed) so that the distance L from the seed crystal bonding surface is 2 mm in diameter. did. A seed crystal was fixed to the lid body with the counterbore 6, placed in the single crystal manufacturing apparatus shown in FIG. 1, and a silicon carbide single crystal was grown under the above conditions using a conventional sublimation process. In this case, the vicinity of the counterbore 6 becomes lower in temperature than the peripheral part due to thermal radiation. That is, the center part of the seed crystal is relatively low in temperature as compared with the peripheral part. This means that the degree of supersaturation of the silicon carbide gas in contact with the center portion of the seed crystal is higher than that in the periphery of the seed crystal. Therefore, the nucleation density of the growth nuclei is expected to increase at the center of the seed crystal. It is also expected that the density of growth steps due to screw dislocations introduced by joining growth steps between growth nuclei will also increase. On the other hand, in the seed crystal peripheral part, the step flow growth mechanism in which the growth is performed by the advance of the step in the central part becomes dominant.
Several single crystal ingots obtained by the method of Reference Example 1 were cut and polished perpendicularly to the growth direction, and the defect density was measured using a molten alkali etching method and an orthogonal polarization microscope observation method. As a result of the measurement, the presence of through-hole defects was not confirmed over the entire wafer surface.
Next, for the single crystal ingot, the screw dislocation density was compared between the central portion and the peripheral portion. The screw dislocation density was measured by applying a molten alkali (for example, KOH: 500 ° C. × 7 minutes) etching method to a sample cut from a single crystal ingot to form etch pits and observing them with an optical microscope. As a result, the central part is 10 2 to 10 3 cm -2 , and the peripheral part is 0 to 10 2 cm -2. The single crystal is mainly formed by the two-dimensional nucleation mechanism in the central part and the step flow mechanism in the peripheral part. It was inferred that growth was taking place. These growth mechanisms are conspicuous in the initial stage of growth where a temperature difference tends to occur between the central portion and the peripheral portion. In the latter stage of growth, the thermal conductivity of the silicon carbide single crystal is larger than that of a graphite lid (graphite polycrystal), etc., so that the temperature difference in the radial direction of the growth surface is different from that of the growth apparatus (growth crucible side wall, etc.) Since it becomes strongly restrained by the temperature distribution, it becomes gradually smaller. That is, it is presumed that the step flow mechanism gradually becomes dominant over the entire growth surface. In order to make the temperature distribution in the growth surface uniform in the latter half of the growth, the effect increases when an active and / or passive radiation plate is disposed opposite the growth surface (not shown). Since the single crystal ingot obtained in this way is formed with one crystal plane, it is suitable for use in uniform doping, and the manufacturing yield of the substrate is improved. Therefore, when the method of the present invention is applied to a seed crystal having no through-hole defect, a high-quality single crystal having no through-hole defect can be produced with good reproducibility.
The single crystal obtained by the method of Reference Example 1 has a portion (central portion) having a relatively high screw dislocation density. Currently, the influence of screw dislocation on device characteristics has been clarified. Even if it becomes clear that there is a possibility that a malfunction will occur in the operation of a device manufactured from the single crystal obtained by the method of Reference Example 1 in the future, the position of the screw dislocation can be specified in advance. By using a portion having a low density (peripheral portion), a high-performance device can be manufactured.
[0011]
Reference example 2
Using the same lid (seed crystal placement portion) as in Reference Example 1 , a 4H polymorphic silicon carbide bulk single crystal was grown by sublimation. As the seed crystal substrate, a (000 1 ) just face (diameter 25 mm) of 4H polymorphic silicon carbide single crystal having through-hole defects (density: 20 cm −2 ) was used. When this lid is used, the growth end face becomes convex (substantially conical) at the initial stage of growth (not shown). The through-hole defect has a property of extending in a direction perpendicular to the growth end face, and the through-hole defect around the seed crystal is discharged to the outer peripheral portion as the growth proceeds. As a result of measuring the defect density of the single crystal obtained by the method of Reference Example 2 , it was found that the through hole defect density was reduced to 16 cm −2 . Although depending on the in-plane distribution of through-hole defects in the seed crystal, the through-hole defects existing in the periphery of the seed crystal can be gradually reduced by using the method of Reference Example 2 . Therefore, when the method of Reference Example 2 is applied to a seed crystal having through-hole defects, a single crystal having a relatively low through-hole defect density can be manufactured with good reproducibility.
In the above, a cover body (seed crystal placement part) having a countersink was shown as a cover body for lowering the temperature of the center part of the growth surface. A lid having a notch (FIG. 3), and a lid having at least one portion with poor thermal conductivity formed of a material having poor thermal conductivity such as porous carbon on the surface opposite to the surface on which the seed crystal substrate is placed (The central part is formed of graphite with good thermal conductivity) (FIG. 4), a lid (FIG. 5) having at least one groove on the periphery of the mounting surface of the seed crystal mounting part, or a combination of these appropriately Even if it is used, the same effect as in the first and second embodiments can be obtained. The shape and size of the countersink may be appropriately selected depending on the density and purity of the graphite used and the size of the seed crystal used. In particular, as a lid used for manufacturing a wafer having a diameter of 100 mm or more, a stepped countersink as shown in FIG. 6, a substantially conical countersink as shown in FIG. 7, and a stepped groove as shown in FIG. When the lid having the above is used, it is possible to obtain a greater effect as described above.
