JPH11278985A - Production of single crystal - Google Patents

Production of single crystal

Info

Publication number
JPH11278985A
JPH11278985A JP9856898A JP9856898A JPH11278985A JP H11278985 A JPH11278985 A JP H11278985A JP 9856898 A JP9856898 A JP 9856898A JP 9856898 A JP9856898 A JP 9856898A JP H11278985 A JPH11278985 A JP H11278985A
Authority
JP
Japan
Prior art keywords
growth
seed crystal
single crystal
crystal
lid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9856898A
Other languages
Japanese (ja)
Other versions
JP4174847B2 (en
Inventor
Atsuhito Okamoto
篤人 岡本
Naohiro Sugiyama
尚宏 杉山
Toshihiko Tani
俊彦 谷
Nobuo Kamiya
信雄 神谷
Shoichi Onda
正一 恩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Central R&D Labs Inc
Original Assignee
Denso Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Toyota Central R&D Labs Inc filed Critical Denso Corp
Priority to JP09856898A priority Critical patent/JP4174847B2/en
Publication of JPH11278985A publication Critical patent/JPH11278985A/en
Application granted granted Critical
Publication of JP4174847B2 publication Critical patent/JP4174847B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a single crystal, capable of obtaining the single crystal having reduced defects by disposing at least one low temperature region on a seed crystal-growing surface in the early period of the single crystal growth to control the production of the growth nucleus in the early period of the single crystal growth and subsequently uniforming the temperature distribution of the growth surface in the middle and last periods of the single crystal growth. SOLUTION: A reaction vessel comprises a graphite crucible 1 and a graphite lid 2. Silicon Carbide raw material powder 3 is disposed in the graphite crucible 1, and a seed crystal 4 is disposed on the graphite lid 2 further used as a seed crystal-loading portion. A bored portion 6 is disposed in the graphite lid 2 to locally cool the seed crystal growth surface. The growth of the seed crystal 4 is carried out by controlling the temperature of a graphite heat generation resister and the pressure of an inert gas, etc. A place near to the bored portion 6 is cooled in comparison with its peripheral portion by the radiation of heat. It is thereby forecast that the growth density of the grown nucleus is enhanced in the central portion of the seed crystal 4. The peripheral portion of the seed crystal 4 is governed by a step flow growth mechanism. The obtained single crystal ingot is formed on one crystal surface.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、単結晶の製造方
法、更に詳しくは、種結晶載置部に設置した種結晶基板
上に単結晶を成長させることにより単結晶を製造する方
法において、単結晶の成長初期に種結晶の成長表面に少
なくとも一つ相対的な低温領域を設けることにより複数
個の成長核の生成を妨げ、それにより結晶欠陥の少ない
単結晶を製造することができる単結晶の製造方法に関す
るものである。
The present invention relates to a method for producing a single crystal, and more particularly, to a method for producing a single crystal by growing the single crystal on a seed crystal substrate set on a seed crystal mounting portion. By providing at least one relatively low temperature region on the growth surface of the seed crystal at the initial stage of crystal growth, generation of a plurality of growth nuclei is prevented, thereby making it possible to produce a single crystal with few crystal defects. It relates to a manufacturing method.

【0002】[0002]

【従来の技術】高性能な半導体材料として、高品質,大
面積の炭化珪素(SiC)単結晶基板の開発が求められ
ている。集積回路を製造するためには結晶欠陥の少ない
単結晶基板が必要であるが、種結晶の上に昇華法や気相
成長法により単結晶を成長させる場合、ジャストアング
ルの種結晶の上に単結晶を成長させると複数個の成長核
から単結晶が成長するため、各々の結晶の継ぎ目に相当
する部分が生じ、これが結晶欠陥を生じさせる一つの原
因となる。前記結晶欠陥を生じさせないようにするた
め、従来は成長面の温度分布や成長面に供給される反応
ガス量を調整し、更にオフアングル基板との組み合わせ
により成長核の制御を行うことで欠陥の低減を図ってい
た。以下具体例を示す。
2. Description of the Related Art Development of a high quality, large area silicon carbide (SiC) single crystal substrate as a high performance semiconductor material is required. In order to manufacture an integrated circuit, a single crystal substrate having few crystal defects is required. However, when a single crystal is grown on a seed crystal by a sublimation method or a vapor phase growth method, the single crystal is grown on a just angle seed crystal. When a crystal is grown, a single crystal grows from a plurality of growth nuclei, so that a portion corresponding to a joint of each crystal is generated, which is one cause of generating a crystal defect. Conventionally, in order to prevent the generation of the crystal defects, the temperature distribution of the growth surface and the amount of the reaction gas supplied to the growth surface are adjusted, and furthermore, the growth nuclei are controlled in combination with the off-angle substrate to control the growth nuclei. Reduction was attempted. Specific examples are shown below.

【0003】特開平4−16597号公報(シャー
プ) 主要な成長面方位が[0001]方向から1〜10度傾
斜している六方晶系炭化珪素種結晶を使用する。 特開平4−357824号公報(三洋電機) オフアングル基板上に供給される反応ガス量を成長ステ
ップの高さに比例して増加させる。 特開平8−245299号公報(三洋電機) 種結晶基板の一方の縁部から対向する他方の縁部にわた
って温度勾配を設け、ステップ成長を主体とする成長機
構を用いて成長させる。{0001}面から5〜30度
傾斜した結晶成長面を有する基板を使用する。 特開平8−59389号公報(松下電器) 種結晶の成長表面に、特異点(突起,へこみ,不純物)
を少なくとも一つ導入して成長させる。特異点上に成長
した部分以外の単結晶成長部分を切り出す工程を含む。 特開平5−330995号公報(シャープ) 座繰り構造の蓋体が図示されているが、その効果には触
れられていない。 特表平3−50118号公報(ノースカロナイナ州立
大) と同様。座繰り構造は測温用の光学的開口と明記され
ているのみである。
[0003] Japanese Patent Laid-Open Publication No. 4-16597 (sharp) A hexagonal silicon carbide seed crystal whose main growth plane orientation is inclined by 1 to 10 degrees from the [0001] direction is used. SUMMARY OF THE INVENTION The amount of reaction gas supplied onto an off-angle substrate is increased in proportion to the height of a growth step. SUMMARY OF THE INVENTION A temperature gradient is provided from one edge of a seed crystal substrate to the other opposite edge, and the seed crystal substrate is grown using a growth mechanism mainly based on step growth. A substrate having a crystal growth plane inclined at 5 to 30 degrees from the {0001} plane is used. Japanese Patent Application Laid-Open No. 8-59389 (Matsushita Electric) Singular points (projections, dents, impurities) on the seed crystal growth surface
Is introduced and grown. A step of cutting out a single crystal growth portion other than the portion grown on the singular point. Japanese Patent Application Laid-Open No. 5-330995 (Sharp) Although a lid having a counterbore structure is shown, its effect is not mentioned. Same as Japanese Patent Publication No. 3-50118 (North Carolina State University). The countersink structure is only specified as an optical aperture for temperature measurement.

【0004】[0004]

【発明が解決しようとする課題】従来技術においては
成長条件によって成長面内のいたる箇所で核生成する可
能性があり、成長核生成を完全に制御することは困難で
ある。そのため、欠陥を大幅に低減することができな
い。また、オフアングル基板を作製しなければならない
ため、種結晶基板の製造歩留まりが低下するという問題
点がある。従来技術においては、成長ステップの高さ
に比例して反応ガス量を厳密に制御することは困難であ
り、従来技術と同様の危惧がある。従来技術は、従
来技術,と比較すると成長核生成の制御が良好であ
るが、反応炉の蓋部の中心から一方向に偏った位置に種
結晶基板を配置するため、成長結晶の大口径化を図ろう
とした場合、大きなるつぼや反応炉が必要になり、コス
トの面で難点がある。更に、成長の中期及び後期も成長
初期とほぼ等しい温度勾配を有する温度分布を示すた
め、偏った成長ファセットを呈し、電気的特性を制御す
る不純物の均一ドーピングには不適当な方法である。従
来技術においては、形状的な特異点のみで成長核の制
御を行うことは困難であり、従来技術と同様の危惧が
ある。従来技術,では、座繰り構造を有する蓋体が
使用されているが、前記蓋体の使用形態は例えば温度測
定用の光学的開口である。この目的での使用のためには
開口は大きい方が望ましいが、大きい開口では成長表面
をスポット的に低温化して核生成を制御することは困難
である。
In the prior art, there is a possibility that nuclei may be formed at various points in the growth plane depending on the growth conditions, and it is difficult to completely control the growth nucleation. Therefore, defects cannot be significantly reduced. Further, since an off-angle substrate must be manufactured, there is a problem that the production yield of the seed crystal substrate is reduced. In the prior art, it is difficult to strictly control the amount of the reaction gas in proportion to the height of the growth step, and there is the same concern as in the prior art. The conventional technique has better control of growth nucleation than the conventional technique, but the seed crystal substrate is arranged at a position deviated in one direction from the center of the lid of the reactor, so that the diameter of the grown crystal becomes larger. In such a case, a large crucible and a reaction furnace are required, which is disadvantageous in terms of cost. Furthermore, since the middle and late stages of growth also exhibit a temperature distribution having a temperature gradient substantially equal to that of the initial stage of growth, they exhibit a biased growth facet and are unsuitable for uniform doping of impurities for controlling electrical characteristics. In the prior art, it is difficult to control the growth nucleus only by the shape singularity, and there is the same concern as in the prior art. In the prior art, a lid having a counterbore structure is used, but the usage of the lid is, for example, an optical opening for temperature measurement. For this purpose, it is desirable that the opening be large, but it is difficult to control the nucleation by making the growth surface spot-like in temperature with a large opening.

