JP2004224663A - Apparatus for growing single crystal - Google Patents

Apparatus for growing single crystal Download PDF

Info

Publication number
JP2004224663A
JP2004224663A JP2003016921A JP2003016921A JP2004224663A JP 2004224663 A JP2004224663 A JP 2004224663A JP 2003016921 A JP2003016921 A JP 2003016921A JP 2003016921 A JP2003016921 A JP 2003016921A JP 2004224663 A JP2004224663 A JP 2004224663A
Authority
JP
Japan
Prior art keywords
single crystal
crystal
cone
pedestal
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003016921A
Other languages
Japanese (ja)
Other versions
JP4102876B2 (en
Inventor
Tomohisa Kato
智久 加藤
Shinichi Nishizawa
伸一 西澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2003016921A priority Critical patent/JP4102876B2/en
Publication of JP2004224663A publication Critical patent/JP2004224663A/en
Application granted granted Critical
Publication of JP4102876B2 publication Critical patent/JP4102876B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a highly efficient growth apparatus which can increase a growth amount L and a magnification rate α of the diameter of a crystal, can grow the crystal without deteriorating the crystal quality, is simple in configuration and can reduce a production cost. <P>SOLUTION: The apparatus for growing the single crystal houses the raw material of the single crystal to be grown into a vessel, projects a portion of the inner wall surface of the vessel facing the raw material toward the raw material side as a pedestal to support a seed crystal and grows the single crystal on the seed crystal by heating and sublimating the raw material. The pedestal is provided with a conical guide which is connected with a small-diameter part thereof to the pedestal and is formed into a conical shape provided with a large-diameter part toward the inner wall surface of the vessel. A clearance is formed between the large-diameter part of the conical guide and the inner wall surface of the vessel. In the apparatus for growing the single crystal, the clearance between the large-diameter part of the conical guide and the inner wall of a crucible is 0.1 to 5 mm and the length in the height direction of the clearance is 0.1 to 20 mm. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、炭化珪素等の単結晶を成長させるための装置に関するものである。
【0002】
【従来の技術】
炭化珪素単結晶(SiC)は、熱的・化学的特性に優れ、禁制帯幅がSi半導体などに比べて大きいなど、電気的特性も優れていることから、高出力、高温、高周波デバイス用半導体材料として注目されている。六方晶SiCウェハ製造を目的とした大型のバルク結晶成長は、原料を加熱昇華させて種結晶上に成長させる昇華再結晶法(改良レリー法:J. Cryst. Growth 43 (1978) 209に記載)によって行われるのが一般的である。
図5は昇華再結晶法における近年最も一般的な成長装置の一例を示すものである(以下「従来技術1」という。)。蓋体2にはSiCの種結晶3を載置固着してあり、SiC原料4を加熱昇華させると、その昇華ガスが対向する種結晶3上で再結晶し、SiC単結晶5が成長する。ところで、半導体装置作成用のSiC単結晶基板としては、現在、直径2インチ程度のものが市販されているが、量産性の向上のために、より大口径のSiC単結晶基板が必要とされている。
【0003】
一方、図6に示すように、蓋体から突出させた台座を形成し、その台座に種結晶を載置固着させる成長装置が提案されている(例えば、特許文献1、2参照。)。この装置では、蓋体2の下面中央に形成させた台座7に種結晶3を載置固着させることによって、種結晶3上に成長する単結晶5と、台座7の周辺に析出する多結晶6が接触するタイミングを遅らせ、成長結晶の口径拡大率αを高めている(以下「従来技術2」という。)。
【0004】
【特許文献1】
特開平1−305898号公報
【特許文献2】
特開平10−36195号公報
【特許文献3】
特開2002−60297号公報
【0005】
【発明が解決しようとする課題】
しかしながら、従来技術1においては、種結晶3が蓋体2と直接接合されるため、種結晶3の周辺の蓋体2表面に析出する多結晶6と、種結晶3上に成長する単結晶5が接触する。このため成長結晶の口径拡大が阻害される問題があった。
また、従来技術2においては、単結晶5と多結晶6が接触するタイミングを遅らせることが可能であるものの、成長が進むと図6に示すように最終的には単結晶と多結晶は接触し、それ以上の成長結晶の口径拡大が阻まれるという不具合があった。
一方、単結晶に多結晶が接触するとその界面から単結晶に向かって歪みが導入され、またマクロ欠陥(Physica B 185 (1993) 211 に掲載)と呼ばれる欠陥も発生することは周知のことである。これらの現象は成長結晶の結晶性を著しく低下させ、半導体グレードの結晶品質を達成できなくなる一原因とされている。
【0006】
これらの問題に対し、本発明者等は、先に特願2000−249634号(特許文献3参照)において、単結晶を分離して成長することにより結晶の品質向上および口径拡大の促進が実現できる成長装置を提案した(以下「従来技術3」という。)。この成長装置では図7に示すようにガイド部材8により多結晶6と分離しながら種結晶3上に単結晶5を拡大成長させる。SiC原料4からの昇華ガスの流れをガイド部材8により導くことによって、単結晶の成長を優勢に起こし、多結晶6の析出を効果的に遅らせることによって、分離状態を長く続けて成長することが可能なことが特徴である。この成長装置により成長量L=12cm、口径拡大率α=30°を達成している。
本発明ではさらに成長量Lおよび結晶の口径拡大率αを上げ、かつ結晶品質を劣化させずに成長可能な、構成が簡単で制作コストが低減できる高効率な成長装置を得ることを目的とする。
【0007】
【課題を解決するための手段】
上記目的を達成するため、本発明の単結晶成長装置は、容器内に成長単結晶の原料を収容し、該原料に対向する容器内壁面の一分を上記原料側に突出させて種結晶を支持する台座とし、上記原料を加熱昇華させて上記種結晶上に単結晶を成長させる装置において、上記台座にコーン状ガイドの小径部を接続するとともに大径部を容器内壁面に向かって円錐形をしたコーン状ガイドを設け、該コーン状ガイドの大径部と上記容器内壁面との間に隙間を形成することを特徴とする。
また、本発明の単結晶成長装置は、コーン状ガイドの大径部と坩堝の内壁との間の隙間を0.1〜5mmとするとともにその隙間の高さ方向長さを0.1〜20mmとすることを特徴とする。
【0008】
【発明の実施の形態】
以下、本発明による実施の形態を図面に基づき説明する。
図1は本発明の方法に用いる結晶成長装置であり、改良型レリー法によって種結晶上に昇華再結晶し単結晶炭化珪素(SiC)を成長させる装置の一例である。
装置は主に、容器を構成する坩堝1及び蓋体2、蓋体2から下方に向かって突出する台座7及びコーン状ガイド9から構成されている。坩堝1は主に円柱および円筒状の黒鉛から構成され、同じく黒鉛製の蓋体2によって坩堝上部を塞いだ準密閉空間を形成する。炭化珪素(SiC)原料4は坩堝1内下部に装填され、種結晶3は蓋体2から十分に突出させた台座7の下端面に載置固着され、炭化珪素原料4に対向した位置関係とする。台座7の直径は坩堝1の内径の略1/2〜1/3程度とする。
【0009】
コーン状ガイド9は、その小径部が台座7と一体となった円錐状の構造となっており、その大径部を容器内壁面に向かって設けられ、該コーン状ガイド9の大径部と坩堝1の内壁面10とは隙間dの距離で接触していない。隙間dは高さ方向長さhにわたって坩堝内壁面とコーン状ガイド9の大径部によってその距離を保つ。隙間d及びその高さ方向長さhは、蓋体2の台座周辺の空間11に流れ込む原料ガスの量を制御するためのものである。
【0010】
図2に隙間d及び長さhと空間11に析出する多結晶の関係を示している。図2から明らかなように、隙間dを狭く、長さhを長くすることにより、空間11に流れ込むガス量が少なくなり、台座3周辺の空間11へ析出する多結晶6の析出割合を減らすことができるため、コーン状ガイド9内に析出する単結晶5だけを一層効率良く成長させることができる。
【0011】
一方、単結晶5と多結晶6の析出割合の変化は、容器内の空間構造に変化を与えることになり、坩堝1、蓋体2など容器内すべての温度分布が変化する。図3は、単結晶の表面形状と隙間dが及び長さhの関係を説明するもので、成長する単結晶5の表面形状が凸型から平坦まで大きく変化する。すなわち、隙間dを狭く、長さhを長くすると単結晶の表面形状は凸型になり、逆に隙間dを広く、長さhを短くすると単結晶の表面形状は平坦になる。この表面形状の変化は結晶性に大きく影響し、一般的には平坦な場合に結晶中央部に欠陥が増殖し、凸型の場合は単結晶の中心から外側に向かって大きな歪みが発生する。従って、台座3周辺の空間11へ析出する多結晶6の析出割合を減らし、かつ、適切な表面形状に形成するには、隙間d及び隙間の高さ方向長さhをどの範囲に設定するかが重要になる。
【0012】