[0012]
Example 1
A 4H polymorphic silicon carbide bulk single crystal was grown by sublimation using the lid (seed crystal placement portion) of FIG. As a seed crystal substrate, a (000 1 ) just face (diameter 25 mm) of 4H polymorphic silicon carbide single crystal having no through-hole defect was used. Moreover, the mounting body which has the inclination mounting surface whose inclination angle (theta) from the horizontal surface of a mounting surface is 20 degrees was used (FIG. 9). A seed crystal was fixed to the lid having the inclined mounting surface, placed in the single crystal manufacturing apparatus shown in FIG. 1, and a silicon carbide single crystal was grown under the above conditions using a conventional sublimation process. In this case, the A location becomes higher in temperature than the B location due to the heat conduction of the graphite. That is, a temperature drop occurs from the A place to the B place of the seed crystal. Similar to Example 1, it is expected that the growth of the step flow becomes dominant from the B point toward the A point. The defect density was measured for several single crystal ingots obtained in this example using the same method as in Reference Example 1 . As a result of the measurement, the presence of through-hole defects was not confirmed over the entire wafer surface. Regarding the screw dislocation density, the location A is 0 to 10 2 cm -2 and the location B is 10 2 to 10 3 cm -2 . Therefore, when the method of this example is applied to a seed crystal having no through-hole defect, a high-quality single crystal having no through-hole defect can be produced with good reproducibility. Since a location (B location) having a relatively high dislocation density can be specified in advance as in Reference Example 1 , a high-performance device can be fabricated by using other locations. In addition, the inclination angle of the mounting surface is not limited to the angle of the present embodiment, but is applied by combining the countersink used in the first embodiment and the structure described in the second reference example (not shown). , 0 ° <θ <90 ° can be applied over a wide range.
In the above, the lid body (seed crystal placement portion) having the inclined placement surface is shown as the lid body for lowering the temperature of one end of the growth surface. At least one thermal conductivity formed of a material having poor thermal conductivity, such as porous carbon, on the periphery of the surface opposite to the surface on which the seed crystal substrate is placed, with a lid having at least one notch in the portion (FIG. 10) A lid having a bad part (FIG. 11), a lid having a countersink in the periphery of the surface on the opposite side of the surface on which the seed crystal substrate is placed (FIG. 12), or an appropriate combination of these, The same effect as in the present embodiment can be obtained. Further, as a lid used for producing a wafer having a diameter of 100 mm or more, a lid having a stepped countersink and an inclined mounting surface as shown in FIG. .
[0013]
In the above embodiment, the case of the 4H polymorphic silicon carbide seed crystal has been described, but the same effect can be obtained by using other polymorphs such as 6H polymorphic silicon carbide.
In the above embodiment, an example of a lid in which the surface on which the seed crystal substrate is placed is one end surface of the protruding portion has been described. However, the lid is not limited to this, and for example, as shown in FIG. Of course, a lid of a different shape may be used. In the above embodiment, the single crystal growth apparatus has been described with respect to the apparatus in which the seed crystal is disposed on the upper part and the raw material is disposed on the lower part. Applicable. Further, regarding the heating method, the same effect can be obtained even if a conventionally known high-frequency induction heating method is used.
[0014]
Comparative example A 4H polymorphic silicon carbide bulk single crystal was grown by sublimation using the lid body (seed crystal mounting portion) of Fig. 14. As the seed crystal substrate, a (0001) just face (diameter 25 mm) of 4H polymorphic silicon carbide single crystal having no through-hole defect was used. As a result of measuring the defect density of some single crystals obtained in this comparative example, the through hole defect density was about 10 cm −2 , the screw dislocation density was about 10 4 cm −2 , and these defects were in-plane. Distributed unevenly.
[0015]
In the above embodiments of the present invention, the single crystal growth of silicon carbide has been described. However, the present invention can be applied to the manufacture of other crystals such as GaN, ZnSe, ZnS, CdS, CdTe, AlN, and BN. .
[0016]
Regarding the definition of the temperature difference between the low temperature portion and the high temperature portion of the growth surface of the seed crystal in the method of the present invention. Hereinafter, taking the case of silicon carbide as an example, the low temperature portion of the growth surface of the seed crystal in the method of the present invention The temperature difference between the high temperature part and the high temperature part will be described in more detail.