【0005】本発明は上記従来技術の問題点を解決する
ためのものであり、その目的とするところは、単結晶の
成長初期における成長核の生成を制御し、複数の成長核
の生成を抑制することを可能にして、欠陥が少ない単結
晶を得ることができ且つ成長結晶の大口径化が容易な単
結晶の製造方法を提供することにある。
An object of the present invention is to solve the above-mentioned problems of the prior art. It is an object of the present invention to control the generation of growth nuclei in the initial stage of single crystal growth and to suppress the generation of a plurality of growth nuclei. It is an object of the present invention to provide a method for producing a single crystal which can obtain a single crystal with few defects and can easily increase the diameter of a grown crystal.

【0006】[0006]

【課題を解決するための手段】すなわち、本発明の単結
晶の製造方法は、種結晶載置部に設置した種結晶基板上
に単結晶を成長させることにより単結晶を製造する方法
において、単結晶の成長初期には種結晶の成長表面に少
なくとも一つ相対的な低温領域を設け、単結晶成長の中
後期には成長表面の温度分布が略均一になる状態にて単
結晶を成長させることを特徴とする。ジャストアングル
の種結晶の上に単結晶を成長させると複数個の成長核か
ら単結晶が成長するため、結晶の継ぎ目部が生じ、欠陥
生成の原因になる。これを防ぐためには、成長面をオフ
アングルとすることが、ステップフロー成長様式により
単結晶を成長させることができるので、有効である。本
発明では、低温領域を設けることにより、低温領域での
単結晶の上下の成長を周辺での単結晶の上下の成長より
も増加させ、単結晶の成長初期に実質的にオフアングル
状態を形成する。これによって、単結晶の成長初期に単
結晶のステップフロー成長を行わせることができる。
That is, a method of manufacturing a single crystal according to the present invention comprises a method of manufacturing a single crystal by growing the single crystal on a seed crystal substrate set on a seed crystal mounting portion. At least one relatively low-temperature region should be provided on the seed crystal growth surface in the early stage of crystal growth, and the single crystal should be grown in the latter half of the single crystal growth with the temperature distribution on the growth surface being substantially uniform. It is characterized by. When a single crystal is grown on a just-angled seed crystal, the single crystal grows from a plurality of growth nuclei, so that a seam of the crystal is generated, which causes the generation of defects. In order to prevent this, it is effective to set the growth plane to an off-angle because a single crystal can be grown by a step flow growth mode. In the present invention, by providing the low-temperature region, the vertical growth of the single crystal in the low-temperature region is increased more than the vertical growth of the single crystal in the periphery, and a substantially off-angle state is formed in the initial stage of the single crystal growth. I do. Thus, step flow growth of the single crystal can be performed at the initial stage of the growth of the single crystal.

【0007】[0007]

【発明の実施の形態】本発明の方法を適用し得る単結晶
は特に限定されず、本発明の方法は、単一元素又は化合
物からなる種々の単結晶の製造に用いることができる。
本発明の方法を適用し得る好ましい単結晶としては、例
えば炭化珪素単結晶が挙げられる。前記低温領域を設け
るための具体的な方法としては、例えば下記の方法が挙
げられる。 a)前記低温領域が、種結晶載置部の種結晶基板を設置
する面の反対側の面に少なくとも一つの座繰りを有する
種結晶載置部構造により実現される方法。 b)前記低温領域が、種結晶載置部の種結晶基板を設置
する面が傾斜面である種結晶載置部構造により実現され
る方法。 c)前記低温領域が、種結晶載置部の側面に少なくとも
一条の切り込みを有する種結晶載置部構造により実現さ
れる方法。 d)前記低温領域が、種結晶載置部の種結晶基板を設置
する面の反対側の面に少なくとも一つの熱伝導性の悪い
部位を有する種結晶載置部構造により実現される方法。 e)前記低温領域が、種結晶載置部の種結晶基板を設置
する面の周辺部に少なくとも一輪の溝を有する種結晶載
置部構造により実現される方法。 f)前記低温領域が、a)ないしe)記載の種結晶載置
部構造の組み合わせにより実現される方法。 前記a)〜f)の方法以外にも、例えば、種結晶載置部
の所定箇所に温度制御手段(例えば、金属製又はセラミ
ック製の成形体)を配置し、この温度制御手段の温度を
制御する(加熱又は冷却する)ことにより本発明の方法
における低温領域を設ける等、種々の方法を用いてよ
い。
BEST MODE FOR CARRYING OUT THE INVENTION Single crystals to which the method of the present invention can be applied are not particularly limited, and the method of the present invention can be used for producing various single crystals composed of a single element or a compound.
Preferred single crystals to which the method of the present invention can be applied include, for example, silicon carbide single crystals. A specific method for providing the low-temperature region includes, for example, the following method. a) A method in which the low-temperature region is realized by a seed crystal receiver structure having at least one counterbore on a surface of the seed crystal receiver opposite to a surface on which the seed crystal substrate is placed. b) A method in which the low-temperature region is realized by a seed crystal mounting part structure in which the surface on which the seed crystal substrate of the seed crystal mounting part is installed is an inclined surface. c) The method wherein the low temperature region is realized by a seed crystal mounting structure having at least one notch on a side surface of the seed crystal mounting. d) A method in which the low-temperature region is realized by a seed crystal receiver structure having at least one portion having poor thermal conductivity on a surface of the seed crystal receiver opposite to a surface on which the seed crystal substrate is placed. e) A method in which the low-temperature region is realized by a seed crystal receiver structure having at least one groove around a surface of the seed crystal receiver on which the seed crystal substrate is placed. f) A method in which the low-temperature region is realized by a combination of the seed crystal mounting structure described in a) to e). In addition to the methods a) to f) described above, for example, a temperature control unit (for example, a metal or ceramic molded body) is disposed at a predetermined position of the seed crystal mounting unit, and the temperature of the temperature control unit is controlled. Various methods may be used, such as providing a low-temperature region in the method of the present invention by heating (heating or cooling).

