JP4102876B2 - Single crystal growth equipment - Google Patents

Single crystal growth equipment Download PDF

Info

Publication number
JP4102876B2
JP4102876B2 JP2003016921A JP2003016921A JP4102876B2 JP 4102876 B2 JP4102876 B2 JP 4102876B2 JP 2003016921 A JP2003016921 A JP 2003016921A JP 2003016921 A JP2003016921 A JP 2003016921A JP 4102876 B2 JP4102876 B2 JP 4102876B2
Authority
JP
Japan
Prior art keywords
single crystal
crystal
cone
gap
shaped guide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003016921A
Other languages
Japanese (ja)
Other versions
JP2004224663A (en
Inventor
智久 加藤
伸一 西澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2003016921A priority Critical patent/JP4102876B2/en
Publication of JP2004224663A publication Critical patent/JP2004224663A/en
Application granted granted Critical
Publication of JP4102876B2 publication Critical patent/JP4102876B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、炭化珪素等の単結晶を成長させるための装置に関するものである。
【0002】
【従来の技術】
炭化珪素単結晶(SiC)は、熱的・化学的特性に優れ、禁制帯幅がSi半導体などに比べて大きいなど、電気的特性も優れていることから、高出力、高温、高周波デバイス用半導体材料として注目されている。六方晶SiCウェハ製造を目的とした大型のバルク結晶成長は、原料を加熱昇華させて種結晶上に成長させる昇華再結晶法(改良レリー法:J. Cryst. Growth 43 (1978) 209に記載)によって行われるのが一般的である。
図5は昇華再結晶法における近年最も一般的な成長装置の一例を示すものである(以下「従来技術1」という。)。蓋体2にはSiCの種結晶3を載置固着してあり、SiC原料4を加熱昇華させると、その昇華ガスが対向する種結晶3上で再結晶し、SiC単結晶5が成長する。ところで、半導体装置作成用のSiC単結晶基板としては、現在、直径2インチ程度のものが市販されているが、量産性の向上のために、より大口径のSiC単結晶基板が必要とされている。
【0003】
一方、図6に示すように、蓋体から突出させた台座を形成し、その台座に種結晶を載置固着させる成長装置が提案されている(例えば、特許文献1、2参照。)。この装置では、蓋体2の下面中央に形成させた台座7に種結晶3を載置固着させることによって、種結晶3上に成長する単結晶5と、台座7の周辺に析出する多結晶6が接触するタイミングを遅らせ、成長結晶の口径拡大率αを高めている(以下「従来技術2」という。)。
【0004】
【特許文献1】
特開平1−305898号公報
【特許文献2】
特開平10−36195号公報
【特許文献3】
特開2002−60297号公報
【0005】
【発明が解決しようとする課題】
しかしながら、従来技術1においては、種結晶3が蓋体2と直接接合されるため、種結晶3の周辺の蓋体2表面に析出する多結晶6と、種結晶3上に成長する単結晶5が接触する。このため成長結晶の口径拡大が阻害される問題があった。
また、従来技術2においては、単結晶5と多結晶6が接触するタイミングを遅らせることが可能であるものの、成長が進むと図6に示すように最終的には単結晶と多結晶は接触し、それ以上の成長結晶の口径拡大が阻まれるという不具合があった。