図2から、多結晶6の析出割合を減らすためには隙間dは狭く、その長さhを長くすることが望まれる。また、図3から、単結晶の表面形状は、隙間dが5mm、長さhが0.1mm付近において平坦化が著しくなり、逆に、隙間dが0.1mm、長さhが20mm付近において凸型化が著しくなることが分かる。これらのことから、多結晶6の析出割合を減らし、かつ、単結晶の表面形状を適切なものにするためには、隙間dを0.1〜5mmの範囲とするとともにその長さhを0.1〜20mmの範囲に設定することが望ましい。
【0013】
また、コーン状ガイド9は台座7の表面に対し角度θで広がった形状をしている。図4に示すように、コーン状ガイド9の広がりの角度θは、単結晶5の拡大率α、表面形状及びガイド内壁への多結晶付着量に影響を及ぼすものである。角度θを大きくすることにより、成長結晶の拡大率を上げ、1回の成長で大口径の結晶を得ることは可能となるが、急激な口径の拡大は結晶に歪みを与える原因となる。
図4は、コーン状ガイド9の広がりの角度θと単結晶の拡大率、表面形状及びコーン状ガイド内壁への多結晶付着との関係を説明する図である。
図4によると、角度θが60゜以上の場合、コーン状ガイド9内壁へ多結晶6が付着し、単結晶5の拡大が阻害されることもあるので、コーン状ガイド9の角度θは、θ≦60゜が望ましい。
また、角度θによる単結晶5の表面形状の変化は、前述の隙間d及び隙間の高さ方向長さh以上の大きな影響があり、結晶性の影響を考慮すると、20゜≦θ≦50゜が適切である。
さらに、結晶に歪みを与えず、すなわち結晶性を損なわず、且つ結晶拡大率の効率化の面からの適切な拡大率は30゜≦θ≦60゜である。
したがって、コーン状ガイド9の広がりの角度θは、得られる単結晶の使用目的に応じて適宜設定されるものであるが、上記のことを総合して考慮すると、コーン状ガイド9の角度θは、30゜≦θ≦50゜が最適と言える。
【0014】
炭化珪素原料4には通常、アチソン法もしくは化学合成によって得られたSiC粉末を用いる。種結晶3にはアチソン法もしくはレリー法によって得られたSiC単結晶、または、アチソン結晶やレリー結晶から昇華法で成長させたSiC単結晶が使用される。種結晶3は厚さ0.1〜30mmとする。
【0015】
結晶の成長は、高純度Arガス雰囲気内で高周波炉や抵抗加熱炉、赤外炉などによって坩堝を加熱し、坩堝上端の温度(種結晶温度:Ta)と下端の温度(原料温度:Tb)を色温度計で測定しながら制御する。このとき、種結晶温度および原料温度を2000〜2500℃、原料−種結晶間の温度勾配(Tb−Ta)を0〜20℃/cmに制御する。結晶の成長は、前記制御的温度まで加熱した後に成長装置内を減圧することで開始し、1〜100Torrに定圧保持することで行う。この装置により上記条件で成長を実施することにより、種結晶3上には単結晶5のみが成長し、多結晶6は台座7の周辺部に完全に分離されて析出する。
【0016】
【実施例】
図1に示すように坩堝1を内径75mmとし、蓋体2から突出させた台座7を直径45mm、高さ10mmの円柱とし、その台座7に直径45mm、厚さ1mmの種結晶3を載置固着して成長をした。コーン状ガイド9は角度θを45°とし、坩堝1との隙間dを1mm、コーン状ガイド9の外周面の高さ方向長さhを2mmとした。種結晶3は昇華法によって作成された円盤状の六方晶SiC単結晶とし、成長面の方位を(0001)面とした。坩堝1はまず高周波炉内に支持し、炉内の圧力を2×10−5Torrまで減圧した。 その後、高純度Arで700Torrまで昇圧し、種結晶3の温度を2200℃まで昇温した。種結晶3の温度が目的値に到達した後、10Torrまで炉内を減圧し成長を始め、70時間保持した後に常圧まで昇圧、冷却し、単結晶5を取り出した。単結晶5は生長量L=31mmと長尺に成長し、直径はφ=63mmまで口径拡大した。また、口径拡大率αはコーン状ガイド9の角度θと同じ45°である。さらに、単結晶の表面形状も適切なものであった。このとき台座周辺に析出した多結晶6は少量で、コーン状ガイド9にも接触せず、単結晶5は多結晶6とは完全に分離して成長した。
【0017】
結晶の口径拡大率αはコーン状ガイド9の角度θに依存し、θが大きくなれば単結晶5の口径拡大率αは同じ角度で増加する。ただし、坩堝1の大きさや加熱条件、成長雰囲気、温度条件によってはθ>60°以上の高角度でコーン状ガイド9の内壁に多結晶が付着し、単結晶5のみを分離させた成長が難しくなる場合があった。従って、成長条件に応じて、結晶性を劣化させないようにコーン状ガイド9への多結晶付着を抑制しつつ、口径拡大率αが最も大きくなるようにθを調節する。
コーン状ガイド9の角度θは結晶の成長表面の形状にも影響を与える。θが0に近づくほど単結晶5の表面は平滑に、90°に近づくほど成長方向に凸の表面形状となった。
【0018】
また、コーン状ガイド9と坩堝1との隙間dおよびその距離を形成する外周面の高さ方向長さhは、台座の周辺に付着する多結晶6の量に変化を与える。隙間dを狭く、隙間の高さ方向長さhを大きくすると、多結晶6の付着は少なくなる。多結晶6の付着量は前述したコーン状ガイド9の角度θによる効果と同様、成長する単結晶5の表面形状に影響する。
【0019】
表面形状は単結晶5の結晶性に影響を与えるため、θ、d、hを制御し、単結晶5の劣化を防ぐことが可能な最適な形状となる範囲に調節する。
上記の要領で品質の良い状態で単結晶のみを分離させながら一層効率の良い口径拡大成長をすることが可能となった。
【0020】
【発明の効果】
本発明は、以下の効果を奏する。
(1)種結晶を固定する台座にコーン状のガイドを取り付けた昇華再結晶法における結晶成長装置において、口径拡大率αを上げつつ、単結晶と多結晶を完全に分離し、かつ結晶品質を劣化させずに成長可能な成長装置を可能にする。
(2)長尺な単結晶成長を可能にする。
(3)高い口径拡大率および成長結晶の長尺化を可能することにより、成長効率、単結晶ウェハの量産性に貢献できる。
【図面の簡単な説明】
【図1】本発明の実施の形態に係る単結晶成長装置を示す正面断面図である。
【図2】隙間d及び長さhと空間11に析出する多結晶の関係を説明する図である。
【図3】隙間d及び長さhと単結晶の表面形状との関係を説明する図である。
【図4】コーン状ガイドの広がりの角度θと単結晶5の拡大率、表面形状及びコーン状ガイド内壁への多結晶付着との関係を説明する図である。
【図5】昇華再結晶法における従来技術1を示す正面断面図である。
【図6】昇華再結晶法における従来技術2を示す正面断面図である。
【図7】昇華再結晶法における従来技術3を示す正面断面図である。
【符号の説明】
1 坩堝
2 蓋体
3 種結晶
4 炭化珪素原料
5 単結晶
6 多結晶
7 台座
9 コーン状ガイド
10 坩堝の内壁
11 台座周辺の空間
θ コーン状ガイドの角度
α 単結晶の口径拡大率
L 単結晶の生長量
d 坩堝内壁とコーン状ガイドとの隙間
h 隙間の高さ方向長さ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an apparatus for growing a single crystal such as silicon carbide.
[0002]
[Prior art]
Silicon carbide single crystal (SiC) is excellent in thermal and chemical properties, and has excellent electrical properties such as a large band gap compared to Si semiconductors. Therefore, semiconductors for high-power, high-temperature, high-frequency devices It is attracting attention as a material. Large-sized bulk crystal growth for the purpose of manufacturing a hexagonal SiC wafer is performed by sublimation recrystallization in which a raw material is heated and sublimated to grow on a seed crystal (improved Lely method: described in J. Cryst. Growth 43 (1978) 209). This is generally done by:
FIG. 5 shows an example of the most common growth apparatus in recent years in the sublimation recrystallization method (hereinafter, referred to as “prior art 1”). The SiC seed crystal 3 is placed and fixed on the lid 2. When the SiC raw material 4 is heated and sublimated, the sublimation gas is recrystallized on the facing seed crystal 3, and the SiC single crystal 5 grows. By the way, as a SiC single crystal substrate for manufacturing a semiconductor device, a substrate having a diameter of about 2 inches is currently on the market. However, a SiC single crystal substrate having a larger diameter is required to improve mass productivity. I have.
[0003]
On the other hand, as shown in FIG. 6, there has been proposed a growth apparatus in which a pedestal protruding from a lid is formed and a seed crystal is placed and fixed on the pedestal (for example, see Patent Documents 1 and 2). In this apparatus, the seed crystal 3 is placed and fixed on a pedestal 7 formed at the center of the lower surface of the lid 2, so that a single crystal 5 growing on the seed crystal 3 and a polycrystal 6 deposited around the pedestal 7. Are delayed, and the diameter expansion rate α of the grown crystal is increased (hereinafter referred to as “prior art 2”).
[0004]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 1-305898 [Patent Document 2]
JP 10-36195 A [Patent Document 3]
JP-A-2002-60297
[Problems to be solved by the invention]
However, in the prior art 1, since the seed crystal 3 is directly bonded to the lid 2, the polycrystal 6 deposited on the surface of the lid 2 around the seed crystal 3 and the single crystal 5 grown on the seed crystal 3 Contact. For this reason, there is a problem that the diameter expansion of the grown crystal is hindered.
