JP2007204309A - Single crystal growth device and single crystal growth method - Google Patents

Single crystal growth device and single crystal growth method Download PDF

Info

Publication number
JP2007204309A
JP2007204309A JP2006024371A JP2006024371A JP2007204309A JP 2007204309 A JP2007204309 A JP 2007204309A JP 2006024371 A JP2006024371 A JP 2006024371A JP 2006024371 A JP2006024371 A JP 2006024371A JP 2007204309 A JP2007204309 A JP 2007204309A
Authority
JP
Japan
Prior art keywords
crucible
single crystal
seed crystal
raw material
heat insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006024371A
Other languages
Japanese (ja)
Inventor
Satoru Tottori
悟 鳥取
Kosuke Hoshikawa
浩介 星河
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006024371A priority Critical patent/JP2007204309A/en
Publication of JP2007204309A publication Critical patent/JP2007204309A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for obtaining a high-quality silicon carbide single crystal at a high growth rate without depositing a polycrystal on a gas guide part. <P>SOLUTION: A raw material to grow a single crystal is housed in a crucible, heated and sublimated by use of a high frequency coil disposed outside a heat insulation material around the crucible to be supplied onto a seed crystal consisting of a single crystal and to grow a single crystal on the seed crystal. In the method, a conical gas guide part 9 is disposed that has an opening apart at a predetermined distance from the seed crystal 2 and having a larger diameter in the raw material side than the diameter in the seed crystal 3 side. The high frequency coil 7 for heating the crucible 2 is placed at a position that gives an approximately right angle between an isothermal line in the crucible during heating and the conical inner wall of the gas guide part 9. The heat insulation material 8 disposed above the crucible cap 1 is placed at a predetermined distance from the crucible cap 1. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、炭化珪素等の単結晶の製造装置及び単結晶の成長方法に関するものであり、成長速度が大きく、且つ高品質な単結晶を得ることができる。   The present invention relates to an apparatus for producing a single crystal such as silicon carbide and a method for growing a single crystal, and a high-quality single crystal having a high growth rate can be obtained.

炭化珪素(SiC)は、大きな熱伝導率、低い誘電率、広いバンドギャップを有し、熱的、機械的に安定した特性を持っている。従って、炭化珪素を用いた半導体素子は、従来のシリコン(Si)を用いた半導体素子よりも高い性能を持つ。その利用範囲は、高温の環境で使用される耐環境デバイス材料、耐放射線デバイス材料、電力制御用パワーデバイス材料、高周波デバイス材料などが期待されている。この炭化珪素単結晶の製造方法として、昇華再結晶法(「改良レーリー法」とも呼ばれる)が主に採用されている。   Silicon carbide (SiC) has a large thermal conductivity, a low dielectric constant, a wide band gap, and has thermally and mechanically stable characteristics. Therefore, a semiconductor element using silicon carbide has higher performance than a semiconductor element using conventional silicon (Si). The range of use is expected to be environment-resistant device materials, radiation-resistant device materials, power device materials for power control, high-frequency device materials, etc. used in high-temperature environments. As a method for producing this silicon carbide single crystal, a sublimation recrystallization method (also called “improved Rayleigh method”) is mainly employed.

図9は、この昇華再結晶法に用いられる装置の概略図で、炭化珪素原料4として炭化珪素粉末が収容してある坩堝2と、種結晶支持部を備えた坩堝蓋部1より構成されており、炭化珪素種結晶3は、種結晶支持部に炭化珪素原料4に対向するように配置されている。この状態で、炭化珪素原料4側が高温に、炭化珪素種結晶3側が低温になるように加熱され、炭化珪素原料4の昇華ガスが低温の炭化珪素種結晶3上で再結晶化することにより炭化珪素単結晶5が成長する。   FIG. 9 is a schematic view of an apparatus used for this sublimation recrystallization method, which is composed of a crucible 2 containing silicon carbide powder as a silicon carbide raw material 4 and a crucible lid portion 1 provided with a seed crystal support portion. The silicon carbide seed crystal 3 is arranged on the seed crystal support portion so as to face the silicon carbide raw material 4. In this state, the silicon carbide raw material 4 side is heated to a high temperature and the silicon carbide seed crystal 3 side is heated to a low temperature, and the sublimation gas of the silicon carbide raw material 4 is recrystallized on the low temperature silicon carbide seed crystal 3 to carbonize. A silicon single crystal 5 grows.

前記加熱の加熱方法としては、通常、反応管の周囲に螺旋状に巻かれたコイル7に高周波電流を流すことにより、坩堝に電流を発生させ発熱させる高周波誘導加熱が用いられる。この際、この炭化珪素原料4と炭化珪素種結晶3の温度勾配は、単結晶の成長速度に大きく寄与し、温度勾配が大きいほど単結晶の成長速度は大きくなる。産業上の実用性を考えた場合、単結晶の成長速度は、数100μm/hour以上は必要であると考えられる。従って、上記の炭化珪素原料4と炭化珪素種結晶3の温度勾配も、この成長速度が可能である程度に大きくしなければならない。従来は、コイル7と坩堝2の相対位置を変化させて炭化珪素原料4と炭化珪素種結晶3の温度および温度勾配(温度差)を制御する(非特許文献1)。   As a heating method for the heating, high-frequency induction heating is generally used in which a high-frequency current is passed through a coil 7 spirally wound around the reaction tube to generate a current in the crucible and generate heat. At this time, the temperature gradient between the silicon carbide raw material 4 and the silicon carbide seed crystal 3 greatly contributes to the growth rate of the single crystal, and the growth rate of the single crystal increases as the temperature gradient increases. In consideration of industrial practicality, it is considered that the growth rate of the single crystal is required to be several hundred μm / hour or more. Therefore, the temperature gradient between the silicon carbide raw material 4 and the silicon carbide seed crystal 3 must also be increased to such a degree that this growth rate is possible. Conventionally, the temperature and temperature gradient (temperature difference) of the silicon carbide raw material 4 and the silicon carbide seed crystal 3 are controlled by changing the relative positions of the coil 7 and the crucible 2 (Non-patent Document 1).

また、炭化珪素を昇華再結晶法で成長させる場合は、炭化珪素の昇華に必要な2000℃以上に加熱する必要があるが、2000℃以上の高温では、温度の4乗に比例して輻射熱が失われるため、坩堝2および坩堝上蓋1を断熱材8で覆う必要がある。   In addition, when silicon carbide is grown by the sublimation recrystallization method, it is necessary to heat to 2000 ° C. or higher necessary for sublimation of silicon carbide, but at a high temperature of 2000 ° C. or higher, radiant heat is proportional to the fourth power of the temperature. Since it is lost, it is necessary to cover the crucible 2 and the crucible upper lid 1 with a heat insulating material 8.

一方、図10に示すように、原料4と種結晶3間に筒状(コーン状)ガスガイド部9を配置することで、昇華ガスを種結晶3に導き、効率良く単結晶5を成長させ、且つ高品質な単結晶5を得る技術が開示されている(特許文献1)。この技術において重要であるのは、坩堝内、特に前記ガスガイド部9内の等温線10の形状である(非特許文献2)。昇華ガスは、等温線10に直交する方向で低温側に移動するため、等温線10とガスガイド部9の成す角θが90°より大きいと、図10(a)に示すように、ガスガイド部9へ向かう昇華ガスはなく、効率良く種結晶に輸送され、単結晶5のみが成長する。しかし図10(b)に示すように、等温線10とガスガイド部9の成す角θが90°より小さいと、昇華ガスの一部が、ガスガイド部9へ輸送され、ガスガイド部9に多結晶6が付着する。この多結晶6が単結晶5に接触すると、単結晶5の成長を阻害するとともに、単結晶5に歪を与えて、結晶欠陥が単結晶5内に発生し、結晶品質を著しく悪化させる。このように、上記等温線10とガスガイド部9の成す角θを最適(90°より大きく)にすることが、高品質な単結晶を得るために不可欠である。
特開2002−60297号公報 松波弘之編著,「半導体SiC技術と応用」,初版,日刊工業新聞社,2003年3月31日,p.17 Shin−ichi Nishizawa et.al.,Numerical Simulation of Heat and Mass Transfer in SiC Sublimation Growth,Materials Science Forum,Switzerland,Trans Tech Publications,2002,Vols.389−393,p.43−46
On the other hand, as shown in FIG. 10, by arranging a cylindrical (cone-shaped) gas guide portion 9 between the raw material 4 and the seed crystal 3, the sublimation gas is guided to the seed crystal 3 to efficiently grow the single crystal 5. And the technique of obtaining the high quality single crystal 5 is disclosed (patent document 1). What is important in this technique is the shape of the isotherm 10 in the crucible, particularly in the gas guide part 9 (Non-patent Document 2). Since the sublimation gas moves to the low temperature side in a direction orthogonal to the isotherm 10, if the angle θ formed by the isotherm 10 and the gas guide portion 9 is larger than 90 °, as shown in FIG. There is no sublimation gas toward the part 9, and it is efficiently transported to the seed crystal, and only the single crystal 5 grows. However, as shown in FIG. 10B, when the angle θ formed by the isotherm 10 and the gas guide portion 9 is smaller than 90 °, a part of the sublimation gas is transported to the gas guide portion 9 and is transferred to the gas guide portion 9. Polycrystalline 6 adheres. When the polycrystal 6 comes into contact with the single crystal 5, the growth of the single crystal 5 is inhibited and the single crystal 5 is distorted, and crystal defects are generated in the single crystal 5, and the crystal quality is remarkably deteriorated. Thus, it is indispensable for obtaining a high-quality single crystal that the angle θ formed by the isotherm 10 and the gas guide portion 9 is optimized (greater than 90 °).
JP 2002-60297 A Edited by Hiroyuki Matsunami, “Semiconductor SiC Technology and Applications”, first edition, Nikkan Kogyo Shimbun, March 31, 2003, p. 17 Shin-ichi Nishizawa et. al. , Numerical Simulation of Heat and Mass Transfer in SiC Publication Growth, Materials Science Forum, Switzerland, Trans Technology Publications, 2002, Vols. 389-393, p. 43-46

しかしながら、発明者らが検討した結果、特許文献1に関して以下のような問題があった。前述のように、加熱の際は、炭化珪素原料4側が高温に、炭化珪素種結晶3側が低温になるように加熱しなければならず、この炭化珪素原料4と炭化珪素種結晶3の温度勾配は、単結晶の成長速度に大きく寄与する。従来は、コイル7と坩堝2の相対位置を変化させて炭化珪素原料4と炭化珪素種結晶3の温度および温度勾配を制御しており、炭化珪素原料4側が高温に、炭化珪素種結晶3側が低温に、且つこれらの温度勾配を大きくするには、坩堝2に対してコイル7の位置を下げなければならない。   However, as a result of investigations by the inventors, there is the following problem with respect to Patent Document 1. As described above, when heating, the silicon carbide raw material 4 side must be heated to a high temperature and the silicon carbide seed crystal 3 side to a low temperature, and the temperature gradient between the silicon carbide raw material 4 and the silicon carbide seed crystal 3 is increased. Greatly contributes to the growth rate of the single crystal. Conventionally, the temperature and temperature gradient of the silicon carbide raw material 4 and the silicon carbide seed crystal 3 are controlled by changing the relative positions of the coil 7 and the crucible 2, and the silicon carbide raw material 4 side is at a high temperature and the silicon carbide seed crystal 3 side is at a high temperature. In order to increase the temperature gradient at low temperatures, the position of the coil 7 must be lowered with respect to the crucible 2.