【0008】前記a)の方法における座繰りは、一つ又
は二つ以上設けてよい。座繰りの大きさ,形状,深さは
適宜選択する。座繰りの径は5mm以下がよい。更に好
適には、2mm未満がよい。座繰りの深さは種結晶と成
長単結晶との接着面から1〜5mmの位置にその先端が
達するようにするとよい。前記b)の方法における傾斜
面の傾斜角は、0〜90度の範囲内で適宜選択する。前
記c)の方法における切り込みは一条又は二条以上設け
てよい。切り込みの大きさ,形状,深さは適宜選択す
る。切り込みの幅は0.1〜5mmがよく、深さは、種
結晶載置部を1〜5mm残す程度がよい。前記d)の方
法における熱伝導性の悪い部位は、種結晶載置部の所定
箇所に種結晶載置部を構成する材料よりも熱伝導性の悪
い材料を用いて形成する。例えば種結晶載置部の所定箇
所を前記の熱伝導性の悪い材料で置換するか、又は種結
晶載置部の所定箇所に前記の熱伝導性の悪い材料からな
る成形体を埋設する。熱伝導性の悪い材料としては、種
結晶載置部を構成する材料の熱伝導率に対して熱伝率が
1/1.5以下の材料を用いるのがよい。また、熱伝導
性の悪い材料は、種結晶載置部を構成する元の材料を載
置部の径方向に最大5mm残すように、また軸方向では
種結晶と成長単結晶との接着面から1〜5mm程度元の
材料を残すように配置するのがよい。前記e)の方法に
おける溝は一輪又は二輪以上設けてよい。溝の大きさ,
形状,深さは適宜選択する。種結晶載置部の縁と溝との
間には5mm以下の載置部分を残すのがよく、載置部上
の低温部のために、溝よりも内側に5mm以下の載置部
分を残すのがよい。溝の深さは1mm以下がよい。前記
a)ないしe)の方法を適宜組み合わせることにより、
種々の単結晶の製造に適応することができる。
In the method (a), one or two or more counterbores may be provided. The size, shape, and depth of the counterbore are appropriately selected. The counterbore diameter is preferably 5 mm or less. More preferably, it is less than 2 mm. The depth of the counterbore is preferably such that the tip reaches a position of 1 to 5 mm from the bonding surface between the seed crystal and the grown single crystal. The inclination angle of the inclined surface in the method b) is appropriately selected within a range of 0 to 90 degrees. In the method c), one or more cuts may be provided. The size, shape and depth of the cut are appropriately selected. The width of the cut is preferably 0.1 to 5 mm, and the depth is preferably such that the seed crystal mounting portion is left 1 to 5 mm. The portion having poor thermal conductivity in the method d) is formed at a predetermined portion of the seed crystal mounting portion using a material having lower thermal conductivity than the material forming the seed crystal mounting portion. For example, a predetermined portion of the seed crystal mounting portion is replaced with the above-described material having poor thermal conductivity, or a molded body made of the material having low thermal conductivity is embedded in a predetermined portion of the seed crystal mounting portion. As a material having poor thermal conductivity, it is preferable to use a material having a thermal conductivity of 1 / 1.5 or less of the thermal conductivity of the material forming the seed crystal mounting portion. For materials with poor thermal conductivity, leave the original material that constitutes the seed crystal mounting part at a maximum of 5 mm in the radial direction of the mounting part. It is preferable to arrange so as to leave about 1 to 5 mm of the original material. In the method e), one or more grooves may be provided. Groove size,
The shape and depth are appropriately selected. It is preferable to leave a mounting portion of 5 mm or less between the edge of the seed crystal mounting portion and the groove, and leave a mounting portion of 5 mm or less inside the groove for a low-temperature portion on the mounting portion. Is good. The depth of the groove is preferably 1 mm or less. By appropriately combining the methods a) to e),
It can be adapted to the production of various single crystals.

【0009】[0009]

【実施例】以下の実施例及び比較例により、本発明を更
に詳細に説明する。本発明の方法に用いる装置 図1は本発明の方法に用いることができる炭化珪素単結
晶製造装置の一例の概略構成図である。反応容器は、黒
鉛製るつぼ1と黒鉛製蓋体2とにより構成されている。
黒鉛製るつぼ1内には炭化珪素原料粉末3が、また種結
晶載置部を兼ねる黒鉛製蓋体2には炭化珪素原料粉末3
に対向して種結晶4が設置されている。本例では、黒鉛
製蓋体2に種結晶の成長面を局所的に低温化するための
座繰り6を設けた。種結晶の成長は、黒鉛製の抵抗発熱
体(図示せず)による温度調整と、不活性ガス等の圧力
調整により行われる。具体的には、原料温度:約220
0℃〜2400℃、種結晶温度:約2100℃〜230
0℃、雰囲気圧力:約1Torr〜数10Torrにて、炭化珪素
単結晶5を成長させる。なお、以下の図において、7は
切れ込み,8はポーラスカーボン,9は溝,10は傾斜
載置部を示す。
The present invention will be described in more detail with reference to the following examples and comparative examples. Apparatus Used in the Method of the Present Invention FIG. 1 is a schematic configuration diagram of an example of a silicon carbide single crystal manufacturing apparatus that can be used in the method of the present invention. The reaction vessel includes a graphite crucible 1 and a graphite lid 2.
Silicon carbide raw material powder 3 is placed in graphite crucible 1, and silicon carbide raw material powder 3 is placed in graphite lid 2 which also serves as a seed crystal mounting part.
The seed crystal 4 is provided in opposition to the above. In this example, a counterbore 6 for locally lowering the temperature of the seed crystal growth surface was provided on the graphite lid 2. The growth of the seed crystal is performed by adjusting the temperature with a resistance heating element (not shown) made of graphite and adjusting the pressure of an inert gas or the like. Specifically, the raw material temperature: about 220
0 ° C to 2400 ° C, seed crystal temperature: about 2100 ° C to 230
A silicon carbide single crystal 5 is grown at 0 ° C. and an atmospheric pressure of about 1 Torr to several tens Torr. In the following figures, 7 indicates a cut, 8 indicates porous carbon, 9 indicates a groove, and 10 indicates an inclined mounting portion.

【0010】実施例1 図2の蓋体(種結晶載置部)を用いて、昇華法で4H多
形の炭化珪素バルク単結晶を成長させた。種結晶基板と
しては、貫通孔欠陥が存在しない4H多形の炭化珪素単
結晶の(000)ジャスト面を用いた。直径25mm
の凸型部分を含む蓋体の裏側(種結晶基板を設置する面
の反対側の面)に、直径2mm,種結晶接着面からの距
離Lが2mmになるように座繰り6を作製した。この座
繰り6付き蓋体に種結晶を固定し、図1に示す単結晶製
造装置に配置し、従来の昇華法工程を用いて、上記条件
にて炭化珪素単結晶を成長させた。この場合、座繰り6
のある近傍は熱輻射により周辺部と比較して低温にな
る。すなわち種結晶の中央部は周辺部と比較して相対的
に低温になる。このことは、種結晶中央部に接する炭化
珪素ガスの過飽和度が種結晶周辺部と比較して高くなる
ことを意味する。従って、種結晶中央部では成長核の核
生成密度が高くなることが予想される。また、成長核同
士の成長ステップの接合により導入されるらせん転位に
よる成長ステップの密度もまた増加することが予想され
る。一方、種結晶周辺部では、中央部のステップの前進
により成長が行われるステップフロー成長機構が支配的
となる。本発明の方法により得られた幾つかの単結晶イ
ンゴットを成長方向に垂直に切断・研磨を行い、溶融ア
ルカリエッチング法,直交偏光顕微鏡観察法を用いて欠
陥密度の測定を行った。測定の結果、ウェハー全面にわ
たって貫通孔欠陥の存在は確認されなかった。次に前記
単結晶インゴットについて、らせん転位密度を中央部と
周辺部とで比較検討した。らせん転位密度は、単結晶イ
ンゴットから切り出した試料に溶融アルカリ(例えば、
KOH:500℃×7分)エッチング法を適用してエッ
チピットを形成し、それを光学顕微鏡で観察することに
より測定した。その結果、中央部:102 〜103 cm
-2,周辺部:0〜102 cm-2であり、主に中央部では
2次元核生成機構により、周辺部ではステップフロー機
構により単結晶の成長が行われていることが推察され
た。これらの成長機構は、中央部と周辺部とで温度差の
生じ易い成長初期に顕著である。成長後期には、黒鉛製
蓋体(黒鉛多結晶)などと比較して炭化珪素単結晶の熱
伝導率が大きいため、成長表面の径方向の温度差は、成
長装置(成長るつぼ側壁等)の温度分布に強く拘束され
るようになることから、次第に小さくなる。すなわち、
成長表面全面にわたって次第にステップフロー機構が支
配的になっていくものと推察される。なお、成長中後期
に成長面内の温度分布を均一にするには、能動的及び/
又は受動的な輻射板を成長面に対向配置させる(図示せ
ず)とその効果が増す。こうして得られた単結晶インゴ
ットは、一つの結晶面で形成されているため、均一ドー
ピングに使用するためにも適しており、基板の製造歩留
まりも向上した。従って、本発明の方法を貫通孔欠陥が
無い種結晶に適用した場合、貫通孔欠陥の無い高品位単
結晶を再現性良く製造することが可能となる。なお、本
発明の方法により得られた単結晶には、らせん転位密度
が相対的に高い箇所(中央部)が存在するが、現在、ら
せん転位がデバイス特性に及ぼす影響については明らか
になっておらず、仮に将来、本発明の方法により得られ
た単結晶から製作されたデバイスの動作に不具合が生じ
る可能性が明らかになっても、らせん転位の位置が予め
特定できているため、転位密度の低い部分(周辺部)を
使用することにより、高性能のデバイスを作製すること
が可能である。
Example 1 A 4H polymorphous silicon carbide bulk single crystal was grown by sublimation using the lid (seed crystal mounting portion) shown in FIG. As the seed crystal substrate, a (000 1 ) just face of a 4H polymorphic silicon carbide single crystal having no through-hole defect was used. Diameter 25mm
A counterbore 6 was prepared on the back side (surface opposite to the surface on which the seed crystal substrate is placed) of the lid including the convex portion of the above, so that the diameter was 2 mm and the distance L from the seed crystal bonding surface was 2 mm. A seed crystal was fixed to the lid with a counterbore 6 and placed in the single crystal manufacturing apparatus shown in FIG. 1, and a silicon carbide single crystal was grown under the above conditions using a conventional sublimation process. In this case, counterbore 6
The vicinity where there is is lower in temperature than the peripheral part due to heat radiation. That is, the temperature of the central portion of the seed crystal becomes relatively lower than that of the peripheral portion. This means that the degree of supersaturation of the silicon carbide gas in contact with the central portion of the seed crystal is higher than that in the peripheral portion of the seed crystal. Therefore, it is expected that the nucleation density of the growth nuclei will increase in the central part of the seed crystal. It is also expected that the density of growth steps due to screw dislocations introduced by joining growth steps between growth nuclei will also increase. On the other hand, in the periphery of the seed crystal, a step flow growth mechanism in which the growth is performed by advancing the step in the central portion becomes dominant. Some single crystal ingots obtained by the method of the present invention were cut and polished perpendicular to the growth direction, and the defect density was measured by a molten alkali etching method and an orthogonal polarization microscope. As a result of the measurement, the presence of a through hole defect was not confirmed over the entire surface of the wafer. Next, with respect to the single crystal ingot, the screw dislocation density was compared and examined between the central part and the peripheral part. Screw dislocation density is determined by adding molten alkali (for example,
(KOH: 500 ° C. × 7 minutes) An etch pit was formed by applying an etching method, and the etch pit was measured by observing it with an optical microscope. As a result, the central part: 10 2 to 10 3 cm
−2 , peripheral portion: 0 to 10 2 cm −2 , and it was presumed that the single crystal was grown mainly by the two-dimensional nucleation mechanism in the central portion and by the step flow mechanism in the peripheral portion. These growth mechanisms are remarkable in the early stage of growth where a temperature difference is likely to occur between the central part and the peripheral part. In the later stage of growth, the thermal conductivity of the silicon carbide single crystal is larger than that of a graphite lid (graphite polycrystal) or the like, so that the temperature difference in the radial direction of the growth surface depends on the growth apparatus (growth crucible side wall, etc.). Since it is strongly constrained by the temperature distribution, it becomes smaller gradually. That is,
It is assumed that the step flow mechanism gradually becomes dominant over the entire growth surface. In order to make the temperature distribution in the growth surface uniform in the latter half of the growth, active and / or
Alternatively, if a passive radiation plate is arranged opposite to the growth surface (not shown), the effect is increased. Since the single crystal ingot thus obtained is formed on one crystal plane, it is suitable for use in uniform doping, and the production yield of the substrate is improved. Therefore, when the method of the present invention is applied to a seed crystal having no through-hole defect, a high-quality single crystal having no through-hole defect can be manufactured with good reproducibility. Although the single crystal obtained by the method of the present invention has a portion (central portion) where the screw dislocation density is relatively high, the effect of the screw dislocation on the device characteristics has not been clarified at present. However, even if it is clear in the future that the device manufactured from the single crystal obtained by the method of the present invention may malfunction, the position of the screw dislocation can be specified in advance, so that the dislocation density can be reduced. By using a low portion (peripheral portion), a high-performance device can be manufactured.