Further, in the prior art 2, it is possible to delay the contact timing between the single crystal 5 and the polycrystal 6, but as the growth progresses, the single crystal and the polycrystal eventually come into contact as shown in FIG. However, there is a problem that the diameter of the grown crystal is prevented from further increasing.
On the other hand, it is well known that when a polycrystal comes into contact with a single crystal, strain is introduced from the interface toward the single crystal, and a defect called a macro defect (described in Physica B 185 (1993) 211) also occurs. . These phenomena are considered to cause the crystallinity of the grown crystal to be remarkably deteriorated, so that semiconductor-grade crystal quality cannot be achieved.
[0006]
In order to solve these problems, the present inventors have previously disclosed in Japanese Patent Application No. 2000-249634 (see Patent Document 3) that a single crystal can be separated and grown to improve crystal quality and promote diameter expansion. A growth apparatus has been proposed (hereinafter referred to as “prior art 3”). In this growth apparatus, the single crystal 5 is enlarged and grown on the seed crystal 3 while being separated from the polycrystal 6 by the guide member 8 as shown in FIG. By guiding the flow of the sublimation gas from the SiC raw material 4 by the guide member 8, the growth of the single crystal is predominantly caused, and the deposition of the polycrystal 6 is effectively delayed, so that the separation state can be grown for a long time. The feature is that it is possible. With this growth apparatus, a growth amount L = 12 cm and a diameter expansion rate α = 30 ° are achieved.
It is another object of the present invention to provide a high-efficiency growth apparatus that can increase the growth amount L and the crystal diameter expansion rate α and that can grow without deteriorating the crystal quality, has a simple configuration, and can reduce the production cost. .
[0007]
[Means for Solving the Problems]
In order to achieve the above object, a single crystal growth apparatus of the present invention accommodates a raw material for a grown single crystal in a container, and projects a part of the inner wall surface of the container facing the raw material toward the raw material to form a seed crystal. In a device for growing a single crystal on the seed crystal by heating and sublimating the raw material as a supporting pedestal, connect the small-diameter portion of the cone-shaped guide to the pedestal and form the large-diameter portion conically toward the inner wall surface of the container. And a gap is formed between the large-diameter portion of the cone-shaped guide and the inner wall surface of the container.
In addition, the single crystal growth apparatus of the present invention sets the gap between the large diameter portion of the cone-shaped guide and the inner wall of the crucible to 0.1 to 5 mm, and sets the length of the gap in the height direction to 0.1 to 20 mm. It is characterized by the following.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a crystal growth apparatus used in the method of the present invention, which is an example of an apparatus for growing single-crystal silicon carbide (SiC) by sublimation recrystallization on a seed crystal by an improved Lely method.
The apparatus mainly includes a crucible 1 and a lid 2 constituting a container, a pedestal 7 projecting downward from the lid 2, and a cone-shaped guide 9. The crucible 1 is mainly composed of columnar and cylindrical graphite, and forms a quasi-enclosed space in which the upper part of the crucible is closed by a lid 2 also made of graphite. The silicon carbide (SiC) raw material 4 is loaded in the lower portion of the crucible 1, and the seed crystal 3 is mounted and fixed on the lower end surface of a pedestal 7 sufficiently protruding from the lid 2. I do. The diameter of the pedestal 7 is approximately 略 to の of the inner diameter of the crucible 1.
[0009]
The cone-shaped guide 9 has a conical structure in which a small-diameter portion is integrated with the pedestal 7, and a large-diameter portion is provided toward the inner wall surface of the container. The inner wall surface 10 of the crucible 1 is not in contact with the inner wall 10 at a distance of the gap d. The gap d is maintained at the inner wall surface of the crucible and the large-diameter portion of the cone-shaped guide 9 over the length h in the height direction. The gap d and its length h in the height direction are for controlling the amount of the raw material gas flowing into the space 11 around the pedestal of the lid 2.
[0010]
FIG. 2 shows the relationship between the gap d and the length h and the polycrystal precipitated in the space 11. As is clear from FIG. 2, by reducing the gap d and increasing the length h, the amount of gas flowing into the space 11 is reduced, and the deposition rate of the polycrystal 6 that precipitates in the space 11 around the pedestal 3 is reduced. Therefore, only the single crystal 5 precipitated in the cone-shaped guide 9 can be more efficiently grown.
[0011]