しかし、発明者らの実験において、坩堝2に対してコイル7の位置を下げるとガスガイド部9に多結晶6が付着しやすくなった。そしてガスガイド部9に多結晶6が付着した結果、成長した単結晶5とガスガイド部9に付着した多結晶6が接触し、多結晶6が単結晶5に歪を与えて、クラックや転位といった結晶欠陥が単結晶5に発生した。シミュレーションにより、坩堝2内の温度分布を調べた結果、図7および図8に示すように、上記のガスガイド部9への多結晶6付着の原因は、坩堝2に対してコイル7位置を下げることで、上記の等温線10とガスガイド部9の成す角θが90°より小さくなり、原料ガスの一部がガスガイド部9に輸送されたためであることがわかった。   However, in the experiments by the inventors, when the position of the coil 7 is lowered with respect to the crucible 2, the polycrystal 6 easily adheres to the gas guide portion 9. As a result of the polycrystal 6 adhering to the gas guide portion 9, the grown single crystal 5 comes into contact with the polycrystal 6 adhering to the gas guide portion 9, and the polycrystal 6 distorts the single crystal 5 to cause cracks and dislocations. Such a crystal defect occurred in the single crystal 5. As a result of examining the temperature distribution in the crucible 2 by simulation, as shown in FIGS. 7 and 8, the cause of the polycrystal 6 adhesion to the gas guide portion 9 is that the position of the coil 7 is lowered with respect to the crucible 2. Thus, it was found that the angle θ formed by the isotherm 10 and the gas guide portion 9 was smaller than 90 °, and a part of the raw material gas was transported to the gas guide portion 9.

つまり、単結晶5の結晶成長速度を大きくしようと、坩堝2に対してコイル7位置を下げて、炭化珪素種結晶3と炭化珪素原料4の温度勾配を大きくすると、ガスガイド部9に多結晶6が付着し、単結晶5の結晶品質を著しく悪化させるという問題がある。   In other words, if the temperature of the coil 7 is lowered with respect to the crucible 2 and the temperature gradient between the silicon carbide seed crystal 3 and the silicon carbide raw material 4 is increased in order to increase the crystal growth rate of the single crystal 5, the gas guide 9 is polycrystallized. There is a problem that 6 adheres and the crystal quality of the single crystal 5 is remarkably deteriorated.

本発明は、上記課題を解決するためになされたものであり、ガスガイド部に多結晶を付着させること無く、原料と種結晶の温度勾配を大きくし、高品質、且つ成長速度の大きい単結晶を得る方法を提供する。   The present invention has been made in order to solve the above-mentioned problems. A single crystal having a high quality and a high growth rate is obtained by increasing the temperature gradient between the raw material and the seed crystal without attaching polycrystals to the gas guide portion. Provide a way to get.

前記課題を解決するために、本発明の単結晶成長装置は、単結晶を成長させる原料を坩堝内に収容し、当該単結晶の原料を加熱昇華させ、単結晶からなる種結晶上に供給し、この種結晶上に単結晶を成長させる単結晶成長装置において、前記坩堝の前記原料に対向する位置の前記坩堝蓋部に前記種結晶を支持する円柱状の種結晶支持部と、当該種結晶に対し所定の距離を離して開口部を有し原料側が種結晶側より大径の円錐状のガスガイド部と、
前記坩堝体全体を覆う所定の厚さを有する断熱材と、前記種結晶と原料を加熱するために前記坩堝体全体の周囲に配置される断熱材の外側に配置される高周波コイルと、を備え、
前記坩堝蓋部上に配置される前記断熱材は、前記坩堝蓋部と所定の距離を有して配置されることを特徴としたものである。
In order to solve the above problems, the single crystal growth apparatus of the present invention stores a raw material for growing a single crystal in a crucible, heats and sublimates the raw material of the single crystal, and supplies the raw material onto a seed crystal made of a single crystal. In the single crystal growth apparatus for growing a single crystal on the seed crystal, a cylindrical seed crystal support portion for supporting the seed crystal on the crucible lid portion at a position facing the raw material of the crucible, and the seed crystal A conical gas guide portion having an opening at a predetermined distance and a raw material side having a larger diameter than the seed crystal side, and
A heat insulating material having a predetermined thickness covering the entire crucible body, and a high-frequency coil disposed outside the heat insulating material disposed around the entire crucible body to heat the seed crystal and the raw material. ,
The heat insulating material disposed on the crucible lid portion is disposed with a predetermined distance from the crucible lid portion.

また、本発明の単結晶成長装置は、単結晶を成長させる原料を坩堝内に収容し、当該単結晶の原料を加熱昇華させ、単結晶からなる種結晶上に供給し、この種結晶上に単結晶を成長させる単結晶成長装置において、前記坩堝の前記原料に対向する位置の前記坩堝蓋部に前記種結晶を支持する円柱状の種結晶支持部と、当該種結晶に対し距離を離して開口部を有し原料側が種結晶側より大径の円錐状のガスガイド部と、前記坩堝体全体を覆う所定の厚さを有する断熱材と、前記種結晶と炭化珪素原料を加熱するために前記坩堝体全体の周囲に当該坩堝に配置される断熱材の外側に配置される高周波コイルと、を備え、前記坩堝を覆って配置される前記断熱材は、当該坩堝に接して設置され、2000℃における熱伝導率が0.5から1.5W/m・Kであり、且つ、前記坩堝蓋部上部の断熱材の厚さを、他の坩堝部分を覆う断熱材の厚さより薄く設定することを特徴としたものである。   Further, the single crystal growth apparatus of the present invention accommodates a raw material for growing a single crystal in a crucible, heats and sublimates the raw material of the single crystal, and supplies the single crystal on a seed crystal. In a single crystal growth apparatus for growing a single crystal, a cylindrical seed crystal support portion that supports the seed crystal on the crucible lid portion at a position facing the raw material of the crucible, and a distance from the seed crystal. In order to heat the seed crystal and the silicon carbide raw material having an opening and a conical gas guide portion whose raw material side is larger in diameter than the seed crystal side, a heat insulating material having a predetermined thickness covering the entire crucible body A high-frequency coil disposed outside the heat insulating material disposed in the crucible around the entire crucible body, the heat insulating material disposed so as to cover the crucible is disposed in contact with the crucible, and 2000 Thermal conductivity at 0 ° C is 0.5 to 1.5 W / m The thickness of the heat insulating material at the upper part of the crucible lid portion is set to be thinner than the thickness of the heat insulating material covering the other crucible portions.

また、本発明の単結晶成長方法は、単結晶を成長させる原料を坩堝内に収容し、当該坩堝周囲の断熱材の外側に高周波コイルを用いて当該原料を加熱昇華させて単結晶からなる種結晶上に供給し、この種結晶上に単結晶を成長させる単結晶成長方法において、
当該種結晶に対し所定の距離を離して開口部を有し原料側が種結晶側より大径の円錐状のガスガイド部を配し、前記坩堝体の加熱用の高周波コイル位置を加熱時の坩堝内の等温線が前記ガスガイド部の円錐状内壁との成す角が略直角になる位置に配置し、前記坩堝蓋部上に配置される前記断熱材は、前記坩堝蓋部と所定の距離を有して配置されることを特徴としたものである。
The single crystal growth method of the present invention also includes a seed made of a single crystal by containing a raw material for growing a single crystal in a crucible and heating and sublimating the raw material using a high-frequency coil outside a heat insulating material around the crucible. In a single crystal growth method of supplying on a crystal and growing a single crystal on the seed crystal,
A cone-shaped gas guide portion having an opening having a predetermined distance from the seed crystal and having a larger diameter on the raw material side than the seed crystal side is disposed, and the high-frequency coil position for heating the crucible body is a crucible at the time of heating. An isotherm is disposed at a position where the angle formed by the conical inner wall of the gas guide portion is substantially perpendicular, and the heat insulating material disposed on the crucible lid portion has a predetermined distance from the crucible lid portion. It is characterized by being arranged.

また、本発明の単結晶成長方法は、単結晶を成長させる原料を坩堝内に収容し、当該坩堝周囲の断熱材の外側に高周波コイルを用いて当該原料を加熱昇華させて単結晶からなる種結晶上に供給し、この種結晶上に単結晶を成長させる単結晶成長方法において、
当該種結晶に対し所定の距離を離して開口部を有し原料側が種結晶側より大径の円錐状のガスガイド部を配し、前記坩堝体の加熱用の高周波コイル位置を加熱時の坩堝内の等温線が前記ガスガイド部の円錐状内壁との成す角が略直角になる位置に配置し、且つ、前記坩堝蓋部上部の断熱材の厚さを、他の坩堝部分を覆う断熱材の厚さより薄く設定することを特徴としたものである。
The single crystal growth method of the present invention also includes a seed made of a single crystal by containing a raw material for growing a single crystal in a crucible and heating and sublimating the raw material using a high-frequency coil outside a heat insulating material around the crucible. In a single crystal growth method of supplying on a crystal and growing a single crystal on the seed crystal,
A cone-shaped gas guide portion having an opening having a predetermined distance from the seed crystal and having a larger diameter on the raw material side than the seed crystal side is disposed, and the high-frequency coil position for heating the crucible body is a crucible at the time of heating. A heat insulating material that is disposed at a position where the angle formed between the inner isotherm and the conical inner wall of the gas guide portion is substantially perpendicular, and covers the other crucible portion with the thickness of the heat insulating material at the upper portion of the crucible lid portion It is characterized in that it is set to be thinner than the thickness.

以下に、本発明を用いた単結晶の成長装置及び成長方法の実施の形態を図面とともに詳細に説明する。また、単結晶として炭化珪素を用いて説明するが、他の単結晶の成長にも適用できることは当然である。   Embodiments of a single crystal growth apparatus and growth method using the present invention will be described below in detail with reference to the drawings. In addition, although silicon carbide is used as the single crystal, it is naturally applicable to the growth of other single crystals.