In the growth of silicon carbide in the method of the present invention, as in the conventional growth method, the source gas species are sublimated from the source SiC powder arranged on the high temperature side, and they are diffusely transported onto the seed crystal arranged on the low temperature side. And is performed by recrystallization. The temperature of each point in the reaction crucible is determined by heat radiation and heat conduction of each material. Among these, the temperature difference between the raw material powder temperature and the seed crystal is one important requirement when producing a high-quality silicon carbide single crystal. The details of the temperature difference in the initial stage of growth described in this example are as follows. The following symbols X, Y, U, and V indicate the symbols X, Y, U, and V in FIG.
1) Temperature difference between the seed crystal central portion X and the raw material central portion U: 20 to 40 ° C, preferably 20 to 30 ° C
2) Temperature difference between the seed crystal periphery Y and the raw material periphery V: 0 to 20 ° C., preferably 5 to 15 ° C.
3) Temperature difference between the seed crystal central portion X and the seed crystal peripheral portion Y: 10 to 40 ° C., preferably 10 to 30 ° C.
[0017]
In this example, in the initial stage of growth,
1 ′) Temperature difference between the seed crystal central part X and the raw material central part U: 25 ° C.
2 ′) Temperature difference between the seed crystal periphery Y and the raw material periphery V: 5 ° C.
3 ′) Temperature difference between the center X of the seed crystal and the periphery Y of the seed crystal: 20 ° C.
The temperature difference between the seed crystal central portion X and the seed crystal peripheral portion Y is eliminated by increasing the thermal conductivity of silicon carbide with the growth of the growth time and by controlling the temperature in the new crucible. Thus, 1 ″) temperature difference between the seed crystal central part X and the raw material central part U: 25 ° C.
2 ″) Temperature difference between seed crystal periphery Y and raw material periphery V: 20 ° C.
3 ″) Temperature difference between seed crystal central portion X and seed crystal peripheral portion Y: 5 ° C. or less, preferably 0 ° C.
The temperature was controlled so that These temperature differences, in particular, the temperature difference between the seed crystal central portion X and the raw material central portion U, and the temperature difference between the seed crystal peripheral portion Y and the raw material peripheral portion V are as described above. Since the crystallinity is greatly affected, it is determined according to the quality desired as a specific device. In addition, when growing a crystal for a substrate that does not require a very low defect density, a growth program that gradually increases the temperature difference between the seed crystal and the raw material may be adopted in consideration of manufacturing costs. .
[0018]
【The invention's effect】
In the method of the present invention, for example, by using a seed crystal mounting portion having a specific structure, at least one relative low temperature region is provided on the growth surface of the seed crystal at the initial stage of the growth of the single crystal. It is possible to control the generation of growth nuclei in the early stage of growth (for example, it is possible to suppress the generation of a plurality of growth nuclei) and to realize a step flow growth mode. Improve dramatically. In particular, when adopting a structure of a seed crystal mounting portion that lowers the temperature of the central portion relatively, the growth is performed with a substantially conical crystal shape in the early stage of growth, and therefore, it exists around the seed crystal. A through-hole defect will be discharged | emitted outside and a defect density can be reduced. Furthermore, since the temperature distribution on the growth surface becomes substantially uniform during the latter half of the growth of the single crystal, uniform doping is possible, and the production yield of the substrate is dramatically improved.
The seed crystal mounting portion (for example, lid) used in the method of the present invention can be prepared in various forms relatively easily, and a (0001) plane just substrate can be used as a seed crystal. Therefore, the method of the present invention can be implemented at a low cost, and can also be applied to a process for increasing the diameter of a grown crystal.
Therefore, according to the method of the present invention, a large-area single crystal ingot can be manufactured with high quality and good reproducibility. Therefore, if the obtained single crystal is used as a semiconductor material, a high-performance semiconductor device can be manufactured with a high yield.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of an example of a silicon carbide single crystal manufacturing apparatus that can be used in the method of the present invention and a reference example .
FIG. 2 is a cross-sectional view of another example of the lid of the apparatus of FIG.
3 is a cross-sectional view of another example of the lid of the apparatus of FIG. 1;
4 is a cross-sectional view of another example of the lid of the apparatus of FIG. 1. FIG.
FIG. 5 is a cross-sectional view of another example of the lid of the apparatus of FIG. 1;
6 is a cross-sectional view of another example of the lid of the apparatus of FIG. 1;
7 is a cross-sectional view of another example of the lid of the apparatus of FIG. 1;
FIG. 8 is a cross-sectional view of another example of a lid of the apparatus of FIG.
FIG. 9 is a cross-sectional view of another example of the lid of the apparatus of FIG. 1;
10 is a cross-sectional view of another example of the lid of the apparatus of FIG. 1. FIG.
11 is a cross-sectional view of another example of the lid of the apparatus of FIG. 1. FIG.
12 is a cross-sectional view of another example of the lid of the apparatus of FIG. 1;
13 is a cross-sectional view of another example of the lid of the apparatus of FIG. 1. FIG.
FIG. 14 is a cross-sectional view of a lid of a comparative example.
FIG. 15 is a diagram for explaining a temperature difference between a low temperature portion and a high temperature portion of the growth surface of the seed crystal in the method of the present invention.
[Explanation of symbols]
1 Graphite crucible 2 Graphite lid 3 Silicon carbide raw material powder 4 Seed crystal 5 Silicon carbide single crystal 6 Countersink 7 Notch 8 Porous carbon 9 Groove 10 Inclined mounting surface