On the other hand, the change in the precipitation ratio of the single crystal 5 and the polycrystal 6 changes the spatial structure in the container, and the temperature distribution in the entire container such as the crucible 1 and the lid 2 changes. FIG. 3 illustrates the relationship between the surface shape of the single crystal, the gap d, and the length h. The surface shape of the growing single crystal 5 changes greatly from convex to flat. That is, when the gap d is narrow and the length h is long, the surface shape of the single crystal becomes convex, and conversely, when the gap d is wide and the length h is short, the surface shape of the single crystal becomes flat. This change in surface shape greatly affects the crystallinity. Generally, when the surface is flat, defects grow at the center of the crystal, and when the shape is convex, a large strain is generated from the center of the single crystal toward the outside. Therefore, in order to reduce the deposition rate of the polycrystal 6 that precipitates in the space 11 around the pedestal 3 and to form an appropriate surface shape, the gap d and the height h of the gap should be set in what range. Becomes important.
[0012]
From FIG. 2, it is desired that the gap d is narrow and the length h is long in order to reduce the deposition rate of the polycrystal 6. Further, from FIG. 3, the surface shape of the single crystal is markedly flattened when the gap d is 5 mm and the length h is around 0.1 mm, and conversely, when the gap d is 0.1 mm and the length h is around 20 mm. It can be seen that the convex shape becomes remarkable. From these facts, in order to reduce the deposition rate of the polycrystal 6 and to make the surface shape of the single crystal appropriate, the gap d should be in the range of 0.1 to 5 mm and the length h should be 0. It is desirable to set it in the range of 0.1 to 20 mm.
[0013]
The cone-shaped guide 9 has a shape spread at an angle θ with respect to the surface of the pedestal 7. As shown in FIG. 4, the spread angle θ of the cone-shaped guide 9 affects the magnification α of the single crystal 5, the surface shape, and the amount of polycrystal adhered to the inner wall of the guide. By increasing the angle θ, the magnification of the grown crystal can be increased, and a large-diameter crystal can be obtained by one-time growth. However, the rapid expansion of the diameter causes distortion of the crystal.
FIG. 4 is a diagram for explaining the relationship between the angle of spread θ of the cone-shaped guide 9 and the enlargement ratio, surface shape, and polycrystal adhesion on the inner wall of the cone-shaped guide.
According to FIG. 4, when the angle θ is 60 ° or more, the polycrystal 6 adheres to the inner wall of the cone-shaped guide 9 and the expansion of the single crystal 5 may be hindered. It is desirable that θ ≦ 60 °.
In addition, the change in the surface shape of the single crystal 5 due to the angle θ has a large effect of the gap d and the length h of the gap in the height direction or more, and considering the crystallinity, 20 ° ≦ θ ≦ 50 °. Is appropriate.
Furthermore, an appropriate enlargement ratio from the viewpoint of not giving a strain to the crystal, that is, not deteriorating the crystallinity, and increasing the efficiency of the crystal enlargement ratio is 30 ° ≦ θ ≦ 60 °.
Therefore, the angle θ of the spread of the cone-shaped guide 9 is appropriately set according to the purpose of use of the obtained single crystal, but in consideration of the above, the angle θ of the cone-shaped guide 9 becomes , 30 ° ≦ θ ≦ 50 °.
[0014]
As the silicon carbide raw material 4, SiC powder obtained by the Acheson method or chemical synthesis is usually used. As the seed crystal 3, a SiC single crystal obtained by the Acheson method or the Lely method, or a SiC single crystal grown from the Acheson crystal or the Lely crystal by the sublimation method is used. Seed crystal 3 has a thickness of 0.1 to 30 mm.
[0015]
The crystal is grown by heating the crucible in a high-purity Ar gas atmosphere using a high-frequency furnace, a resistance heating furnace, an infrared furnace, or the like. Is controlled while measuring with a color thermometer. At this time, the temperature of the seed crystal and the temperature of the raw material are controlled at 2000 to 2500 ° C., and the temperature gradient (Tb-Ta) between the raw material and the seed crystal is controlled at 0 to 20 ° C./cm. Crystal growth is started by reducing the pressure inside the growth apparatus after heating to the above-mentioned controlled temperature, and is performed by maintaining a constant pressure at 1 to 100 Torr. By performing growth under the above conditions using this apparatus, only the single crystal 5 grows on the seed crystal 3, and the polycrystal 6 is completely separated and deposited on the periphery of the pedestal 7.
[0016]
【Example】