図1は、実施例1で用いた成長装置の概略図である。坩堝2内に炭化珪素原料4(炭化珪素粉末)を収容し、坩堝蓋部1の種結晶支持部に固定した炭化珪素種結晶3を、炭化珪素原料4に対向するように配置した。炭化珪素種結晶3としては、マイクロパイプ密度が約30個/cm2、エッチピット密度が約3×104個/cm2の4H型の炭化珪素単結晶を用い、結晶成長面は、(000−1)面とした。また、種結晶支持部の種結晶貼付け面は、直径20mmの円形であり、炭化珪素種結晶3も同じく直径20mmの円形とした。 FIG. 1 is a schematic view of a growth apparatus used in Example 1. Silicon carbide raw material 4 (silicon carbide powder) was housed in crucible 2, and silicon carbide seed crystal 3 fixed to the seed crystal support portion of crucible lid portion 1 was arranged to face silicon carbide raw material 4. As the silicon carbide seed crystal 3, a 4H type silicon carbide single crystal having a micropipe density of about 30 pieces / cm 2 and an etch pit density of about 3 × 10 4 pieces / cm 2 is used. -1) A surface. Moreover, the seed crystal sticking surface of the seed crystal support part was a circle having a diameter of 20 mm, and the silicon carbide seed crystal 3 was also a circle having a diameter of 20 mm.

炭化珪素原料4と炭化珪素種結晶3の間には、炭化珪素原料4から昇華したガスを種結晶3に効率良く導くために、炭化珪素原料4側が炭化珪素種結晶3側より大径の円錐状のガスガイド部9を配置している。この際、炭化珪素種結晶3とガスガイド部9の炭化珪素種3結晶側端との間に距離を設けている。この距離が0.5mmより小さいと、炭化珪素種結晶3外周部から成長する炭化珪素単結晶5、あるいは坩堝蓋体1の種結晶支持部側壁面から成長する炭化珪素多結晶6により、この隙間が塞がれてしまう場合がある。   Between the silicon carbide raw material 4 and the silicon carbide seed crystal 3, in order to efficiently introduce the gas sublimated from the silicon carbide raw material 4 to the seed crystal 3, the silicon carbide raw material 4 side has a larger diameter cone than the silicon carbide seed crystal 3 side. A gas guide portion 9 is arranged. At this time, a distance is provided between the silicon carbide seed crystal 3 and the silicon carbide seed 3 crystal side end of the gas guide portion 9. If this distance is less than 0.5 mm, the silicon carbide single crystal 5 growing from the outer peripheral portion of the silicon carbide seed crystal 3 or the silicon carbide polycrystal 6 growing from the side wall surface of the seed crystal support portion of the crucible lid 1 will cause this gap. May be blocked.

また、上記の距離が2mmより大きいと、炭化珪素原料4の昇華ガスのうち、坩堝蓋体1下面へ向かう昇華ガスの割合が多くなり、炭化珪素単結晶5の成長に寄与する昇華ガスの割合が少なくなる。そのため、炭化珪素単結晶5の成長速度が遅くなってしまう。更には、坩堝蓋体1下面からの炭化珪素多結晶6の伸長速度が大きくなるため、数10時間の結晶成長を行うと、坩堝蓋1下面から伸長する炭化珪素多結晶6が、坩堝蓋体1の種結晶支持部の高さより高くなり、種結晶3から成長する炭化珪素単結晶5と接触して炭化珪素単結晶5に歪を与え、結晶品質を悪化させる。従って、炭化珪素種結晶3とガスガイド部の炭化珪素種3結晶側端との間に距離は、0.5mm以上、2mm以下であることが望ましい。本実施例では、具体的には、炭化珪素種結晶3とガスガイド部の炭化珪素種3結晶側端との間の距離を、1.0mmとした。   If the distance is larger than 2 mm, the ratio of the sublimation gas toward the lower surface of the crucible lid 1 in the sublimation gas of the silicon carbide raw material 4 increases, and the ratio of the sublimation gas that contributes to the growth of the silicon carbide single crystal 5. Less. Therefore, the growth rate of silicon carbide single crystal 5 is slow. Furthermore, since the growth rate of the silicon carbide polycrystal 6 from the lower surface of the crucible lid 1 is increased, the silicon carbide polycrystal 6 extending from the lower surface of the crucible lid 1 is converted into the crucible lid body when the crystal growth is performed for several tens of hours. It becomes higher than the height of the seed crystal support portion of 1 and comes into contact with the silicon carbide single crystal 5 grown from the seed crystal 3 to give strain to the silicon carbide single crystal 5 to deteriorate the crystal quality. Therefore, the distance between the silicon carbide seed crystal 3 and the silicon carbide seed 3 crystal side end of the gas guide part is desirably 0.5 mm or more and 2 mm or less. In this example, specifically, the distance between the silicon carbide seed crystal 3 and the silicon carbide seed 3 crystal side end of the gas guide portion was set to 1.0 mm.

昇華再結晶法を用いた炭化珪素単結晶成長では、炭化珪素原料4を昇華させるために2000℃以上の高温が必要である。2000℃以上の高温では、温度の4乗に比例して輻射熱が失われるため、坩堝2および坩堝蓋部1を断熱材8で覆う必要がある。この際、坩堝蓋部1と断熱材8との間に距離を設けた。   In silicon carbide single crystal growth using the sublimation recrystallization method, a high temperature of 2000 ° C. or higher is required to sublimate the silicon carbide raw material 4. At a high temperature of 2000 ° C. or higher, the radiant heat is lost in proportion to the fourth power of the temperature. Therefore, it is necessary to cover the crucible 2 and the crucible lid 1 with the heat insulating material 8. At this time, a distance was provided between the crucible lid 1 and the heat insulating material 8.

図2に示すように、この距離を設けることにより、坩堝内の等温線10を最適な形状に維持したまま、炭化珪素種結晶3と炭化珪素原料4間の温度勾配を大きくすることができる。即ち、坩堝内の等温線10が、ガスガイド部9の円錐状内壁との成す角度θが略直角となり、また、炭化珪素種結晶3と炭化珪素原料4間の温度勾配を大きくすることができる。   As shown in FIG. 2, by providing this distance, the temperature gradient between the silicon carbide seed crystal 3 and the silicon carbide raw material 4 can be increased while maintaining the isotherm 10 in the crucible in an optimum shape. That is, the angle θ formed between the isotherm 10 in the crucible and the conical inner wall of the gas guide portion 9 is substantially perpendicular, and the temperature gradient between the silicon carbide seed crystal 3 and the silicon carbide raw material 4 can be increased. .

また、断熱材8の2000℃における熱伝導率が0.5から1.5W/m・Kで、坩堝蓋部1上の断熱材8の厚さが、10mmより大きく、50mm以下であり、坩堝蓋部1と断熱材8との距離が5mm以上、40mm以下であれば、図3(a)に示したように、坩堝内の等温線10が、ガスガイド部9の円錐状内壁との成す角度θが略直角で、且つ炭化珪素原料4と炭化珪素種結晶3間の温度勾配を、適度な10℃/cmから30℃/cmとすることができる。坩堝蓋部1と断熱材8との距離が5mmより小さい場合は、図3(b)に示したように、坩堝内の等温線10が、ガスガイド部9の円錐状内壁との成す角度θは略直角であるが、炭化珪素原料4と炭化珪素種結晶3間の温度勾配が小さすぎる。また、坩堝蓋部1と断熱材8との距離が40mmより大きい場合は、図3(c)に示したように、坩堝内の等温線10が、ガスガイド部9の円錐状内壁との成す角度θは略直角であるが、炭化珪素原料4と炭化珪素種結晶3間の温度勾配が大きすぎる。   The heat conductivity of the heat insulating material 8 at 2000 ° C. is 0.5 to 1.5 W / m · K, and the thickness of the heat insulating material 8 on the crucible lid portion 1 is larger than 10 mm and not larger than 50 mm. If the distance between the lid portion 1 and the heat insulating material 8 is 5 mm or more and 40 mm or less, the isotherm 10 in the crucible is formed by the conical inner wall of the gas guide portion 9 as shown in FIG. The angle θ is substantially a right angle, and the temperature gradient between the silicon carbide raw material 4 and the silicon carbide seed crystal 3 can be appropriately set to 10 ° C./cm to 30 ° C./cm. When the distance between the crucible lid portion 1 and the heat insulating material 8 is smaller than 5 mm, as shown in FIG. 3B, the angle θ formed between the isothermal line 10 in the crucible and the conical inner wall of the gas guide portion 9. Is substantially perpendicular, but the temperature gradient between the silicon carbide raw material 4 and the silicon carbide seed crystal 3 is too small. When the distance between the crucible lid 1 and the heat insulating material 8 is greater than 40 mm, the isotherm 10 in the crucible is formed by the conical inner wall of the gas guide 9 as shown in FIG. Although the angle θ is substantially a right angle, the temperature gradient between the silicon carbide raw material 4 and the silicon carbide seed crystal 3 is too large.

更に、炭化珪素原料4の温度を2200℃から2300℃、炭化珪素炭化珪素種結晶3の温度を2100℃から2200℃、成長時の圧力を0.665kPaから3.99kPaとすることで、成長速度も好適な200μm/hourから600μm/hourとすることができる。結晶成長速度が200μm/hourより小さいと、成長した結晶からウェハを作成した場合にコストが高くなり、産業的に実用性がない。また成長速度が600μm/hourより大きいと、成長した結晶内に歪や結晶欠陥が発生したり、また異種のポリタイプが混入し、結晶品質が悪くなる。結晶成長速度が200μm/hourから600μm/hourの範囲内であれば、歪や結晶欠陥の発生、および異種ポリタイプの混入がなく、炭化珪素単結晶を成長させることができる。   Furthermore, the growth rate is adjusted by setting the temperature of the silicon carbide raw material 4 to 2200 ° C. to 2300 ° C., the temperature of the silicon carbide silicon carbide seed crystal 3 to 2100 ° C. to 2200 ° C., and the pressure during growth to 0.665 kPa to 3.99 kPa. Also, the preferable range is 200 μm / hour to 600 μm / hour. If the crystal growth rate is smaller than 200 μm / hour, the cost becomes high when a wafer is produced from the grown crystal, and this is not industrially practical. On the other hand, if the growth rate is higher than 600 μm / hour, strain and crystal defects are generated in the grown crystal, or different polytypes are mixed, resulting in poor crystal quality. If the crystal growth rate is in the range of 200 μm / hour to 600 μm / hour, a silicon carbide single crystal can be grown without occurrence of distortion, crystal defects, and mixing of different polytypes.