【0011】実施例2 実施例1と同じ蓋体(種結晶載置部)を用いて、昇華法
で4H多形の炭化珪素バルク単結晶を成長させた。種結
晶基板としては、貫通孔欠陥(密度:20cm-2)が存
在する4H多形の炭化珪素単結晶の(000)ジャス
ト面(直径25mm)を用いた。この蓋体を使用する
と、成長初期において成長端面が凸面状(略円錐状)に
なる(図示せず)。貫通孔欠陥は成長端面に対して垂直
方向に伸びる性質があり、成長が進むにつれて種結晶周
辺の貫通孔欠陥は外周部に排出される。本発明の方法で
得られた単結晶の欠陥密度を測定した結果、貫通孔欠陥
密度は16cm-2に減少したことが判った。種結晶中の
貫通孔欠陥の面内分布にも依存するが、種結晶の周辺部
に存在する貫通孔欠陥は本発明の方法を用いることによ
って徐々に低減させることが可能である。従って、本発
明の方法を貫通孔欠陥がある種結晶に適用した場合、貫
通孔欠陥密度が比較的低い単結晶を再現性良く製造する
ことが可能となる。上記においては、成長面の中央部を
低温化するための蓋体として、座繰りを有する蓋体(種
結晶載置部)を示したが、前述のもの以外にも、例え
ば、側面に少なくとも一条の切れ込みを有する蓋体(図
3),種結晶基板を設置する面の反対側の面にポーラス
カーボンなど熱伝導体の悪い材料で形成された少なくと
も一つの熱伝導性の悪い部位を有する蓋体(中心部分は
熱伝導性の良い黒鉛で形成)(図4),種結晶載置部の
載置面の周辺部に少なくとも一輪の溝を有する蓋体(図
5)、或いはこれらを適宜組み合わせて使用しても、実
施例1,2と同様な効果を得ることができる。また、座
繰りの形状,寸法は用いる黒鉛の密度や純度、用いる種
結晶の大きさによって適宜選定してよい。特に直径10
0mm以上のウェハーの作製に用いる蓋体としては、図
6に示すような階段状の座繰り,図7に示すような略円
錐状の座繰り,図8に示すような階段状の溝、を有する
蓋体を用いると一層大きな上記の効果を得ることができ
る。
Example 2 Using the same lid (seed crystal mounting part) as in Example 1, a 4H polymorph silicon carbide bulk single crystal was grown by sublimation. As a seed crystal substrate, a (000 1 ) just face (diameter 25 mm) of a 4H polymorphic silicon carbide single crystal having through-hole defects (density: 20 cm -2 ) was used. When this lid is used, the growth end face becomes convex (substantially conical) in the initial stage of growth (not shown). The through hole defect has a property of extending in a direction perpendicular to the growth end face, and as the growth proceeds, the through hole defect around the seed crystal is discharged to the outer peripheral portion. As a result of measuring the defect density of the single crystal obtained by the method of the present invention, it was found that the through-hole defect density was reduced to 16 cm -2 . Although it depends on the in-plane distribution of the through-hole defects in the seed crystal, the through-hole defects existing in the peripheral portion of the seed crystal can be gradually reduced by using the method of the present invention. Therefore, when the method of the present invention is applied to a seed crystal having through-hole defects, a single crystal having a relatively low through-hole defect density can be manufactured with good reproducibility. In the above description, as the lid for lowering the temperature of the central part of the growth surface, a lid having a counterbore (seed crystal mounting portion) is shown. (See FIG. 3) having at least one portion having poor thermal conductivity formed of a material having poor thermal conductivity such as porous carbon on the surface opposite to the surface on which the seed crystal substrate is provided. (The central part is made of graphite having good thermal conductivity) (FIG. 4), a lid having at least one groove around the mounting surface of the seed crystal mounting part (FIG. 5), or a combination of these as appropriate Even when used, the same effects as in the first and second embodiments can be obtained. The shape and size of the counterbore may be appropriately selected depending on the density and purity of the graphite used and the size of the seed crystal used. Especially diameter 10
As a lid used for manufacturing a wafer having a size of 0 mm or more, a step-shaped counterbore as shown in FIG. 6, a substantially conical counterbore as shown in FIG. 7, and a step-shaped groove as shown in FIG. The use of the cover having the above-mentioned feature can provide a greater effect.