As shown in FIG. 1, the crucible 1 has an inner diameter of 75 mm, the pedestal 7 protruding from the lid 2 is a column having a diameter of 45 mm and a height of 10 mm, and a seed crystal 3 having a diameter of 45 mm and a thickness of 1 mm is placed on the pedestal 7. It grew stuck. The cone-shaped guide 9 had an angle θ of 45 °, a gap d with the crucible 1 of 1 mm, and a height h of an outer peripheral surface of the cone-shaped guide 9 in a height direction of 2 mm. The seed crystal 3 was a disc-shaped hexagonal SiC single crystal prepared by a sublimation method, and the orientation of the growth plane was the (0001) plane. The crucible 1 was first supported in a high-frequency furnace, and the pressure in the furnace was reduced to 2 × 10 −5 Torr. Thereafter, the pressure was increased to 700 Torr with high purity Ar, and the temperature of the seed crystal 3 was increased to 2200 ° C. After the temperature of the seed crystal 3 reached the target value, the inside of the furnace was decompressed to 10 Torr to start growth, and after holding for 70 hours, the pressure was raised to normal pressure and cooled, and the single crystal 5 was taken out. The single crystal 5 grew long with the growth amount L = 31 mm, and the diameter was expanded to φ = 63 mm. The aperture enlargement rate α is 45 °, which is the same as the angle θ of the cone-shaped guide 9. Furthermore, the surface shape of the single crystal was also appropriate. At this time, the amount of the polycrystal 6 precipitated around the pedestal was small and did not come into contact with the cone-shaped guide 9, and the single crystal 5 grew completely separated from the polycrystal 6.
[0017]
The diameter expansion rate α of the crystal depends on the angle θ of the cone-shaped guide 9, and as θ increases, the diameter expansion rate α of the single crystal 5 increases at the same angle. However, depending on the size of the crucible 1, the heating conditions, the growth atmosphere, and the temperature conditions, polycrystals adhere to the inner wall of the cone-shaped guide 9 at a high angle of θ> 60 ° or more, and it is difficult to grow the single crystal 5 alone. There was a case. Therefore, according to the growth conditions, while adjusting the polycrystal to the cone-shaped guide 9 so as not to deteriorate the crystallinity, θ is adjusted so that the diameter expansion rate α becomes the largest.
The angle θ of the conical guide 9 also affects the shape of the crystal growth surface. As θ approaches 0, the surface of single crystal 5 becomes smoother, and as θ approaches 90 °, the surface becomes convex in the growth direction.
[0018]
Also, the gap d between the cone-shaped guide 9 and the crucible 1 and the length h in the height direction of the outer peripheral surface that forms the distance between the cone guide 9 and the crucible 1 change the amount of the polycrystal 6 attached to the periphery of the pedestal. When the gap d is narrow and the length h of the gap in the height direction is increased, the adhesion of the polycrystal 6 is reduced. The attached amount of the polycrystal 6 affects the surface shape of the growing single crystal 5 in the same manner as the effect of the angle θ of the cone-shaped guide 9 described above.
[0019]
Since the surface shape affects the crystallinity of the single crystal 5, θ, d, and h are controlled to adjust the surface to an optimal shape in which the single crystal 5 can be prevented from being deteriorated.
As described above, it is possible to perform more efficient growth of the diameter while separating only the single crystal in a good quality state.
[0020]
【The invention's effect】
The present invention has the following effects.
(1) In a crystal growth apparatus in a sublimation recrystallization method in which a cone-shaped guide is attached to a base for fixing a seed crystal, a single crystal and a polycrystal are completely separated while increasing the diameter expansion rate α, and the crystal quality is improved. A growth apparatus capable of growing without deterioration is enabled.
(2) It enables long single crystal growth.
(3) It is possible to contribute to the growth efficiency and the mass productivity of single crystal wafers by enabling a high diameter expansion rate and a long growth crystal.
[Brief description of the drawings]
FIG. 1 is a front sectional view showing a single crystal growing apparatus according to an embodiment of the present invention.
FIG. 2 is a diagram illustrating a relationship between a gap d and a length h and a polycrystal precipitated in a space 11;
FIG. 3 is a diagram illustrating a relationship between a gap d and a length h and a surface shape of a single crystal.
FIG. 4 is a diagram illustrating the relationship between the angle of spread θ of the cone-shaped guide, the magnification of the single crystal 5, the surface shape, and the attachment of polycrystal to the inner wall of the cone-shaped guide.
FIG. 5 is a front sectional view showing a conventional technique 1 in the sublimation recrystallization method.
FIG. 6 is a front sectional view showing Conventional Technique 2 in the sublimation recrystallization method.
FIG. 7 is a front sectional view showing a conventional technique 3 in the sublimation recrystallization method.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 crucible 2 lid 3 seed crystal 4 silicon carbide raw material 5 single crystal 6 polycrystal 7 pedestal 9 cone-shaped guide 10 inner wall 11 of crucible 11 space around pedestal θ angle of cone-shaped guide α single crystal diameter expansion rate L single crystal Growth amount d Gap between inner wall of crucible and cone guide h Length of gap in height direction