本実施例では、具体的には、坩堝蓋部1側の断熱材8として日本カーボン(株)製のFGL−203SH(真空時、2000℃における熱伝導率は約0.55W/m・K)を用い、厚さは25mm、坩堝蓋部1との隙間を10mmとした。   In this embodiment, specifically, FGL-203SH manufactured by Nippon Carbon Co., Ltd. as the heat insulating material 8 on the crucible lid 1 side (thermal conductivity at 2000 ° C. in vacuum is about 0.55 W / m · K). The thickness was 25 mm, and the gap with the crucible lid 1 was 10 mm.

この断熱材8で覆った坩堝2及び坩堝蓋部1を、石英製の反応管11内に配置した。この反応管11は、二重管構造になっており、結晶成長中には、冷却水12を流して冷却している。また反応管11の上部にガス導入口13が、下部にはガス排気口14が設けられている。   The crucible 2 and the crucible lid portion 1 covered with the heat insulating material 8 were placed in a reaction tube 11 made of quartz. The reaction tube 11 has a double tube structure, and is cooled by flowing cooling water 12 during crystal growth. A gas inlet 13 is provided at the top of the reaction tube 11 and a gas outlet 14 is provided at the bottom.

その後、反応管11内部を不活性ガスで置換するが、不活性ガスは、コスト、純度などの面から、アルゴン(Ar)が適している。この不活性ガス置換は、まずガス排気口14から反応管11内を高真空排気し、その後、ガス導入口13から不活性ガスを常圧まで充填した。   Thereafter, the inside of the reaction tube 11 is replaced with an inert gas, and argon (Ar) is suitable as the inert gas in terms of cost, purity, and the like. In this inert gas replacement, first, the inside of the reaction tube 11 was evacuated to a high vacuum from the gas exhaust port 14 and then filled with an inert gas from the gas inlet 13 to normal pressure.

その後、反応管11の周囲に螺旋状に巻かれたコイル7に高周波電流を流すことにより、坩堝2および坩堝蓋部1を高周波加熱し昇温した。   Thereafter, the crucible 2 and the crucible lid portion 1 were heated at a high frequency by flowing a high-frequency current through the coil 7 spirally wound around the reaction tube 11 to raise the temperature.

通常、このコイル7と前述の坩堝2との相対位置は、炭化珪素種結晶3と炭化珪素原料4の温度勾配を決定するものであり、昇華法の場合、炭化珪素原料4の温度を炭化珪素種結晶3より高くする必要がある。更に、この温度勾配は、単結晶の結晶成長速度に大きく影響し、温度勾配が大きいほど結晶成長速度は大きくなる。そのため、坩堝2に対してコイル7の位置を下げて、温度勾配を大きくする必要がある。しかし、既に述べたように、坩堝2に対してコイル7の位置を下げると、ガスガイド部9に多結晶が付着しやすく、成長する単結晶と、この多結晶が接触することで、単結晶の結晶品質を著しく悪化させる。しかし、本実施例では、前述のように、坩堝蓋部1と断熱材8との間に所定の距離を設けて、炭化珪素原料4と炭化珪素種結晶3の温度勾配を決定している。従って、坩堝2とコイル7の相対位置で、炭化珪素種結晶3と炭化珪素原料4の温度勾配を完全に制御する必要がないため、坩堝2とコイル7の相対位置は、坩堝内の等温線10とガスガイド部9の円錐状内壁との成す角度θが略直角となり、ガスガイド部9に多結晶が付着しないように、坩堝内温度分布のシミュレーションおよび事前実験により決定している。   Usually, the relative position of this coil 7 and the aforementioned crucible 2 determines the temperature gradient between the silicon carbide seed crystal 3 and the silicon carbide raw material 4. In the case of the sublimation method, the temperature of the silicon carbide raw material 4 is changed to silicon carbide. It is necessary to make it higher than the seed crystal 3. Furthermore, this temperature gradient greatly affects the crystal growth rate of the single crystal, and the crystal growth rate increases as the temperature gradient increases. Therefore, it is necessary to increase the temperature gradient by lowering the position of the coil 7 with respect to the crucible 2. However, as already described, when the position of the coil 7 is lowered with respect to the crucible 2, the polycrystal tends to adhere to the gas guide portion 9, and the growing single crystal and the polycrystal come into contact with each other. This significantly deteriorates the crystal quality. However, in this embodiment, as described above, a predetermined distance is provided between the crucible lid 1 and the heat insulating material 8 to determine the temperature gradient of the silicon carbide raw material 4 and the silicon carbide seed crystal 3. Accordingly, since it is not necessary to completely control the temperature gradient between the silicon carbide seed crystal 3 and the silicon carbide raw material 4 at the relative position between the crucible 2 and the coil 7, the relative position between the crucible 2 and the coil 7 is the isotherm in the crucible. 10 and the conical inner wall of the gas guide portion 9 are substantially perpendicular, and are determined by simulation of temperature distribution in the crucible and preliminary experiments so that polycrystals do not adhere to the gas guide portion 9.

加熱時は、反応管11上下部に設けられている石英製の温度測定用窓15、及び断熱材8の上下部に設けられた温度測定用の穴を通して、放射温度計16で、坩堝2下部、及び坩堝蓋部1上部の温度を測定している。本実施例では、このうち坩堝蓋部1上部の温度を高周波電源(図示せず)にフィードバックし、コイル7に流す高周波電流を制御して温度制御を行っている。その時の坩堝2の下部温度は、前述の坩堝蓋部1と断熱材8との間の距離により決まる。本実施例では、坩堝2下部温度(炭化珪素原料4温度)を2250℃、坩堝蓋部1上部温度(炭化珪素炭化珪素種結晶3温度)を2150℃とした。   At the time of heating, the radiation thermometer 16 and the lower part of the crucible 2 are passed through the quartz temperature measurement windows 15 provided at the upper and lower parts of the reaction tube 11 and the temperature measurement holes provided at the upper and lower parts of the heat insulating material 8. , And the temperature of the upper part of the crucible lid 1 is measured. In the present embodiment, the temperature control is performed by feeding back the temperature of the upper part of the crucible lid 1 to a high frequency power source (not shown) and controlling the high frequency current flowing through the coil 7. The lower temperature of the crucible 2 at that time is determined by the distance between the crucible lid 1 and the heat insulating material 8 described above. In this example, the crucible 2 lower temperature (silicon carbide raw material 4 temperature) was 2250 ° C., and the crucible lid 1 upper temperature (silicon carbide silicon carbide seed crystal 3 temperature) was 2150 ° C.

昇温時には、反応管11内部は、数10kPa程度の圧力にしておく必要がある。これは、低温時(所望の結晶成長温度以下)における炭化珪素原料4の昇華を防ぎ、結晶成長を開始させないようにするためである。   When raising the temperature, the inside of the reaction tube 11 needs to be kept at a pressure of about several tens of kPa. This is to prevent sublimation of the silicon carbide raw material 4 at low temperatures (below the desired crystal growth temperature) and prevent crystal growth from starting.

このようにして、所望の温度まで昇温した後、徐々に圧力を下げて結晶成長を開始させる。本実施例では、反応管11内部の圧力を1.33kPaにし、40時間保持して結晶成長を行った。   Thus, after raising the temperature to a desired temperature, the pressure is gradually reduced to start crystal growth. In this example, the pressure inside the reaction tube 11 was 1.33 kPa, and the crystal growth was carried out by holding for 40 hours.

結晶成長終了時は、成長開始時とは逆に、反応管11内部の圧力を80kPaまで1時間かけて昇圧して、炭化珪素原料4の昇華を止め、その後、常温までゆっくりと冷却した。   At the end of crystal growth, contrary to the start of growth, the pressure inside the reaction tube 11 was increased to 80 kPa over 1 hour to stop the sublimation of the silicon carbide raw material 4, and then slowly cooled to room temperature.

上記のようにして成長を行った結果、ガスガイド部には、全く多結晶が付着しておらず、単結晶のみが、ほぼガスガイド部9の円錐形状に沿って成長していた。また単結晶の結晶成長速度は、約400μm/hourと速い結晶成長速度であった。得られた単結晶を成長方向に垂直にスライスし、表裏両面を鏡面研磨した後、透過偏光顕微鏡で観察した。その結果、ガスガイド部9に多結晶が付着することなく、単結晶のみが独立して成長していたため、単結晶に歪は観察されなかった。また、500℃の溶融KOHに5分間浸漬し、その後、顕微鏡でマイクロパイプ密度およびエッチピット密度を測定した。その結果、種結晶上では、両者とも種結晶とほぼ同等の値を示したが、口径拡大部では、マイクロパイプは全く無く、またエッチピットに関しても数個程度しか観察されなかった。   As a result of the growth as described above, no polycrystal was attached to the gas guide part, and only a single crystal was grown substantially along the conical shape of the gas guide part 9. The crystal growth rate of the single crystal was a high crystal growth rate of about 400 μm / hour. The obtained single crystal was sliced perpendicular to the growth direction, both front and back surfaces were mirror-polished, and then observed with a transmission polarization microscope. As a result, no single crystal grew independently without any polycrystals adhering to the gas guide portion 9, and no strain was observed in the single crystal. Further, it was immersed in molten KOH at 500 ° C. for 5 minutes, and then the micropipe density and the etch pit density were measured with a microscope. As a result, on the seed crystal, both values were almost the same as those of the seed crystal, but there were no micropipes in the enlarged diameter portion, and only a few etch pits were observed.

以上のように、坩堝蓋部と、この坩堝蓋部上に配置される断熱材との間に所定の距離を設けて炭化珪素原料と炭化珪素種結晶間の温度勾配を制御する成長装置が、速い結晶成長速度で単結晶を成長させ、且つ、ガスガイド部への多結晶付着を抑制に有効であり、その結果、速い結晶成長速度で、高品質な炭化珪素単結晶を得られることが確認できた。   As described above, the growth apparatus for controlling the temperature gradient between the silicon carbide raw material and the silicon carbide seed crystal by providing a predetermined distance between the crucible lid and the heat insulating material disposed on the crucible lid, It is effective to grow a single crystal at a high crystal growth rate and suppress polycrystal adhesion to the gas guide, and as a result, it is confirmed that a high-quality silicon carbide single crystal can be obtained at a high crystal growth rate. did it.