Claims (1)

反応容器の蓋体の種結晶載置部に種結晶基板を設置し、該反応容器のるつぼに原料粉末を入れて、昇華法により、前記種結晶載置部に設置した前記種結晶基板上に単結晶を成長させることにより単結晶を製造する方法において、
前記種結晶載置部に、水平面に対して傾いた傾斜載置面を設け、該傾斜載置面に前記種結晶基板を設置することにより、単結晶の成長初期には種結晶の成長表面に少なくとも一つ相対的な低温領域を設け、単結晶成長の中後期には成長表面の温度分布が略均一になる状態にて単結晶を成長させる単結晶の製造方法であって、
前記傾斜載置面の傾き角度θが20°であることを特徴とする単結晶の製造方法。
A seed crystal substrate is placed on the seed crystal placement portion of the lid of the reaction vessel, the raw material powder is placed in the crucible of the reaction vessel, and the sublimation method is performed on the seed crystal substrate placed on the seed crystal placement portion. In a method for producing a single crystal by growing the single crystal,
The seed crystal mounting portion is provided with an inclined mounting surface that is inclined with respect to a horizontal plane, and the seed crystal substrate is installed on the inclined mounting surface, so that a seed crystal growth surface is formed at the initial stage of single crystal growth. A method for producing a single crystal in which at least one relative low temperature region is provided, and the single crystal is grown in a state in which the temperature distribution on the growth surface is substantially uniform in the middle and later stages of single crystal growth ,
The method for producing a single crystal, wherein the inclination mounting surface has an inclination angle θ of 20 ° .
JP09856898A 1998-03-26 1998-03-26 Single crystal manufacturing method Expired - Lifetime JP4174847B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09856898A JP4174847B2 (en) 1998-03-26 1998-03-26 Single crystal manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09856898A JP4174847B2 (en) 1998-03-26 1998-03-26 Single crystal manufacturing method