【0012】実施例3 図9の蓋体(種結晶載置部)を用いて、昇華法で4H多
形の炭化珪素バルク単結晶を成長させた。種結晶基板と
しては、貫通孔欠陥が存在しない4H多形の炭化珪素単
結晶の(000)ジャスト面(直径25mm)を用い
た。また、載置面の水平面からの傾き角度θが20゜の
傾斜載置面を有する載置体を用いた(図9)。この傾斜
載置面を有する蓋体に種結晶を固定し、図1に示す単結
晶製造装置に配置し、従来の昇華法工程を用いて、上記
条件にて炭化珪素単結晶を成長させた。この場合、A箇
所は黒鉛の熱伝導の影響によりB箇所と比較して高温に
なる。すなわち種結晶のA箇所からB箇所に向かって温
度降下が起こる。実施例1との類似により、B箇所から
A箇所へ向かってステップフローの成長が支配的となる
ことが予想される。本実施例により得られたいくつかの
単結晶インゴットに対して実施例1と同様な手法を用い
て欠陥密度の測定を行った。測定の結果、ウェハー全面
にわたって貫通孔欠陥の存在は確認されなかった。らせ
ん転位密度に関しても、A箇所:0〜102 cm-2,B
箇所:102 〜103 cm-2である。従って、本実施例
の方法を貫通孔欠陥が無い種結晶に適用した場合、貫通
孔欠陥の無い高品位単結晶を再現性良く製造することが
可能となる。実施例1と同様に転位密度が相対的に高い
箇所(B箇所)が予め特定できているため、それ以外の
箇所を使用することにより、高性能のデバイスを作製す
ることが可能となる。なお、載置面の傾き角度は本実施
例の角度に限定されるものではなく、実施例1で用いた
座繰りや実施例2で説明した構造を組み合わせて適用す
ることにより(図示せず)、0°<θ<90°の広範囲
にわたって適用可能である。上記においては、成長面の
一端を低温化するための蓋体として、傾斜載置面を有す
る蓋体(種結晶載置部)を示したが、前述のもの以外に
も、例えば、一端の周辺部に少なくとも一条の切れ込み
を有する蓋体(図10),種結晶基板を設置する面の反
対側の面の周辺部にポーラスカーボンなど熱伝導体の悪
い材料で形成された少なくとも一つの熱伝導性の悪い部
位を有する蓋体(図11),種結晶基板を設置する面の
反対側の面の周辺部に座繰りを有する蓋体(図12)、
或いはこれらを適宜組み合わせて使用しても、本実施例
と同様な効果を得ることができる。また、直径100m
m以上のウェハーの作製に用いられる蓋体としては、図
13に示すような階段状の座繰りと傾斜載置面を有する
蓋体を用いると一層大きな上記の効果を得ることができ
る。
Example 3 Using the lid (seed crystal mounting portion) shown in FIG. 9, a 4H polymorphous silicon carbide bulk single crystal was grown by a sublimation method. As a seed crystal substrate, a (000 1 ) just face (diameter: 25 mm) of a 4H polymorphic silicon carbide single crystal having no through-hole defect was used. A mounting body having an inclined mounting surface having an inclination angle θ of 20 ° from the horizontal plane of the mounting surface was used (FIG. 9). A seed crystal was fixed on the lid having the inclined mounting surface, placed in the single crystal manufacturing apparatus shown in FIG. 1, and a silicon carbide single crystal was grown under the above conditions using a conventional sublimation method. In this case, the temperature of the point A becomes higher than that of the point B due to the heat conduction of the graphite. That is, a temperature drop occurs from the point A to the point B of the seed crystal. By analogy with the first embodiment, it is expected that the growth of the step flow will be dominant from the point B to the point A. The defect density of some single crystal ingots obtained in this example was measured using the same method as in Example 1. As a result of the measurement, the presence of a through hole defect was not confirmed over the entire surface of the wafer. Regarding the screw dislocation density, location A: 0 to 10 2 cm -2 , B
Location: 10 2 to 10 3 cm -2 . Therefore, when the method of this embodiment is applied to a seed crystal having no through-hole defect, a high-quality single crystal having no through-hole defect can be manufactured with good reproducibility. Since a location (location B) where the dislocation density is relatively high can be specified in advance in the same manner as in the first embodiment, a high-performance device can be manufactured by using other locations. Note that the inclination angle of the mounting surface is not limited to the angle of the present embodiment, but can be applied by combining the counterbore used in the first embodiment and the structure described in the second embodiment (not shown). , 0 ° <θ <90 °. In the above description, a lid (seed crystal mounting portion) having an inclined mounting surface is shown as a lid for lowering the temperature of one end of the growth surface. Lid with at least one notch in its part (Fig. 10), and at least one thermal conductivity formed of a material with poor thermal conductivity such as porous carbon around the surface opposite to the surface on which the seed crystal substrate is placed A lid having a portion with poor roughness (FIG. 11), a lid having a counterbore around the surface opposite to the surface on which the seed crystal substrate is placed (FIG. 12),
Alternatively, the same effect as that of the present embodiment can be obtained even when these are used in appropriate combination. In addition, diameter 100m
If a lid having a stepped counterbore and an inclined mounting surface as shown in FIG. 13 is used as a lid used for manufacturing a wafer of m or more, the above-mentioned effect can be further enhanced.

【0013】上記実施例では4H多形の炭化珪素種結晶
の場合について述べたが、これ以外の多形、例えば6H
多形の炭化珪素を用いても同様な効果を得ることができ
る。また、上記実施例では種結晶基板を設置する面が突
起状部の一端面である蓋体の例を述べたが、蓋体として
はこれに限定されるものではなく、例えば、図1に示し
たような形状の蓋体でも勿論よい。また、上記実施例で
は、単結晶成長装置として、上部に種結晶,下部に原料
を対向配置する装置について述べたが、これ以外の装
置、例えば上部に原料,下部に種結晶を配置する装置も
適用可能である。更に、加熱方式に関しても、従来周知
の高周波誘導加熱方式を用いても同様の効果を得ること
ができる。
In the above embodiment, the case of a 4H polymorphic silicon carbide seed crystal has been described.
Similar effects can be obtained by using polymorphous silicon carbide. Further, in the above-described embodiment, the example in which the surface on which the seed crystal substrate is placed is the one end surface of the protruding portion is described. However, the lid is not limited to this. For example, as shown in FIG. Of course, a lid having such a shape may be used. Further, in the above embodiment, as the single crystal growth apparatus, the apparatus in which the seed crystal is disposed in the upper portion and the raw material is disposed in the lower portion has been described. Applicable. Further, as for the heating method, the same effect can be obtained by using a conventionally known high-frequency induction heating method.

【0014】比較例 図14の蓋体(種結晶載置部)を用いて、昇華法で4H
多形の炭化珪素バルク単結晶を成長させた。種結晶基板
としては、貫通孔欠陥が存在しない4H多形の炭化珪素
単結晶の(0001)ジャスト面(直径25mm)を用
いた。本比較例で得られたいくつかの単結晶の欠陥密度
を測定した結果、貫通孔欠陥密度は約10cm-2、らせ
ん転位密度は約104 cm-2であり、しかもそれらの欠
陥は面内に不均一に分布していた。
COMPARATIVE EXAMPLE Using the lid (seed crystal mounting portion) shown in FIG.
Polymorphic silicon carbide bulk single crystals were grown. As a seed crystal substrate, a (0001) just face (diameter 25 mm) of a 4H polymorphic silicon carbide single crystal having no through-hole defect was used. As a result of measuring the defect densities of some single crystals obtained in this comparative example, the through-hole defect density was about 10 cm −2 , the screw dislocation density was about 10 4 cm −2 , and the defects were in-plane. Was unevenly distributed.

【0015】本発明の上記実施例では、炭化珪素の単結
晶成長について述べたが、それ以外の結晶、例えばGa
N,ZnSe,ZnS,CdS,CdTe,AlN,B
N等の製造にも適用することが可能である。
In the above embodiment of the present invention, single crystal growth of silicon carbide has been described, but other crystals, for example, Ga
N, ZnSe, ZnS, CdS, CdTe, AlN, B
It can be applied to the production of N and the like.