Claims (2)

容器内に成長単結晶の原料を収容し、該原料に対向する容器内壁面の一分を上記原料側に突出させて種結晶を支持する台座とし、上記原料を加熱昇華させて上記種結晶上に単結晶を成長させる装置において、上記台座にコーン状ガイドの小径部を接続するとともに大径部を容器内壁面に向かって円錐形をしたコーン状ガイドを設け、該コーン状ガイドの大径部と上記容器内壁面との間に隙間を形成することを特徴とする単結晶成長装置。A raw material for a growing single crystal is accommodated in a container, and a part of the inner wall surface of the container facing the raw material is protruded toward the raw material side to form a pedestal for supporting a seed crystal. In the apparatus for growing a single crystal, a cone-shaped guide having a small diameter portion of a cone-shaped guide connected to the pedestal and a large-diameter portion formed conically toward the inner wall surface of the container is provided, and the large-diameter portion of the cone-shaped guide is provided. A single crystal growing apparatus, wherein a gap is formed between the inner wall surface and the inner wall surface of the container. コーン状ガイドの大径部と容器内壁面との間の隙間を0.1〜5mmとするとともにその隙間の高さ方向長さを0.1〜20mmとすることを特徴とする請求項1記載の単結晶成長装置。2. The gap between the large diameter portion of the cone-shaped guide and the inner wall surface of the container is set to 0.1 to 5 mm, and the length of the gap in the height direction is set to 0.1 to 20 mm. Single crystal growth equipment.
JP2003016921A 2003-01-27 2003-01-27 Single crystal growth equipment Expired - Lifetime JP4102876B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003016921A JP4102876B2 (en) 2003-01-27 2003-01-27 Single crystal growth equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003016921A JP4102876B2 (en) 2003-01-27 2003-01-27 Single crystal growth equipment