Publications (2)

Publication Number Publication Date
JPH11278985A JPH11278985A (en) 1999-10-12
JP4174847B2 true JP4174847B2 (en) 2008-11-05

Family

ID=14223293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09856898A Expired - Lifetime JP4174847B2 (en) 1998-03-26 1998-03-26 Single crystal manufacturing method

Country Status (1)

Country Link
JP (1) JP4174847B2 (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012046424A (en) * 2000-12-28 2012-03-08 Bridgestone Corp Silicon carbide single crystal
JP4903946B2 (en) * 2000-12-28 2012-03-28 株式会社ブリヂストン Method and apparatus for producing silicon carbide single crystal
JP2005008472A (en) * 2003-06-18 2005-01-13 Nippon Steel Corp High quality 4h-type silicon carbide single crystal and single crystal wafer
US7192482B2 (en) * 2004-08-10 2007-03-20 Cree, Inc. Seed and seedholder combinations for high quality growth of large silicon carbide single crystals
JP4706565B2 (en) * 2006-06-08 2011-06-22 株式会社デンソー Method for producing silicon carbide single crystal
JP5403671B2 (en) * 2009-06-10 2014-01-29 昭和電工株式会社 Silicon carbide single crystal manufacturing equipment
JP4888548B2 (en) * 2009-12-24 2012-02-29 株式会社デンソー Silicon carbide single crystal manufacturing apparatus and manufacturing method
JP5346821B2 (en) * 2010-01-15 2013-11-20 株式会社ブリヂストン Silicon carbide single crystal manufacturing equipment
JP5526866B2 (en) * 2010-03-02 2014-06-18 住友電気工業株式会社 Silicon carbide crystal manufacturing method and silicon carbide crystal manufacturing apparatus
JP5333315B2 (en) * 2010-03-30 2013-11-06 株式会社デンソー Silicon carbide single crystal manufacturing apparatus and silicon carbide single crystal manufacturing method
JP5402798B2 (en) * 2010-04-06 2014-01-29 新日鐵住金株式会社 Method for producing silicon carbide single crystal ingot
CN102534805B (en) 2010-12-14 2014-08-06 北京天科合达蓝光半导体有限公司 Silicon carbide crystal annealing process
US9234297B2 (en) 2011-08-29 2016-01-12 Nippon Steel & Sumitomo Metal Corporation Silicon carbide single crystal wafer and manufacturing method for same
JP5726035B2 (en) * 2011-09-28 2015-05-27 京セラ株式会社 Crystal growth equipment
JP5842725B2 (en) * 2012-04-25 2016-01-13 株式会社デンソー Silicon carbide single crystal manufacturing equipment
JP6050053B2 (en) * 2012-08-23 2016-12-21 株式会社豊田中央研究所 Method for producing SiC single crystal
JP5991161B2 (en) * 2012-11-20 2016-09-14 住友電気工業株式会社 Silicon carbide substrate, silicon carbide ingot, and manufacturing method thereof
US9422639B2 (en) 2014-03-06 2016-08-23 Sumitomo Electric Industries, Ltd. Silicon carbide substrate, silicon carbide ingot, and methods for manufacturing silicon carbide substrate and silicon carbide ingot
JP2017065934A (en) * 2015-09-28 2017-04-06 住友電気工業株式会社 Method of manufacturing silicon carbide single crystal
JP7005122B6 (en) * 2015-12-18 2023-10-24 昭和電工株式会社 SiC seeds and SiC ingots
CN106119954B (en) * 2016-08-31 2018-11-06 台州市一能科技有限公司 A kind of single-crystal silicon carbide manufacturing device
JP6317868B1 (en) * 2017-05-23 2018-04-25 Jfeミネラル株式会社 Aluminum nitride single crystal production equipment
JP6291615B1 (en) * 2017-05-23 2018-03-14 Jfeミネラル株式会社 Aluminum nitride single crystal production equipment
JP7094171B2 (en) * 2018-07-18 2022-07-01 昭和電工株式会社 Method for manufacturing SiC single crystal
CN115558986B (en) * 2022-11-14 2023-03-17 浙江晶越半导体有限公司 Crucible for improving growth temperature uniformity of large-size silicon carbide seed crystal