【0016】本発明の方法における種結晶の成長表面の
低温部と高温部との温度差の規定について 以下、炭化珪素の場合を例として、本発明の方法におけ
る種結晶の成長表面の低温部と高温部との温度差の規定
について更に詳しく述べる。本発明の方法における炭化
珪素の成長は、従来の成長方法と同様に、高温側に配置
された原料SiC粉末から原料ガス種が昇華し、それら
が低温側に配置された種結晶上に拡散輸送されて再結晶
化することにより行われる。反応るつぼ内の各点の温度
は、熱輻射とそれぞれの材質の熱伝導により決定され
る。このうち、原料粉末温度と種結晶との間の温度差は
良質の炭化珪素単結晶を製造する際、一つの重要な要件
である。本実施例で述べた、成長初期段階における温度
差の詳細は以下の通りである。なお、以下の記号X,
Y,U,Vは図15中の記号X,Y,U,Vを示す。 1)種結晶中央部Xと原料中央部Uとの間の温度差:2
0〜40℃、望ましくは20〜30℃ 2)種結晶周辺部Yと原料周辺部Vとの間の温度差:0
〜20℃、望ましくは5〜15℃ 3)種結晶中央部Xと種結晶周辺部Yとの間の温度差:
10〜40℃、望ましくは10〜30℃
The growth surface of the seed crystal in the method of the present invention
The definition of the temperature difference between the low-temperature part and the high-temperature part will be described in more detail below, taking silicon carbide as an example, in order to define the temperature difference between the low-temperature part and the high-temperature part on the seed crystal growth surface in the method of the present invention. In the method of the present invention, silicon carbide is grown by sublimating source gas species from the source SiC powder disposed on the high-temperature side and diffusing them onto a seed crystal disposed on the low-temperature side, as in the conventional growth method. And recrystallized. The temperature at each point in the reaction crucible is determined by heat radiation and heat conduction of each material. Among these, the temperature difference between the raw material powder temperature and the seed crystal is one important requirement when producing a high-quality silicon carbide single crystal. The details of the temperature difference in the initial stage of the growth described in the present embodiment are as follows. The following symbols X,
Y, U, and V indicate symbols X, Y, U, and V in FIG. 1) Temperature difference between central part X of seed crystal and central part U of raw material: 2
0-40 ° C, desirably 20-30 ° C 2) Temperature difference between seed crystal peripheral portion Y and raw material peripheral portion V: 0
2020 ° C., desirably 5 to 15 ° C. 3) Temperature difference between central part X of seed crystal and peripheral part Y of seed crystal:
10 to 40 ° C, preferably 10 to 30 ° C

【0017】本実施例では、成長初期の段階において
は、 1′)種結晶中央部Xと原料中央部Uとの間の温度差:
25℃ 2′)種結晶周辺部Yと原料周辺部Vとの間の温度差:
5℃ 3′)種結晶中央部Xと種結晶周辺部Yとの間の温度
差:20℃ に設定し、成長時間の経過とともに、炭化珪素の熱伝導
性が増加すること及び新たなるつぼ内の温度制御によ
り、種結晶中央部Xと種結晶周辺部Yとの間の温度差が
解消するように、従って 1″)種結晶中央部Xと原料中央部Uとの間の温度差:
25℃ 2″)種結晶周辺部Yと原料周辺部Vとの間の温度差:
20℃ 3″)種結晶中央部Xと種結晶周辺部Yとの間の温度
差:5℃以下、望ましくは0℃ となるように温度制御を行った。これらの温度差、特に
種結晶中央部Xと原料中央部Uとの間の温度差,種結晶
周辺部Yと原料周辺部Vとの間の温度差は、上述したよ
うに得られる単結晶の結晶性に大きな影響を及ぼすた
め、特定のデバイスとして望まれる品質に応じて決定さ
れる。また、あまり低い欠陥密度が要求されない基板用
の結晶を成長させる場合には、製造コストを考慮して、
種結晶と原料との間の温度差を徐々に大きくする成長プ
ログラムを採用してもよい。
In this embodiment, in the initial stage of growth, 1 ') the temperature difference between the seed crystal central part X and the raw material central part U:
25 ° C. 2 ′) Temperature difference between seed crystal periphery Y and raw material periphery V:
5 ° C. 3 ′) Temperature difference between seed crystal central part X and seed crystal peripheral part Y: set at 20 ° C., the thermal conductivity of silicon carbide increases with the elapse of growth time, and the inside of the new crucible increases. Temperature control between the seed crystal central portion X and the seed crystal peripheral portion Y so that the temperature difference between the seed crystal central portion X and the raw material central portion U is:
25 ° C. 2 ″) Temperature difference between the seed crystal peripheral part Y and the raw material peripheral part V:
20 ° C. 3 ″) The temperature was controlled so that the temperature difference between the seed crystal central part X and the seed crystal peripheral part Y was 5 ° C. or less, preferably 0 ° C. These temperature differences, especially the seed crystal center Since the temperature difference between the portion X and the raw material central portion U and the temperature difference between the seed crystal peripheral portion Y and the raw material peripheral portion V greatly affect the crystallinity of the single crystal obtained as described above, It is determined according to the quality desired for a specific device, and when growing a crystal for a substrate that does not require a very low defect density, it is necessary to consider manufacturing costs.
A growth program for gradually increasing the temperature difference between the seed crystal and the raw material may be employed.

【0018】[0018]

【発明の効果】本発明の方法では、例えば、特定構造の
種結晶載置部を使用することにより、単結晶の成長初期
には種結晶の成長表面に少なくとも一つ相対的な低温領
域を設けるので、単結晶の成長初期において成長核の生
成を制御することができ(例えば、複数の成長核の生成
を抑制することができ)、しかもステップフローの成長
モードを実現することができるので、成長結晶の結晶性
が飛躍的に向上する。特に、中央部分を相対的に低温化
する種結晶載置部の構造を採用する場合には、成長初期
に略円錐形の結晶外形で成長が行われるため、種結晶の
周辺に存在していた貫通孔欠陥が外部に排出されること
になり、欠陥密度を低減することができる。更に、単結
晶の成長中後期には、成長表面の温度分布が略均一にな
るため、均一ドーピングが可能となり、基板の製造歩留
まりも飛躍的に向上する。本発明の方法に用いる種結晶
載置部(例えば、蓋体)は種々の形態のものを比較的容
易に準備することができ、また種結晶として(000
1)面ジャスト基板を使用することができるため、本発
明の方法は低コストで実施可能であり、しかも成長結晶
の大口径化プロセスにも適用可能である。従って、本発
明の方法によると、大面積の単結晶インゴットを高品質
にしかも再現性良く製造することが可能である。そのた
め、得られた単結晶を半導体材料として使用すれば、歩
留まりよく高性能の半導体デバイスを作製することがで
きる。
According to the method of the present invention, for example, at least one relatively low temperature region is provided on the growth surface of the seed crystal at the initial stage of the growth of the single crystal by using the seed crystal mounting portion having a specific structure. Therefore, generation of growth nuclei can be controlled in the initial stage of single crystal growth (for example, generation of a plurality of growth nuclei can be suppressed), and a growth mode of a step flow can be realized. The crystallinity of the crystal is dramatically improved. In particular, when the structure of the seed crystal mounting portion in which the temperature of the central portion is relatively lowered is adopted, since the crystal is grown with a substantially conical crystal outer shape in the initial stage of growth, the crystal exists around the seed crystal. Through hole defects are discharged to the outside, and the defect density can be reduced. Further, in the latter half of the growth of the single crystal, the temperature distribution on the growth surface becomes substantially uniform, so that uniform doping becomes possible, and the production yield of the substrate is drastically improved. A seed crystal mounting portion (for example, a lid) used in the method of the present invention can be prepared in various forms relatively easily.
1) Since a just-in-plane substrate can be used, the method of the present invention can be carried out at a low cost, and is also applicable to a process for increasing the diameter of a grown crystal. Therefore, according to the method of the present invention, a large-area single crystal ingot can be manufactured with high quality and high reproducibility. Therefore, when the obtained single crystal is used as a semiconductor material, a high-performance semiconductor device can be manufactured with high yield.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の方法に用いることができる炭化珪素単
結晶製造装置の一例の概略構成図である。
FIG. 1 is a schematic configuration diagram of an example of a silicon carbide single crystal manufacturing apparatus that can be used in the method of the present invention.

【図2】図1の装置の蓋体の別の例の断面図である。FIG. 2 is a cross-sectional view of another example of the lid of the apparatus of FIG.

【図3】図1の装置の蓋体の別の例の断面図である。FIG. 3 is a cross-sectional view of another example of the lid of the apparatus of FIG.

【図4】図1の装置の蓋体の別の例の断面図である。FIG. 4 is a cross-sectional view of another example of the lid of the apparatus of FIG.

【図5】図1の装置の蓋体の別の例の断面図である。5 is a cross-sectional view of another example of the lid of the apparatus of FIG.

【図6】図1の装置の蓋体の別の例の断面図である。FIG. 6 is a sectional view of another example of the lid of the apparatus of FIG. 1;

【図7】図1の装置の蓋体の別の例の断面図である。FIG. 7 is a sectional view of another example of the lid of the apparatus of FIG. 1;

【図8】図1の装置の蓋体の別の例の断面図である。8 is a cross-sectional view of another example of the lid of the device of FIG.

【図9】図1の装置の蓋体の別の例の断面図である。9 is a cross-sectional view of another example of the lid of the device of FIG.