図4は、実施例2で用いた成長装置の概略図である。坩堝2内に炭化珪素原料4を収容し、坩堝蓋部1の種結晶支持部に固定した炭化珪素種結晶3を、炭化珪素原料4に対向するように配置した。炭化珪素種結晶3としては、マイクロパイプ密度が約30個/cm2、エッチピット密度が約3×104個/cm2の4H型の炭化珪素単結晶を用い、結晶成長面は、(000−1)面とした。また、種結晶支持部の種結晶貼付け面は、直径20mmの円形であり、炭化珪素種結晶3も同じく直径20mmの円形とした。 FIG. 4 is a schematic view of a growth apparatus used in Example 2. Silicon carbide raw material 4 was housed in crucible 2, and silicon carbide seed crystal 3 fixed to the seed crystal support portion of crucible lid portion 1 was arranged to face silicon carbide raw material 4. As the silicon carbide seed crystal 3, a 4H type silicon carbide single crystal having a micropipe density of about 30 pieces / cm 2 and an etch pit density of about 3 × 10 4 pieces / cm 2 is used. -1) A surface. Moreover, the seed crystal sticking surface of the seed crystal support part was a circle having a diameter of 20 mm, and the silicon carbide seed crystal 3 was also a circle having a diameter of 20 mm.

炭化珪素原料4と炭化珪素種結晶3の間には、炭化珪素原料4から昇華したガスを種結晶3に効率良く導くために、炭化珪素原料4側が炭化珪素種結晶3側より大径の円錐状のガスガイド部9を配置している。この際、炭化珪素種結晶3とガスガイド部9の炭化珪素種3結晶側端との間に距離を設けている。この距離が0.5mmより小さいと、炭化珪素種結晶3外周部から成長する炭化珪素単結晶5、あるいは坩堝蓋体1の種結晶支持部側壁面から成長する炭化珪素多結晶6により、この隙間が塞がれてしまう場合がある。   Between the silicon carbide raw material 4 and the silicon carbide seed crystal 3, in order to efficiently introduce the gas sublimated from the silicon carbide raw material 4 to the seed crystal 3, the silicon carbide raw material 4 side has a larger diameter cone than the silicon carbide seed crystal 3 side. A gas guide portion 9 is arranged. At this time, a distance is provided between the silicon carbide seed crystal 3 and the silicon carbide seed 3 crystal side end of the gas guide portion 9. If this distance is less than 0.5 mm, the silicon carbide single crystal 5 growing from the outer peripheral portion of the silicon carbide seed crystal 3 or the silicon carbide polycrystal 6 growing from the side wall surface of the seed crystal support portion of the crucible lid 1 will cause this gap. May be blocked.

また、上記の距離が2mmより大きいと、炭化珪素原料4の昇華ガスのうち、坩堝蓋体1下面へ向かう昇華ガスの割合が多くなり、炭化珪素単結晶5の成長に寄与する昇華ガスの割合が少なくなる。そのため、炭化珪素単結晶5の成長速度が遅くなってしまう。更には、坩堝蓋体1下面からの炭化珪素多結晶6の伸長速度が大きくなるため、数10時間の結晶成長を行うと、坩堝蓋1下面から伸長する炭化珪素多結晶6が、坩堝蓋体1の種結晶支持部の高さより高くなり、種結晶3から成長する炭化珪素単結晶5と接触して炭化珪素単結晶5に歪を与え、結晶品質を悪化させる。従って、炭化珪素種結晶3とガスガイド部の炭化珪素種3結晶側端との間に距離は、0.5mm以上、2mm以下であることが望ましい。本実施例では、具体的には、炭化珪素種結晶3とガスガイド部の炭化珪素種3結晶側端との間の距離を、1.0mmとした。   If the distance is larger than 2 mm, the ratio of the sublimation gas toward the lower surface of the crucible lid 1 in the sublimation gas of the silicon carbide raw material 4 increases, and the ratio of the sublimation gas that contributes to the growth of the silicon carbide single crystal 5. Less. Therefore, the growth rate of silicon carbide single crystal 5 is slow. Furthermore, since the growth rate of the silicon carbide polycrystal 6 from the lower surface of the crucible lid 1 is increased, the silicon carbide polycrystal 6 extending from the lower surface of the crucible lid 1 is converted into the crucible lid body when the crystal growth is performed for several tens of hours. It becomes higher than the height of the seed crystal support portion of 1 and comes into contact with the silicon carbide single crystal 5 grown from the seed crystal 3 to give strain to the silicon carbide single crystal 5 to deteriorate the crystal quality. Therefore, the distance between the silicon carbide seed crystal 3 and the silicon carbide seed 3 crystal side end of the gas guide part is desirably 0.5 mm or more and 2 mm or less. In this example, specifically, the distance between the silicon carbide seed crystal 3 and the silicon carbide seed 3 crystal side end of the gas guide portion was set to 1.0 mm.

昇華再結晶法を用いた炭化珪素単結晶成長では、炭化珪素原料を昇華させるために2000℃以上の高温が必要である。2000℃以上の高温では、温度の4乗に比例して輻射熱が失われるため、坩堝2および坩堝蓋部1を断熱材8で覆う必要がある。この際、図5および6に示したように、断熱材8の2000℃における熱伝導率が0.5から1.5W/m・Kであり、坩堝蓋部1上部の断熱材8の厚さが5mm以上、10mm以下の範囲であれば、坩堝内の等温線10を最適な形状に維持したまま、炭化珪素原料4と炭化珪素種結晶3間が適度な温度勾配になる。即ち、図5および図6に示したように、坩堝内の等温線10が、ガスガイド部9の円錐状内壁との成す角度θが略直角を維持したまま、炭化珪素種結晶3と炭化珪素原料4間の温度勾配を、適度な10℃/cmから30℃/cmとすることができる。坩堝蓋部1上部の断熱材8の厚さが5mmより小さい場合は、図6(a)に示したように、坩堝内の等温線10が、ガスガイド部9の円錐状内壁との成す角度θは略直角であるが、炭化珪素原料4と炭化珪素種結晶3間の温度勾配が大きすぎる。   In silicon carbide single crystal growth using the sublimation recrystallization method, a high temperature of 2000 ° C. or higher is necessary to sublimate the silicon carbide raw material. At a high temperature of 2000 ° C. or higher, the radiant heat is lost in proportion to the fourth power of the temperature. Therefore, it is necessary to cover the crucible 2 and the crucible lid 1 with the heat insulating material 8. At this time, as shown in FIGS. 5 and 6, the thermal conductivity of the heat insulating material 8 at 2000 ° C. is 0.5 to 1.5 W / m · K, and the thickness of the heat insulating material 8 on the upper portion of the crucible lid 1. Is in the range of 5 mm or more and 10 mm or less, the temperature gradient between the silicon carbide raw material 4 and the silicon carbide seed crystal 3 becomes an appropriate temperature gradient while maintaining the isotherm 10 in the crucible in an optimum shape. That is, as shown in FIGS. 5 and 6, the silicon carbide seed crystal 3 and the silicon carbide are maintained while the angle θ formed between the isothermal line 10 in the crucible and the conical inner wall of the gas guide portion 9 is maintained at a substantially right angle. The temperature gradient between the raw materials 4 can be appropriately set at 10 ° C./cm to 30 ° C./cm. When the thickness of the heat insulating material 8 on the upper part of the crucible lid 1 is smaller than 5 mm, the angle formed by the isothermal line 10 in the crucible and the conical inner wall of the gas guide part 9 as shown in FIG. θ is substantially a right angle, but the temperature gradient between the silicon carbide raw material 4 and the silicon carbide seed crystal 3 is too large.

また、坩堝蓋部1上部の断熱材8の厚さが10mmより大きい場合は、図6(c)に示したように、坩堝内の等温線10が、ガスガイド部9の円錐状内壁との成す角度θは略直角であるが、炭化珪素原料4と炭化珪素種結晶3間の温度勾配が小さすぎる。   When the thickness of the heat insulating material 8 at the upper part of the crucible lid 1 is larger than 10 mm, the isotherm 10 in the crucible is connected to the conical inner wall of the gas guide 9 as shown in FIG. The formed angle θ is substantially a right angle, but the temperature gradient between the silicon carbide raw material 4 and the silicon carbide seed crystal 3 is too small.

更に、炭化珪素原料4の温度を2200℃から2300℃、炭化珪素炭化珪素種結晶3の温度を2100℃から2200℃、成長時の圧力を0.665kPaから3.99kPaとすることで、成長速度も好適な200μm/hourから600μm/hourとすることができる。結晶成長速度が200μm/hourより小さいと、成長した結晶からウェハを作成した場合にコストが高くなり、産業的に実用性がない。また成長速度が600μm/hourより大きいと、成長した結晶内に歪や結晶欠陥が発生したり、また異種のポリタイプが混入し、結晶品質が悪くなる。結晶成長速度が200μm/hourから600μm/hourの範囲内であれば、歪や結晶欠陥の発生、および異種ポリタイプの混入がなく、炭化珪素単結晶を成長させることができる。   Furthermore, the growth rate is adjusted by setting the temperature of the silicon carbide raw material 4 to 2200 ° C. to 2300 ° C., the temperature of the silicon carbide silicon carbide seed crystal 3 to 2100 ° C. to 2200 ° C., and the pressure during growth to 0.665 kPa to 3.99 kPa. Also, the preferable range is 200 μm / hour to 600 μm / hour. If the crystal growth rate is smaller than 200 μm / hour, the cost becomes high when a wafer is produced from the grown crystal, and this is not industrially practical. On the other hand, if the growth rate is higher than 600 μm / hour, strain and crystal defects are generated in the grown crystal, or different polytypes are mixed, resulting in poor crystal quality. If the crystal growth rate is in the range of 200 μm / hour to 600 μm / hour, a silicon carbide single crystal can be grown without occurrence of distortion, crystal defects, and mixing of different polytypes.

本実施例では、具体的には、坩堝蓋部1側の断熱材8として日本カーボン(株)製のFGL−203SH(真空時、2000℃における熱伝導率は約0.55W/m・K)を用い、その厚さを10mmとした。   In this embodiment, specifically, FGL-203SH manufactured by Nippon Carbon Co., Ltd. as the heat insulating material 8 on the crucible lid 1 side (thermal conductivity at 2000 ° C. in vacuum is about 0.55 W / m · K). The thickness was 10 mm.

この断熱材8で覆った坩堝2及び坩堝蓋部1を、石英製の反応管11内に配置した。この反応管11は、二重管構造になっており、結晶成長中には、冷却水12を流して冷却している。また反応管11の上部にガス導入口13が、下部にはガス排気口14が設けられている。   The crucible 2 and the crucible lid portion 1 covered with the heat insulating material 8 were placed in a reaction tube 11 made of quartz. The reaction tube 11 has a double tube structure, and is cooled by flowing cooling water 12 during crystal growth. A gas inlet 13 is provided at the top of the reaction tube 11 and a gas outlet 14 is provided at the bottom.