Also Published As

Publication number Publication date
JPH11278985A (en) 1999-10-12

Similar Documents

Publication Publication Date Title
JP4174847B2 (en) Single crystal manufacturing method
US6391109B2 (en) Method of making SiC single crystal and apparatus for making SiC single crystal
JP3491402B2 (en) Single crystal manufacturing method and single crystal manufacturing apparatus
US9068277B2 (en) Apparatus for manufacturing single-crystal silicon carbide
US5944890A (en) Method of producing single crystals and a seed crystal used in the method
US6110279A (en) Method of producing single-crystal silicon carbide
JPH05262599A (en) Sic single crystal and method for growing the same
US6451112B1 (en) Method and apparatus for fabricating high quality single crystal
KR102192518B1 (en) Wafer and manufacturing method of wafer
US9799735B2 (en) Method of manufacturing silicon carbide single crystal and silicon carbide single crystal substrate
EP0964081B1 (en) Method of producing a single crystal of SiC
JP4052678B2 (en) Large silicon carbide single crystal growth equipment
JP2021195298A (en) Silicon carbide ingot, wafer and method of manufacturing the same
US20060260536A1 (en) Vessel for growing a compound semiconductor single crystal, compound semiconductor single crystal, and process for fabricating the same
JP4450118B2 (en) Method for producing silicon carbide single crystal
JP2001294499A (en) Small silicon carbide single crystal wafer having mosaic property
US6376900B1 (en) Single crystal SiC
JPH08143396A (en) Method for growing silicon carbide single crystal
EP0903427B1 (en) Apparatus and method for producing crystals by the czochralski method and crystals produced by this method
TWI815863B (en) Manufacturing method of silicon carbide single crystal
JPH09221397A (en) Production of silicon carbide single crystal
JP4304783B2 (en) SiC single crystal and growth method thereof
JPH0532496A (en) Preparation of ingot of silicon carbide single crystal having large aperture and silicon carbide single crystal for seed crystal
JPH07267795A (en) Growth method of silicon carbide single crystal
TWI802616B (en) Manufacturing method of silicon carbide single crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041104

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20041203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070427

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080423

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080617

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080729

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080811

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130829

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term