【図10】図1の装置の蓋体の別の例の断面図である。FIG. 10 is a sectional view of another example of the lid of the apparatus of FIG. 1;

【図11】図1の装置の蓋体の別の例の断面図である。11 is a cross-sectional view of another example of the lid of the device of FIG.

【図12】図1の装置の蓋体の別の例の断面図である。FIG. 12 is a sectional view of another example of the lid of the apparatus of FIG. 1;

【図13】図1の装置の蓋体の別の例の断面図である。FIG. 13 is a sectional view of another example of the lid of the apparatus of FIG. 1;

【図14】比較例の蓋体の断面図である。FIG. 14 is a cross-sectional view of a lid according to a comparative example.

【図15】本発明の方法における種結晶の成長表面の低
温部と高温部との温度差について説明するための図であ
る。
FIG. 15 is a diagram for explaining a temperature difference between a low-temperature portion and a high-temperature portion of a seed crystal growth surface in the method of the present invention.

【符号の説明】[Explanation of symbols]

1 黒鉛製るつぼ 2 黒鉛製蓋体 3 炭化珪素原料粉末 4 種結晶 5 炭化珪素単結晶 6 座繰り 7 切れ込み 8 ポーラスカーボン 9 溝 10 傾斜載置面 DESCRIPTION OF SYMBOLS 1 Graphite crucible 2 Graphite lid 3 Silicon carbide raw material powder 4 Seed crystal 5 Silicon carbide single crystal 6 Counterbore 7 Cut 8 Porous carbon 9 Groove 10 Slant mounting surface

フロントページの続き (72)発明者 杉山 尚宏 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 谷 俊彦 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 神谷 信雄 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 恩田 正一 愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内Continuing on the front page (72) Inventor Naohiro Sugiyama 41-Cham Yokomichi, Nagakute-cho, Aichi-gun, Aichi Prefecture Inside of Toyota Central Research Laboratory Co., Ltd. No. 1 Inside Toyota Central Research Laboratories Co., Ltd. (72) Nobuo Kamiya Inventor No. 41 Nagachute-cho, Nagakute-cho, Aichi-gun, Aichi Prefecture 1-1-1 Showacho Inside DENSO Corporation

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 種結晶載置部に設置した種結晶基板上に
単結晶を成長させることにより単結晶を製造する方法に
おいて、単結晶の成長初期には種結晶の成長表面に少な
くとも一つ相対的な低温領域を設け、単結晶成長の中後
期には成長表面の温度分布が略均一になる状態にて単結
晶を成長させることを特徴とする単結晶の製造方法。
1. A method for producing a single crystal by growing a single crystal on a seed crystal substrate placed on a seed crystal mounting portion, wherein at least one of the single crystals grows relatively to a growth surface of the seed crystal at an initial stage of the growth of the single crystal. A method for producing a single crystal, comprising: providing a low temperature region, and growing the single crystal in a state in which the temperature distribution on the growth surface is substantially uniform in the latter half of the single crystal growth.
JP09856898A 1998-03-26 1998-03-26 Single crystal manufacturing method Expired - Lifetime JP4174847B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09856898A JP4174847B2 (en) 1998-03-26 1998-03-26 Single crystal manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09856898A JP4174847B2 (en) 1998-03-26 1998-03-26 Single crystal manufacturing method

Publications (2)

Publication Number Publication Date
JPH11278985A true JPH11278985A (en) 1999-10-12
JP4174847B2 JP4174847B2 (en) 2008-11-05

Family

ID=14223293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09856898A Expired - Lifetime JP4174847B2 (en) 1998-03-26 1998-03-26 Single crystal manufacturing method

Country Status (1)

Country Link
JP (1) JP4174847B2 (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002053813A1 (en) * 2000-12-28 2002-07-11 Bridgestone Corporation Silicon carbide single crystal, and method and apparatus for producing the same
JP2005008472A (en) * 2003-06-18 2005-01-13 Nippon Steel Corp High quality 4h-type silicon carbide single crystal and single crystal wafer
JP2007326743A (en) * 2006-06-08 2007-12-20 Denso Corp Method for producing silicon carbide single crystal
WO2011087074A1 (en) * 2010-01-15 2011-07-21 株式会社ブリヂストン Apparatus for producing silicon carbide single crystal
WO2011108356A1 (en) * 2010-03-02 2011-09-09 住友電気工業株式会社 Method for producing silicon carbide crystal, silicon carbide crystal, and device for producing silicon carbide crystal
JP2011207691A (en) * 2010-03-30 2011-10-20 Denso Corp Apparatus and method for producing silicon carbide single crystal
JP2011219287A (en) * 2010-04-06 2011-11-04 Nippon Steel Corp Method for producing silicon carbide single crystal ingot, and silicon carbide single crystal ingot
JP2012046424A (en) * 2000-12-28 2012-03-08 Bridgestone Corp Silicon carbide single crystal
EP2339053A3 (en) * 2009-12-24 2012-04-04 Denso Corporation Manufacturing apparatus and manufacturing method of silicon carbide single crystal
WO2012079439A1 (en) * 2010-12-14 2012-06-21 北京天科合达蓝光半导体有限公司 Process for growing silicon carbide single crystal by physical vapor transport method and annealing silicon carbide single crystal in situ
WO2013031856A1 (en) * 2011-08-29 2013-03-07 新日鐵住金株式会社 Silicon carbide single crystal wafer and manufacturing method for same
JP2013071870A (en) * 2011-09-28 2013-04-22 Kyocera Corp Apparatus for growing crystal and method for growing crystal
JP2013227167A (en) * 2012-04-25 2013-11-07 Denso Corp Silicon carbide single crystal manufacturing device
JP2014040357A (en) * 2012-08-23 2014-03-06 Toyota Central R&D Labs Inc Method for producing silicon carbide single crystal and silicon carbide single crystal
JP2014101252A (en) * 2012-11-20 2014-06-05 Sumitomo Electric Ind Ltd Silicon carbide substrate, silicon carbide ingot, and production methods thereof
US9422639B2 (en) 2014-03-06 2016-08-23 Sumitomo Electric Industries, Ltd. Silicon carbide substrate, silicon carbide ingot, and methods for manufacturing silicon carbide substrate and silicon carbide ingot
JP2017065934A (en) * 2015-09-28 2017-04-06 住友電気工業株式会社 Method of manufacturing silicon carbide single crystal
JP2017109912A (en) * 2015-12-18 2017-06-22 昭和電工株式会社 SiC SEED, SiC INGOT, SiC WAFER, SEMICONDUCTOR DEVICE, AND PRODUCTION METHOD OF SEMICONDUCTOR DEVICE
WO2018040897A1 (en) * 2016-08-31 2018-03-08 台州市一能科技有限公司 Silicon carbide single crystal manufacturing apparatus
JP6291615B1 (en) * 2017-05-23 2018-03-14 Jfeミネラル株式会社 Aluminum nitride single crystal production equipment
JP6317868B1 (en) * 2017-05-23 2018-04-25 Jfeミネラル株式会社 Aluminum nitride single crystal production equipment
US20200024769A1 (en) * 2018-07-18 2020-01-23 Showa Denko K.K. PEDESTAL, SiC SINGLE CRYSTAL MANUFACTURING APPARATUS, AND SiC SINGLE CRYSTAL MANUFACTURING METHOD
EP2441861B1 (en) * 2009-06-10 2020-03-11 Showa Denko K.K. Device for producing silicon carbide single crystals
CN115558986A (en) * 2022-11-14 2023-01-03 浙江晶越半导体有限公司 Crucible for improving growth temperature uniformity of large-size silicon carbide seed crystal
EP2388359B1 (en) * 2004-08-10 2023-05-10 Cree, Inc. Method and system with seed holder for growing silicon carbide single crystals