Publications (2)

Publication Number Publication Date
JP2004224663A true JP2004224663A (en) 2004-08-12
JP4102876B2 JP4102876B2 (en) 2008-06-18

Family

ID=32904208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003016921A Expired - Lifetime JP4102876B2 (en) 2003-01-27 2003-01-27 Single crystal growth equipment

Country Status (1)

Country Link
JP (1) JP4102876B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008074665A (en) * 2006-09-21 2008-04-03 Nippon Steel Corp Graphite crucible with rid and apparatus for growing silicon carbide single crystal
JP2009102196A (en) * 2007-10-23 2009-05-14 Denso Corp Method for manufacturing silicon carbide single crystal substrate
WO2009139447A1 (en) * 2008-05-16 2009-11-19 株式会社ブリヂストン Single crystal manufacturing device and manufacturing method
JP2010013296A (en) * 2008-07-01 2010-01-21 Showa Denko Kk Container structure for silicon carbide single crystal growth and method for producing silicon carbide single crystal
WO2010050362A1 (en) * 2008-10-28 2010-05-06 株式会社ブリヂストン Method for manufacturing silicon carbide single crystal
JP2010138048A (en) * 2008-12-15 2010-06-24 Bridgestone Corp Apparatus and method for manufacturing silicon carbide
WO2010119749A1 (en) 2009-04-16 2010-10-21 株式会社ブリヂストン Apparatus for producing silicon carbide single crystal and method for producing silicon carbide single crystal
WO2010143476A1 (en) 2009-06-10 2010-12-16 株式会社ブリヂストン Device for producing silicon carbide single crystals
EP2365110A1 (en) 2010-03-04 2011-09-14 Bridgestone Corporation Apparatus and method for producing silicon carbide single crystal
CN105239157A (en) * 2014-07-04 2016-01-13 住友电气工业株式会社 Crucible and method for producing single crystal
KR20180084979A (en) 2015-12-28 2018-07-25 쇼와 덴코 가부시키가이샤 Cleaning method of SiC single crystal growth
JP7305818B1 (en) 2022-01-26 2023-07-10 國家中山科學研究院 Thermal field adjustment method for silicon carbide single crystal growth