その後、反応管11内部を不活性ガスで置換するが、不活性ガスは、コスト、純度などの面から、アルゴン(Ar)が適している。この不活性ガス置換は、まずガス排気口14から反応管11内を高真空排気し、その後、ガス導入口13から不活性ガスを常圧まで充填した。   Thereafter, the inside of the reaction tube 11 is replaced with an inert gas, and argon (Ar) is suitable as the inert gas in terms of cost, purity, and the like. In this inert gas replacement, first, the inside of the reaction tube 11 was evacuated to a high vacuum from the gas exhaust port 14 and then filled with an inert gas from the gas inlet 13 to normal pressure.

その後、反応管11の周囲に螺旋状に巻かれたコイル7に高周波電流を流すことにより、坩堝2および坩堝蓋部1を高周波加熱し昇温した。このコイル7と坩堝2の相対位置は、実施例1と同様に、坩堝内の等温線10とガスガイド部9の円錐状内壁との成す角度θが略直角となり、ガスガイド部9に多結晶が付着しないように、坩堝内温度分布のシミュレーションおよび事前実験により決定している。   Thereafter, the crucible 2 and the crucible lid portion 1 were heated at a high frequency by flowing a high-frequency current through the coil 7 spirally wound around the reaction tube 11 to raise the temperature. As in the first embodiment, the relative position of the coil 7 and the crucible 2 is such that the angle θ formed by the isotherm 10 in the crucible and the conical inner wall of the gas guide portion 9 is substantially perpendicular, and the polycrystalline structure is formed in the gas guide portion 9. In order to prevent adhesion, the temperature distribution in the crucible is determined by simulation and preliminary experiments.

加熱時は、反応管11上下部に設けられている石英製の温度測定用窓15、及び断熱材8の上下部に設けられた温度測定用の穴を通して、放射温度計16で、坩堝2下部、及び坩堝蓋部1上部の温度を測定している。本実施例では、このうち坩堝蓋部1上部の温度を高周波電源(図示せず)にフィードバックをかけ、コイル7に流す高周波電流を制御して温度制御を行っている。その時の坩堝2下部温度は、前述の坩堝蓋部1側の断熱材の厚さにより決まる。本実施例では、坩堝2下部温度(炭化珪素原料4温度)を2250℃、坩堝蓋部1上部温度(炭化珪素炭化珪素種結晶3温度)を2150℃とした。   At the time of heating, the radiation thermometer 16 and the lower part of the crucible 2 are passed through the quartz temperature measurement windows 15 provided at the upper and lower parts of the reaction tube 11 and the temperature measurement holes provided at the upper and lower parts of the heat insulating material 8. , And the temperature of the upper part of the crucible lid 1 is measured. In this embodiment, the temperature of the crucible lid portion 1 is fed back to a high frequency power source (not shown) and the high frequency current flowing through the coil 7 is controlled to control the temperature. The lower temperature of the crucible 2 at that time is determined by the thickness of the heat insulating material on the aforementioned crucible lid 1 side. In this example, the crucible 2 lower temperature (silicon carbide raw material 4 temperature) was 2250 ° C., and the crucible lid 1 upper temperature (silicon carbide silicon carbide seed crystal 3 temperature) was 2150 ° C.

それ以後は、実施例1と全く同様にして、結晶成長を行った。   Thereafter, crystal growth was performed in the same manner as in Example 1.

上記のようにして成長を行った結果、ガスガイド部9には、全く多結晶が付着しておらず、単結晶のみが、ほぼテーパー形状に沿って成長していた。また単結晶の結晶成長速度は、実施例1とほぼ同じく約400μm/hourと速い結晶成長速度であった。得られた単結晶を成長方向に垂直にスライスし、表裏両面を鏡面研磨した後、透過偏光顕微鏡で観察した。その結果、ガスガイド部に多結晶が付着することなく、単結晶のみが独立して成長していたため、単結晶には歪は観察されなかった。また、500℃の溶融KOHに5分間浸漬し、その後、顕微鏡でマイクロパイプ密度およびエッチピット密度を測定した。その結果、種結晶上では、両者とも種結晶とほぼ同等の値を示したが、口径拡大部では、マイクロパイプは全く無く、またエッチピットに関しても数個程度しか観察されなかった。   As a result of the growth as described above, no polycrystal was adhered to the gas guide portion 9, and only a single crystal was grown substantially along a tapered shape. The crystal growth rate of the single crystal was as fast as about 400 μm / hour as in Example 1. The obtained single crystal was sliced perpendicular to the growth direction, both front and back surfaces were mirror-polished, and then observed with a transmission polarization microscope. As a result, no single crystal was grown independently without any polycrystals adhering to the gas guide portion, so no strain was observed in the single crystal. Further, it was immersed in molten KOH at 500 ° C. for 5 minutes, and then the micropipe density and the etch pit density were measured with a microscope. As a result, on the seed crystal, both values were almost the same as those of the seed crystal, but there were no micropipes in the enlarged diameter portion, and only a few etch pits were observed.

以上のように、坩堝蓋部上の断熱材の厚さにより、炭化珪素原料と炭化珪素種結晶間の温度勾配を制御する成長装置が、速い結晶成長速度で単結晶を成長させ、且つ、ガスガイド部への多結晶付着を抑制に有効であり、その結果、速い結晶成長速度で、高品質な炭化珪素単結晶を得られることが確認できた。   As described above, the growth apparatus that controls the temperature gradient between the silicon carbide raw material and the silicon carbide seed crystal according to the thickness of the heat insulating material on the crucible lid portion grows a single crystal at a high crystal growth rate, and gas It was effective in suppressing polycrystal adhesion to the guide part, and as a result, it was confirmed that a high-quality silicon carbide single crystal could be obtained at a high crystal growth rate.

本発明にかかる単結晶の成長装置及び成長方法は、成長速度が速く、且つ高品質な単結晶を得ることができるため、昇華法により成長できる単結晶である硫化カドミウム(CdS)、セレン化カドミウム(CdSe)、硫化亜鉛(ZnS)、窒化アルミニウム(AlN)、窒化ホウ素(BN)などにも適用できる。   The apparatus and method for growing a single crystal according to the present invention has a high growth rate and can obtain a high-quality single crystal. Therefore, cadmium sulfide (CdS) and cadmium selenide, which are single crystals that can be grown by a sublimation method. It can also be applied to (CdSe), zinc sulfide (ZnS), aluminum nitride (AlN), boron nitride (BN), and the like.

本発明の実施例1における単結晶成長装置の概略断面図Schematic sectional view of a single crystal growth apparatus in Example 1 of the present invention 本発明の実施例1における単結晶成長装置の坩堝蓋部と断熱材の距離による原料(炭化珪素粉末)と種結晶間の温度勾配、およびガスガイド部と等温線の成す角θの関係を説明する図Explaining the relationship between the temperature gradient between the raw material (silicon carbide powder) and the seed crystal according to the distance between the crucible lid portion and the heat insulating material of the single crystal growth apparatus in Example 1 of the present invention, and the angle θ formed between the gas guide portion and the isotherm. Figure to 本発明の実施例1における単結晶成長装置の坩堝内の等温線形状を示す図The figure which shows the isotherm shape in the crucible of the single-crystal growth apparatus in Example 1 of this invention. 本発明の実施例2における単結晶成長装置の概略断面図Schematic cross-sectional view of a single crystal growth apparatus in Example 2 of the present invention 本発明の実施例2における単結晶成長装置の坩堝蓋部上の断熱材の厚さによる原料(炭化珪素粉末)と種結晶間の温度勾配、およびガスガイド部と等温線の成す角θの関係を説明する図Relationship between temperature gradient between raw material (silicon carbide powder) and seed crystal due to thickness of heat insulating material on crucible lid portion of single crystal growth apparatus in embodiment 2 of present invention, and angle θ formed by gas guide portion and isotherm Figure explaining 本発明の実施例2における単結晶成長装置の坩堝内の等温線形状を示す図The figure which shows the isotherm shape in the crucible of the single-crystal growth apparatus in Example 2 of this invention. 単結晶成長装置の坩堝に対するコイル位置による原料(炭化珪素粉末)と種結晶間の温度勾配、およびガスガイド部と等温線の成す角θの関係を説明する図The figure explaining the relationship between the temperature (theta) between the raw material (silicon carbide powder) and seed crystal by the coil position with respect to the crucible of a single crystal growth apparatus, and the angle (theta) which an isothermal line forms with a gas guide part. 単結晶成長装置の坩堝に対するコイル位置による坩堝内の等温線形状を示す図The figure which shows the isothermal shape in a crucible by the coil position with respect to the crucible of a single crystal growth apparatus 従来の単結晶成長装置の概略断面図Schematic cross section of conventional single crystal growth equipment 従来の単結晶成長装置におけるガスガイド部と等温線の成す角θによる結晶成長の様子を説明するための図The figure for demonstrating the mode of the crystal growth by angle (theta) which the gas guide part and the isothermal line in the conventional single crystal growth apparatus form

符号の説明Explanation of symbols

1 坩堝蓋部
2 坩堝
3 炭化珪素種結晶
4 炭化珪素原料
5 炭化珪素単結晶
6 炭化珪素多結晶
7 コイル
8 断熱材
9 ガスガイド部
10 等温線
11 反応管
12 冷却水
13 ガス導入口
14 ガス排気口
15 温度測定用窓
16 放射温度計

DESCRIPTION OF SYMBOLS 1 Crucible lid part 2 Crucible 3 Silicon carbide seed crystal 4 Silicon carbide raw material 5 Silicon carbide single crystal 6 Silicon carbide polycrystal 7 Coil 8 Heat insulating material 9 Gas guide part 10 Isotherm 11 Reaction tube 12 Cooling water 13 Gas inlet 14 Gas exhaust Mouth 15 Temperature measurement window 16 Radiation thermometer

Claims (7)