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012046424A (en) * 2000-12-28 2012-03-08 Bridgestone Corp Silicon carbide single crystal
US7048798B2 (en) 2000-12-28 2006-05-23 Bridgestone Corporation Silicon carbide single crystal and method and apparatus for producing the same
WO2002053813A1 (en) * 2000-12-28 2002-07-11 Bridgestone Corporation Silicon carbide single crystal, and method and apparatus for producing the same
JP2005008472A (en) * 2003-06-18 2005-01-13 Nippon Steel Corp High quality 4h-type silicon carbide single crystal and single crystal wafer
EP2388359B1 (en) * 2004-08-10 2023-05-10 Cree, Inc. Method and system with seed holder for growing silicon carbide single crystals
JP2007326743A (en) * 2006-06-08 2007-12-20 Denso Corp Method for producing silicon carbide single crystal
JP4706565B2 (en) * 2006-06-08 2011-06-22 株式会社デンソー Method for producing silicon carbide single crystal
EP2441861B1 (en) * 2009-06-10 2020-03-11 Showa Denko K.K. Device for producing silicon carbide single crystals
EP2339053A3 (en) * 2009-12-24 2012-04-04 Denso Corporation Manufacturing apparatus and manufacturing method of silicon carbide single crystal
WO2011087074A1 (en) * 2010-01-15 2011-07-21 株式会社ブリヂストン Apparatus for producing silicon carbide single crystal
CN102471930A (en) * 2010-03-02 2012-05-23 住友电气工业株式会社 Method for producing silicon carbide crystal, silicon carbide crystal, and device for producing silicon carbide crystal
WO2011108356A1 (en) * 2010-03-02 2011-09-09 住友電気工業株式会社 Method for producing silicon carbide crystal, silicon carbide crystal, and device for producing silicon carbide crystal
JP2011178621A (en) * 2010-03-02 2011-09-15 Sumitomo Electric Ind Ltd Method for producing silicon carbide crystal, silicon carbide crystal, and apparatus for producing silicon carbide crystal
JP2011207691A (en) * 2010-03-30 2011-10-20 Denso Corp Apparatus and method for producing silicon carbide single crystal
JP2011219287A (en) * 2010-04-06 2011-11-04 Nippon Steel Corp Method for producing silicon carbide single crystal ingot, and silicon carbide single crystal ingot
WO2012079439A1 (en) * 2010-12-14 2012-06-21 北京天科合达蓝光半导体有限公司 Process for growing silicon carbide single crystal by physical vapor transport method and annealing silicon carbide single crystal in situ
US9340898B2 (en) 2010-12-14 2016-05-17 Tankeblue Semiconductor Co. Ltd. Process for growing silicon carbide single crystal by physical vapor transport method and annealing silicon carbide single crystal in situ
KR101530057B1 (en) * 2011-08-29 2015-06-18 신닛테츠스미킨 카부시키카이샤 Silicon carbide single crystal wafer and manufacturing method for same
JP2014028757A (en) * 2011-08-29 2014-02-13 Nippon Steel & Sumitomo Metal Silicon carbide single crystal ingot and substrate cut from the same
CN103620095A (en) * 2011-08-29 2014-03-05 新日铁住金株式会社 Silicon carbide single crystal wafer and manufacturing method for same
JP2014028736A (en) * 2011-08-29 2014-02-13 Nippon Steel & Sumitomo Metal Method for producing silicon carbide single crystal and substrate produced by the same
JP5506954B2 (en) * 2011-08-29 2014-05-28 新日鐵住金株式会社 Silicon carbide single crystal substrate
US9234297B2 (en) 2011-08-29 2016-01-12 Nippon Steel & Sumitomo Metal Corporation Silicon carbide single crystal wafer and manufacturing method for same
WO2013031856A1 (en) * 2011-08-29 2013-03-07 新日鐵住金株式会社 Silicon carbide single crystal wafer and manufacturing method for same
CN103620095B (en) * 2011-08-29 2017-02-15 新日铁住金株式会社 Silicon carbide single crystal wafer and manufacturing method for same
JP2013071870A (en) * 2011-09-28 2013-04-22 Kyocera Corp Apparatus for growing crystal and method for growing crystal
JP2013227167A (en) * 2012-04-25 2013-11-07 Denso Corp Silicon carbide single crystal manufacturing device
JP2014040357A (en) * 2012-08-23 2014-03-06 Toyota Central R&D Labs Inc Method for producing silicon carbide single crystal and silicon carbide single crystal
JP2014101252A (en) * 2012-11-20 2014-06-05 Sumitomo Electric Ind Ltd Silicon carbide substrate, silicon carbide ingot, and production methods thereof
US9605358B2 (en) 2014-03-06 2017-03-28 Sumitomo Electric Industries, Ltd. Silicon carbide substrate, silicon carbide ingot, and methods for manufacturing silicon carbide substrate and silicon carbide ingot
US9422639B2 (en) 2014-03-06 2016-08-23 Sumitomo Electric Industries, Ltd. Silicon carbide substrate, silicon carbide ingot, and methods for manufacturing silicon carbide substrate and silicon carbide ingot
JP2017065934A (en) * 2015-09-28 2017-04-06 住友電気工業株式会社 Method of manufacturing silicon carbide single crystal
JP2017109912A (en) * 2015-12-18 2017-06-22 昭和電工株式会社 SiC SEED, SiC INGOT, SiC WAFER, SEMICONDUCTOR DEVICE, AND PRODUCTION METHOD OF SEMICONDUCTOR DEVICE
WO2018040897A1 (en) * 2016-08-31 2018-03-08 台州市一能科技有限公司 Silicon carbide single crystal manufacturing apparatus
JP2018197173A (en) * 2017-05-23 2018-12-13 Jfeミネラル株式会社 Aluminum nitride single crystal manufacturing device
JP2018197174A (en) * 2017-05-23 2018-12-13 Jfeミネラル株式会社 Aluminum nitride single crystal manufacturing device
JP6317868B1 (en) * 2017-05-23 2018-04-25 Jfeミネラル株式会社 Aluminum nitride single crystal production equipment
JP6291615B1 (en) * 2017-05-23 2018-03-14 Jfeミネラル株式会社 Aluminum nitride single crystal production equipment
US20200024769A1 (en) * 2018-07-18 2020-01-23 Showa Denko K.K. PEDESTAL, SiC SINGLE CRYSTAL MANUFACTURING APPARATUS, AND SiC SINGLE CRYSTAL MANUFACTURING METHOD
JP2020011864A (en) * 2018-07-18 2020-01-23 昭和電工株式会社 PEDESTAL, AND MANUFACTURING APPARATUS AND MANUFACTURING METHOD OF SiC SINGLE CRYSTAL
US11519096B2 (en) 2018-07-18 2022-12-06 Showa Denko K.K. Pedestal for supporting a seed for SiC single crystal growth which includes a gas-permeable region of reduced thickness
CN115558986A (en) * 2022-11-14 2023-01-03 浙江晶越半导体有限公司 Crucible for improving growth temperature uniformity of large-size silicon carbide seed crystal

Also Published As

Publication number Publication date
JP4174847B2 (en) 2008-11-05

Similar Documents

Publication Publication Date Title
JP4174847B2 (en) Single crystal manufacturing method
US6391109B2 (en) Method of making SiC single crystal and apparatus for making SiC single crystal
US9068277B2 (en) Apparatus for manufacturing single-crystal silicon carbide
US8313720B2 (en) Guided diameter SiC sublimation growth with multi-layer growth guide
TW494147B (en) Method of making GaN single crystal and apparatus for making GaN single crystal
JP3491402B2 (en) Single crystal manufacturing method and single crystal manufacturing apparatus
JP4514339B2 (en) Method and apparatus for growing silicon carbide single crystal
US20140127466A1 (en) Sic single crystal and method of producing same
JP2007204309A (en) Single crystal growth device and single crystal growth method
JP2008013390A (en) MANUFACTURING METHOD OF AlN CRYSTAL SUBSTRATE, GROWING METHOD OF AlN CRYSTAL AND AlN CRYSTAL SUBSTRATE
JP2010042980A (en) Method for producing group iii nitride crystal and group iii nitride crystal
US6451112B1 (en) Method and apparatus for fabricating high quality single crystal
JP2004099340A (en) Seed crystal for silicon carbide single crystal growth, silicon carbide single crystal ingot and method of manufacturing the same
US9799735B2 (en) Method of manufacturing silicon carbide single crystal and silicon carbide single crystal substrate
JP4052678B2 (en) Large silicon carbide single crystal growth equipment
JP5143139B2 (en) Single crystal growth equipment
JP3491429B2 (en) Method for producing silicon carbide single crystal
CN111349971B (en) Crystal raw material containing device and crystal growing device
JP4450118B2 (en) Method for producing silicon carbide single crystal
JP4304783B2 (en) SiC single crystal and growth method thereof
JP5761264B2 (en) Method for manufacturing SiC substrate
JPH0532496A (en) Preparation of ingot of silicon carbide single crystal having large aperture and silicon carbide single crystal for seed crystal
JPH07267795A (en) Growth method of silicon carbide single crystal
JP2004262709A (en) GROWTH METHOD FOR SiC SINGLE CRYSTAL
TWI802616B (en) Manufacturing method of silicon carbide single crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041104

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20041203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070427

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080423

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080617

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080729

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080811

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130829

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term