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008074665A (en) * 2006-09-21 2008-04-03 Nippon Steel Corp Graphite crucible with rid and apparatus for growing silicon carbide single crystal
JP2009102196A (en) * 2007-10-23 2009-05-14 Denso Corp Method for manufacturing silicon carbide single crystal substrate
WO2009139447A1 (en) * 2008-05-16 2009-11-19 株式会社ブリヂストン Single crystal manufacturing device and manufacturing method
JP2009274930A (en) * 2008-05-16 2009-11-26 Bridgestone Corp Apparatus and method for manufacturing single crystal
JP2010013296A (en) * 2008-07-01 2010-01-21 Showa Denko Kk Container structure for silicon carbide single crystal growth and method for producing silicon carbide single crystal
JPWO2010050362A1 (en) * 2008-10-28 2012-03-29 株式会社ブリヂストン Method for producing silicon carbide single crystal
WO2010050362A1 (en) * 2008-10-28 2010-05-06 株式会社ブリヂストン Method for manufacturing silicon carbide single crystal
JP2010138048A (en) * 2008-12-15 2010-06-24 Bridgestone Corp Apparatus and method for manufacturing silicon carbide
EP2420598A4 (en) * 2009-04-16 2013-05-01 Bridgestone Corp Apparatus for producing silicon carbide single crystal and method for producing silicon carbide single crystal
EP2420598A1 (en) * 2009-04-16 2012-02-22 Bridgestone Corporation Apparatus for producing silicon carbide single crystal and method for producing silicon carbide single crystal
WO2010119749A1 (en) 2009-04-16 2010-10-21 株式会社ブリヂストン Apparatus for producing silicon carbide single crystal and method for producing silicon carbide single crystal
WO2010143476A1 (en) 2009-06-10 2010-12-16 株式会社ブリヂストン Device for producing silicon carbide single crystals
EP2365110A1 (en) 2010-03-04 2011-09-14 Bridgestone Corporation Apparatus and method for producing silicon carbide single crystal
CN105239157A (en) * 2014-07-04 2016-01-13 住友电气工业株式会社 Crucible and method for producing single crystal
KR20180084979A (en) 2015-12-28 2018-07-25 쇼와 덴코 가부시키가이샤 Cleaning method of SiC single crystal growth
US11028474B2 (en) 2015-12-28 2021-06-08 Showa Denko K.K. Method for cleaning SiC monocrystal growth furnace
JP7305818B1 (en) 2022-01-26 2023-07-10 國家中山科學研究院 Thermal field adjustment method for silicon carbide single crystal growth
JP2023108810A (en) * 2022-01-26 2023-08-07 國家中山科學研究院 Method for controlling silicon carbide single crystal growth heat place

Also Published As

Publication number Publication date
JP4102876B2 (en) 2008-06-18

Similar Documents

Publication Publication Date Title
JP6110059B2 (en) Method and apparatus for growing low defect density silicon carbide and materials obtained
US7396411B2 (en) Apparatus for manufacturing single crystal
JP2007204309A (en) Single crystal growth device and single crystal growth method
JP4102876B2 (en) Single crystal growth equipment
JP2004099340A (en) Seed crystal for silicon carbide single crystal growth, silicon carbide single crystal ingot and method of manufacturing the same
JP5012655B2 (en) Single crystal growth equipment
JP2024508945A (en) How to grow high quality single crystal silicon carbide
CN108149324B (en) Aluminum nitride self-nucleation growth method
JP5614387B2 (en) Silicon carbide single crystal manufacturing method and silicon carbide single crystal ingot
JP4253974B2 (en) SiC single crystal and growth method thereof
JP2005239496A (en) Silicon carbide raw material for growing silicon carbide single crystal, silicon carbide single crystal, and method for producing the same
JPH08143396A (en) Method for growing silicon carbide single crystal
JP3662694B2 (en) Method for producing single crystal silicon carbide ingot
JP2619611B2 (en) Single crystal manufacturing apparatus and manufacturing method
JPH05178698A (en) Apparatus and process for production of silicon carbide bulk single crystal
JP2937109B2 (en) Single crystal manufacturing apparatus and manufacturing method
JP6829767B2 (en) Manufacturing method and manufacturing equipment for SiC raw materials for SiC crystal growth
JPH10139589A (en) Production of single crystal
JP2001080997A (en) SiC SINGLE CRYSTAL AND METHOD FOR GROWING THE SAME
JPH07267795A (en) Growth method of silicon carbide single crystal
JP6856705B2 (en) Ingot manufacturing equipment and method for manufacturing silicon carbide single crystal ingots using this
JPH08245299A (en) Method for growing silicon carbide crystal
JP2003137694A (en) Seed crystal for growing silicon carbide single crystal, silicon carbide single crystal ingot and method of producing the same
JP4947383B2 (en) Single crystal growth method and growth apparatus
JPH1179896A (en) Production of silicon carbide single crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070717

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071121

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080226

R150 Certificate of patent or registration of utility model

Ref document number: 4102876

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term