単結晶を成長させる原料を坩堝内に収容し、当該単結晶の原料を加熱昇華させ、単結晶からなる種結晶上に供給し、この種結晶上に単結晶を成長させる単結晶成長装置において、
前記坩堝の前記原料に対向する位置の前記坩堝蓋部に前記種結晶を支持する円柱状の種結晶支持部と、
当該種結晶に対し所定の距離を離して開口部を有し原料側が種結晶側より大径の円錐状のガスガイド部と、
前記坩堝体全体を覆う所定の厚さを有する断熱材と、
前記種結晶と原料を加熱するために前記坩堝体全体の周囲に配置される断熱材の外側に配置される高周波コイルと、
を備え、
前記坩堝蓋部上に配置される前記断熱材は、前記坩堝蓋部と所定の距離を有して配置されることを特徴とする単結晶成長装置。
In a single crystal growth apparatus in which a raw material for growing a single crystal is contained in a crucible, the raw material of the single crystal is heated and sublimated, supplied onto a seed crystal made of a single crystal, and a single crystal is grown on the seed crystal.
A columnar seed crystal support that supports the seed crystal on the crucible lid at a position facing the raw material of the crucible;
A conical gas guide portion having a predetermined distance from the seed crystal and having an opening having a larger diameter on the raw material side than the seed crystal side;
A heat insulating material having a predetermined thickness covering the entire crucible body;
A high-frequency coil disposed outside a heat insulating material disposed around the entire crucible body to heat the seed crystal and the raw material;
With
The single crystal growth apparatus, wherein the heat insulating material disposed on the crucible lid portion is disposed at a predetermined distance from the crucible lid portion.
前記断熱材は、2000℃における熱伝導率が0.5から1.5W/m・Kであり、且つ、前記坩堝蓋部側の前記断熱材の厚さが、10mmより大きく、50mm以下であり、且つ、前記坩堝蓋部と前記断熱材との間の距離が、5mm以上、40mm以下であることを特徴とする請求項1に記載の単結晶成長装置。 The heat insulating material has a thermal conductivity at 2000 ° C. of 0.5 to 1.5 W / m · K, and the thickness of the heat insulating material on the crucible lid portion side is larger than 10 mm and not larger than 50 mm. And the distance between the said crucible cover part and the said heat insulating material is 5 mm or more and 40 mm or less, The single crystal growth apparatus of Claim 1 characterized by the above-mentioned. 単結晶を成長させる原料を坩堝内に収容し、当該単結晶の原料を加熱昇華させ、単結晶からなる種結晶上に供給し、この種結晶上に単結晶を成長させる単結晶成長装置において、
前記坩堝の前記原料に対向する位置の前記坩堝蓋部に前記種結晶を支持する円柱状の種結晶支持部と、
当該種結晶に対し距離を離して開口部を有し原料側が種結晶側より大径の円錐状のガスガイド部と、
前記坩堝体全体を覆う所定の厚さを有する断熱材と、
前記種結晶と炭化珪素原料を加熱するために前記坩堝体全体の周囲に当該坩堝に配置される断熱材の外側に配置される高周波コイルと、
を備え、
前記坩堝を覆って配置される前記断熱材は、当該坩堝に接して設置され、2000℃における熱伝導率が0.5から1.5W/m・Kであり、且つ、前記坩堝蓋部上部の断熱材の厚さを、他の坩堝部分を覆う断熱材の厚さより薄く設定することを特徴とする単結晶成長装置。
In a single crystal growth apparatus in which a raw material for growing a single crystal is contained in a crucible, the raw material of the single crystal is heated and sublimated, supplied onto a seed crystal made of a single crystal, and a single crystal is grown on the seed crystal.
A columnar seed crystal support that supports the seed crystal on the crucible lid at a position facing the raw material of the crucible;
A conical gas guide portion having an opening apart from the seed crystal and having a larger diameter on the raw material side than the seed crystal side;
A heat insulating material having a predetermined thickness covering the entire crucible body;
A high-frequency coil disposed outside a heat insulating material disposed in the crucible around the entire crucible body to heat the seed crystal and the silicon carbide raw material;
With
The heat insulating material disposed so as to cover the crucible is placed in contact with the crucible, has a thermal conductivity of 0.5 to 1.5 W / m · K at 2000 ° C., and is provided at the upper part of the crucible lid. A single crystal growth apparatus characterized in that a thickness of a heat insulating material is set to be thinner than a thickness of a heat insulating material covering another crucible portion.
前記単結晶の原料の温度を2200℃から2300℃、前記種結晶の温度を2100℃から2200℃の範囲で前記種結晶側の温度を高く設定し、前記原料と前記種結晶間の温度勾配を10℃/cmから30℃/cmの範囲で、成長時の圧力を0.665kPaから3.99kPaに設定することを特徴とする請求項2または請求項3に記載の単結晶成長装置。 The temperature of the seed crystal side is set high in the range of the temperature of the raw material of the single crystal from 2200 ° C. to 2300 ° C., the temperature of the seed crystal from 2100 ° C. to 2200 ° C., and the temperature gradient between the raw material and the seed crystal is set. 4. The single crystal growth apparatus according to claim 2, wherein the growth pressure is set to 0.665 kPa to 3.99 kPa in a range of 10 ° C./cm to 30 ° C./cm. 5. 単結晶を成長させる原料を坩堝内に収容し、当該坩堝周囲の断熱材の外側に高周波コイルを用いて当該原料を加熱昇華させて単結晶からなる種結晶上に供給し、この種結晶上に単結晶を成長させる単結晶成長方法において、
当該種結晶に対し所定の距離を離して開口部を有し原料側が種結晶側より大径の円錐状のガスガイド部を配し、
前記坩堝体の加熱用の高周波コイル位置を加熱時の坩堝内の等温線が前記ガスガイド部の円錐状内壁との成す角が略直角になる位置に配置し、
前記坩堝蓋部上に配置される前記断熱材は、前記坩堝蓋部と所定の距離を有して配置されることを特徴とする単結晶成長方法
A raw material for growing a single crystal is housed in a crucible, and the raw material is heated and sublimated using a high-frequency coil outside a heat insulating material around the crucible and supplied onto a seed crystal made of a single crystal. In a single crystal growth method for growing a single crystal,
Disposed a predetermined distance away from the seed crystal, and provided a conical gas guide portion having a larger diameter than the seed crystal side on the raw material side,
The high-frequency coil position for heating the crucible body is disposed at a position where the angle formed by the isotherm in the crucible during heating and the conical inner wall of the gas guide portion is substantially perpendicular,
The single crystal growth method, wherein the heat insulating material disposed on the crucible lid portion is disposed at a predetermined distance from the crucible lid portion.
単結晶を成長させる原料を坩堝内に収容し、当該坩堝周囲の断熱材の外側に高周波コイルを用いて当該原料を加熱昇華させて単結晶からなる種結晶上に供給し、この種結晶上に単結晶を成長させる単結晶成長方法において、
当該種結晶に対し所定の距離を離して開口部を有し原料側が種結晶側より大径の円錐状のガスガイド部を配し、
前記坩堝体の加熱用の高周波コイル位置を加熱時の坩堝内の等温線が前記ガスガイド部の円錐状内壁との成す角が略直角になる位置に配置し、
且つ、前記坩堝蓋部上部の断熱材の厚さを、他の坩堝部分を覆う断熱材の厚さより薄く設定することを特徴とする単結晶成長方法。
A raw material for growing a single crystal is housed in a crucible, and the raw material is heated and sublimated using a high-frequency coil outside a heat insulating material around the crucible and supplied onto a seed crystal made of a single crystal. In a single crystal growth method for growing a single crystal,
Disposed a predetermined distance away from the seed crystal, and provided a conical gas guide portion having a larger diameter than the seed crystal side on the raw material side,
The high-frequency coil position for heating the crucible body is disposed at a position where the angle formed by the isotherm in the crucible during heating and the conical inner wall of the gas guide portion is substantially perpendicular,
And the thickness of the heat insulating material of the said crucible lid part upper part is set thinner than the thickness of the heat insulating material which covers another crucible part, The single crystal growth method characterized by the above-mentioned.
前記種結晶と前記円錐状のガスガイド部との間の前記所定の距離は、0.5mm以上、2mm以下であることを特徴とする請求項5又は請求項6に記載の単結晶成長方法。
The single crystal growth method according to claim 5 or 6, wherein the predetermined distance between the seed crystal and the conical gas guide portion is 0.5 mm or more and 2 mm or less.
JP2006024371A 2006-02-01 2006-02-01 Single crystal growth device and single crystal growth method Pending JP2007204309A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006024371A JP2007204309A (en) 2006-02-01 2006-02-01 Single crystal growth device and single crystal growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006024371A JP2007204309A (en) 2006-02-01 2006-02-01 Single crystal growth device and single crystal growth method

Publications (1)

Publication Number Publication Date
JP2007204309A true JP2007204309A (en) 2007-08-16

Family

ID=38484098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006024371A Pending JP2007204309A (en) 2006-02-01 2006-02-01 Single crystal growth device and single crystal growth method

Country Status (1)

Country Link
JP (1) JP2007204309A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009274933A (en) * 2008-05-16 2009-11-26 Mitsubishi Electric Corp Single crystal growing apparatus and single crystal production method
JP2011168431A (en) * 2010-02-18 2011-09-01 Mitsubishi Electric Corp Device for producing single crystal
JP2011190157A (en) * 2010-03-16 2011-09-29 Bridgestone Corp Apparatus for producing silicon carbide single crystal
KR101101984B1 (en) * 2008-12-12 2012-01-02 에스케이씨 주식회사 Apparatus for growing a single crystal
JP2012158520A (en) * 2012-05-30 2012-08-23 Mitsubishi Electric Corp Apparatus for growing single crystal
JP2014024703A (en) * 2012-07-26 2014-02-06 Sumitomo Electric Ind Ltd Method of producing silicon carbide single crystal
KR101419469B1 (en) * 2012-12-21 2014-07-16 재단법인 포항산업과학연구원 Device for growing large diameter single crystal
CN104278322A (en) * 2013-07-03 2015-01-14 住友电气工业株式会社 Method of manufacturing silicon carbide single crystal and silicon carbide single crystal substrate
JP2015086115A (en) * 2013-10-31 2015-05-07 株式会社フジクラ Single crystal making apparatus
JP2016011215A (en) * 2014-06-27 2016-01-21 三菱電機株式会社 Manufacturing apparatus and manufacturing method for single crystal
CN106048715A (en) * 2016-07-12 2016-10-26 江苏拜尔特光电设备有限公司 Device and method for controlling radial temperature gradient of silicon carbide monocrystalline growth
WO2017057742A1 (en) * 2015-10-02 2017-04-06 新日鐵住金株式会社 Sic single crystal ingot
CN106929913A (en) * 2015-12-29 2017-07-07 中国科学院上海硅酸盐研究所 A kind of split type growing silicon carbice crystals crucible
CN108085745A (en) * 2017-12-28 2018-05-29 北京华进创威电子有限公司 A kind of aluminum nitride crystal growth is prepared with homo-substrate and expanding growing method
CN109797427A (en) * 2019-03-27 2019-05-24 石河子市鑫磊光电科技有限公司 A kind of KY method Sapphire Crystal Growth suspension type crucible cover and KY method Sapphire Crystal Growth device for adjusting height immediately
CN111411401A (en) * 2020-05-22 2020-07-14 北京北方华创微电子装备有限公司 Silicon carbide crystal growing device
JP2022051688A (en) * 2020-09-22 2022-04-01 セニック・インコーポレイテッド Silicon carbide wafer and production method thereof
US11339497B2 (en) 2020-08-31 2022-05-24 Senic Inc. Silicon carbide ingot manufacturing method and silicon carbide ingot manufactured thereby
CN115558987A (en) * 2022-11-16 2023-01-03 浙江晶越半导体有限公司 Crucible device for growing crystal by sublimation method
WO2023217196A1 (en) * 2022-05-12 2023-11-16 眉山博雅新材料股份有限公司 Crystal growth device
CN117107345A (en) * 2023-09-11 2023-11-24 宁波合盛新材料有限公司 Silicon carbide crystal growth method and growth device thereof
EP4170073A4 (en) * 2021-04-30 2024-04-17 Tankeblue Semiconductor Co. Ltd High quality silicon carbide seed crystal, silicon carbide crystal, silicon carbide substrate, and preparation method therefor

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0230699A (en) * 1988-04-13 1990-02-01 Nippon Steel Corp Growing method of silicon carbide single crystal and device therefor
JPH0532496A (en) * 1991-03-01 1993-02-09 Nippon Steel Corp Preparation of ingot of silicon carbide single crystal having large aperture and silicon carbide single crystal for seed crystal
JPH09221397A (en) * 1996-02-14 1997-08-26 Denso Corp Production of silicon carbide single crystal
JPH09263497A (en) * 1996-03-29 1997-10-07 Denso Corp Production of silicon carbide single crystal
JPH09263498A (en) * 1996-03-29 1997-10-07 Denso Corp Production of silicon carbide single crystal
JPH10324599A (en) * 1997-05-20 1998-12-08 Denso Corp Production of silicon carbide single crystal
WO2000039372A1 (en) * 1998-12-25 2000-07-06 Showa Denko K. K. Method for growing single crystal of silicon carbide
JP2000191399A (en) * 1998-12-25 2000-07-11 Showa Denko Kk Silicon carbide single crystal and its production
JP2002060297A (en) * 2000-08-21 2002-02-26 Agency Of Ind Science & Technol Apparatus and method for growing single crystal
JP2003523918A (en) * 2000-02-15 2003-08-12 ザ フォックス グループ,インコーポレイティド Method and apparatus for growing low defect density silicon carbide and resulting materials
JP2005053739A (en) * 2003-08-04 2005-03-03 Denso Corp Method and apparatus for growing single crystal
JP2005225710A (en) * 2004-02-12 2005-08-25 Denso Corp METHOD FOR MANUFACTURING SiC SINGLE CRYSTAL AND MANUFACTURING APPARATUS FOR SiC SINGLE CRYSTAL

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0230699A (en) * 1988-04-13 1990-02-01 Nippon Steel Corp Growing method of silicon carbide single crystal and device therefor
JPH0532496A (en) * 1991-03-01 1993-02-09 Nippon Steel Corp Preparation of ingot of silicon carbide single crystal having large aperture and silicon carbide single crystal for seed crystal
JPH09221397A (en) * 1996-02-14 1997-08-26 Denso Corp Production of silicon carbide single crystal
JPH09263497A (en) * 1996-03-29 1997-10-07 Denso Corp Production of silicon carbide single crystal
JPH09263498A (en) * 1996-03-29 1997-10-07 Denso Corp Production of silicon carbide single crystal
JPH10324599A (en) * 1997-05-20 1998-12-08 Denso Corp Production of silicon carbide single crystal
WO2000039372A1 (en) * 1998-12-25 2000-07-06 Showa Denko K. K. Method for growing single crystal of silicon carbide
JP2000191399A (en) * 1998-12-25 2000-07-11 Showa Denko Kk Silicon carbide single crystal and its production
JP2003523918A (en) * 2000-02-15 2003-08-12 ザ フォックス グループ,インコーポレイティド Method and apparatus for growing low defect density silicon carbide and resulting materials
JP2002060297A (en) * 2000-08-21 2002-02-26 Agency Of Ind Science & Technol Apparatus and method for growing single crystal
JP2005053739A (en) * 2003-08-04 2005-03-03 Denso Corp Method and apparatus for growing single crystal
JP2005225710A (en) * 2004-02-12 2005-08-25 Denso Corp METHOD FOR MANUFACTURING SiC SINGLE CRYSTAL AND MANUFACTURING APPARATUS FOR SiC SINGLE CRYSTAL

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009274933A (en) * 2008-05-16 2009-11-26 Mitsubishi Electric Corp Single crystal growing apparatus and single crystal production method
KR101101984B1 (en) * 2008-12-12 2012-01-02 에스케이씨 주식회사 Apparatus for growing a single crystal
JP2011168431A (en) * 2010-02-18 2011-09-01 Mitsubishi Electric Corp Device for producing single crystal
JP2011190157A (en) * 2010-03-16 2011-09-29 Bridgestone Corp Apparatus for producing silicon carbide single crystal
JP2012158520A (en) * 2012-05-30 2012-08-23 Mitsubishi Electric Corp Apparatus for growing single crystal
JP2014024703A (en) * 2012-07-26 2014-02-06 Sumitomo Electric Ind Ltd Method of producing silicon carbide single crystal
KR101419469B1 (en) * 2012-12-21 2014-07-16 재단법인 포항산업과학연구원 Device for growing large diameter single crystal
CN104278322A (en) * 2013-07-03 2015-01-14 住友电气工业株式会社 Method of manufacturing silicon carbide single crystal and silicon carbide single crystal substrate
JP2015086115A (en) * 2013-10-31 2015-05-07 株式会社フジクラ Single crystal making apparatus
JP2016011215A (en) * 2014-06-27 2016-01-21 三菱電機株式会社 Manufacturing apparatus and manufacturing method for single crystal
CN108138359A (en) * 2015-10-02 2018-06-08 昭和电工株式会社 Sic single crystal ingot
WO2017057742A1 (en) * 2015-10-02 2017-04-06 新日鐵住金株式会社 Sic single crystal ingot
CN106929913A (en) * 2015-12-29 2017-07-07 中国科学院上海硅酸盐研究所 A kind of split type growing silicon carbice crystals crucible
CN106048715A (en) * 2016-07-12 2016-10-26 江苏拜尔特光电设备有限公司 Device and method for controlling radial temperature gradient of silicon carbide monocrystalline growth
CN108085745A (en) * 2017-12-28 2018-05-29 北京华进创威电子有限公司 A kind of aluminum nitride crystal growth is prepared with homo-substrate and expanding growing method
CN109797427A (en) * 2019-03-27 2019-05-24 石河子市鑫磊光电科技有限公司 A kind of KY method Sapphire Crystal Growth suspension type crucible cover and KY method Sapphire Crystal Growth device for adjusting height immediately
CN111411401A (en) * 2020-05-22 2020-07-14 北京北方华创微电子装备有限公司 Silicon carbide crystal growing device
US11339497B2 (en) 2020-08-31 2022-05-24 Senic Inc. Silicon carbide ingot manufacturing method and silicon carbide ingot manufactured thereby
JP2022051688A (en) * 2020-09-22 2022-04-01 セニック・インコーポレイテッド Silicon carbide wafer and production method thereof
JP7481763B2 (en) 2020-09-22 2024-05-13 セニック・インコーポレイテッド Silicon carbide wafer and manufacturing method thereof
JP7298940B2 (en) 2020-09-22 2023-06-27 セニック・インコーポレイテッド Silicon carbide wafer and manufacturing method thereof
EP4170073A4 (en) * 2021-04-30 2024-04-17 Tankeblue Semiconductor Co. Ltd High quality silicon carbide seed crystal, silicon carbide crystal, silicon carbide substrate, and preparation method therefor
WO2023217196A1 (en) * 2022-05-12 2023-11-16 眉山博雅新材料股份有限公司 Crystal growth device
CN115558987B (en) * 2022-11-16 2023-09-15 浙江晶越半导体有限公司 Crucible device for growing crystals by sublimation method
CN115558987A (en) * 2022-11-16 2023-01-03 浙江晶越半导体有限公司 Crucible device for growing crystal by sublimation method
CN117107345A (en) * 2023-09-11 2023-11-24 宁波合盛新材料有限公司 Silicon carbide crystal growth method and growth device thereof

Similar Documents

Publication Publication Date Title
JP2007204309A (en) Single crystal growth device and single crystal growth method
JP4388538B2 (en) Silicon carbide single crystal manufacturing equipment
US6391109B2 (en) Method of making SiC single crystal and apparatus for making SiC single crystal
JP6606638B2 (en) Method and apparatus for growing Fe-Ga based alloy single crystal
JP5560862B2 (en) Silicon carbide single crystal ingot manufacturing equipment
JP4585359B2 (en) Method for producing silicon carbide single crystal
WO2011101727A1 (en) Method of producing silicon carbide single crystal
WO2008044744A1 (en) Process for producing single crystal of silicon carbide
JP2004099340A (en) Seed crystal for silicon carbide single crystal growth, silicon carbide single crystal ingot and method of manufacturing the same
JP2018140884A (en) Single crystal production apparatus, and single crystal production method
KR101744287B1 (en) Growth device for silicon carbide single crystal
JP2015212207A (en) Method for manufacturing silicon carbide single crystal ingot
JP5143139B2 (en) Single crystal growth equipment
WO2007148486A1 (en) SINGLE-CRYSTAL SiC, PROCESS FOR PRODUCING THE SAME, AND APPARATUS FOR PRODUCING SINGLE-CRYSTAL SiC
JP4238450B2 (en) Method and apparatus for producing silicon carbide single crystal
CN116446046A (en) Device and method for growing silicon carbide crystal by heat exchange physical vapor transport method
JP5614387B2 (en) Silicon carbide single crystal manufacturing method and silicon carbide single crystal ingot
JP2012254892A (en) Manufacturing method and manufacturing device for single crystal
JP4654030B2 (en) SiC wafer and manufacturing method thereof
TWI767309B (en) Manufacturing method for silicon carbide ingot and system for manufacturing silicon carbide ingot
JP5761264B2 (en) Method for manufacturing SiC substrate
JP2004224663A (en) Apparatus for growing single crystal
JP2018140903A (en) Method for manufacturing silicon carbide single crystal ingot
JP2008280206A (en) Single crystal growing apparatus
JP2017154953A (en) Silicon carbide single crystal production apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20080818

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100421

A131 Notification of reasons for refusal

Effective date: 20110920

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120131