一方、単結晶に多結晶が接触するとその界面から単結晶に向かって歪みが導入され、またマクロ欠陥(Physica B 185 (1993) 211 に掲載)と呼ばれる欠陥も発生することは周知のことである。これらの現象は成長結晶の結晶性を著しく低下させ、半導体グレードの結晶品質を達成できなくなる一原因とされている。
【0006】
これらの問題に対し、本発明者等は、先に特願2000-249634号(特許文献3参照)において、単結晶を分離して成長することにより結晶の品質向上および口径拡大の促進が実現できる成長装置を提案した(以下「従来技術3」という。)。この成長装置では図7に示すようにガイド部材8により多結晶6と分離しながら種結晶3上に単結晶5を拡大成長させる。SiC原料4からの昇華ガスの流れをガイド部材8により導くことによって、単結晶の成長を優勢に起こし、多結晶6の析出を効果的に遅らせることによって、分離状態を長く続けて成長することが可能なことが特徴である。この成長装置により成長量L=12cm、口径拡大率α=30°を達成している。
本発明ではさらに成長量Lおよび結晶の口径拡大率αを上げ、かつ結晶品質を劣化させずに成長可能な、構成が簡単で制作コストが低減できる高効率な成長装置を得ることを目的とする。
【0007】
【課題を解決するための手段】
上記目的を達成するため、本発明の単結晶成長装置は、容器内に成長単結晶の原料を収容し、該原料に対向する容器内壁面の一部を上記原料側に突出させて種結晶を支持する台座とし、上記原料を加熱昇華させて上記種結晶上に単結晶を成長させる装置において、上記台座にコーン状ガイドの小径部を接続するとともに大径部が容器内壁面に向かって円錐形をしたコーン状ガイドを設け、該コーン状ガイドの大径部と上記容器内壁面との間に隙間dを形成し、該隙間dを0.1〜5mmとするとともにその隙間dの高さ方向長さhを0.1〜20mmとすることを特徴とする。
【0008】
【発明の実施の形態】
以下、本発明による実施の形態を図面に基づき説明する。
図1は本発明の方法に用いる結晶成長装置であり、改良型レリー法によって種結晶上に昇華再結晶し単結晶炭化珪素(SiC)を成長させる装置の一例である。
装置は主に、容器を構成する坩堝1及び蓋体2、蓋体2から下方に向かって突出する台座7及びコーン状ガイド9から構成されている。坩堝1は主に円柱および円筒状の黒鉛から構成され、同じく黒鉛製の蓋体2によって坩堝上部を塞いだ準密閉空間を形成する。炭化珪素(SiC)原料4は坩堝1内下部に装填され、種結晶3は蓋体2から十分に突出させた台座7の下端面に載置固着され、炭化珪素原料4に対向した位置関係とする。台座7の直径は坩堝1の内径の略1/2〜1/3程度とする。
【0009】
コーン状ガイド9は、その小径部が台座7と一体となった円錐状の構造となっており、その大径部を容器内壁面に向かって設けられ、該コーン状ガイド9の大径部と坩堝1の内壁面10とは隙間dの距離で接触していない。隙間dは高さ方向長さhにわたって坩堝内壁面とコーン状ガイド9の大径部によってその距離を保つ。隙間d及びその高さ方向長さhは、蓋体2の台座周辺の空間11に流れ込む原料ガスの量を制御するためのものである。
【0010】
図2に隙間d及び長さhと空間11に析出する多結晶の関係を示している。図2から明らかなように、隙間dを狭く、長さhを長くすることにより、空間11に流れ込むガス量が少なくなり、台座3周辺の空間11へ析出する多結晶6の析出割合を減らすことができるため、コーン状ガイド9内に析出する単結晶5だけを一層効率良く成長させることができる。
【0011】
一方、単結晶5と多結晶6の析出割合の変化は、容器内の空間構造に変化を与えることになり、坩堝1、蓋体2など容器内すべての温度分布が変化する。図3は、単結晶の表面形状と隙間dが及び長さhの関係を説明するもので、成長する単結晶5の表面形状が凸型から平坦まで大きく変化する。すなわち、隙間dを狭く、長さhを長くすると単結晶の表面形状は凸型になり、逆に隙間dを広く、長さhを短くすると単結晶の表面形状は平坦になる。この表面形状の変化は結晶性に大きく影響し、一般的には平坦な場合に結晶中央部に欠陥が増殖し、凸型の場合は単結晶の中心から外側に向かって大きな歪みが発生する。従って、台座3周辺の空間11へ析出する多結晶6の析出割合を減らし、かつ、適切な表面形状に形成するには、隙間d及び隙間の高さ方向長さhをどの範囲に設定するかが重要になる。
【0012】
図2から、多結晶6の析出割合を減らすためには隙間dは狭く、その長さhを長くすることが望まれる。また、図3から、単結晶の表面形状は、隙間dが5mm、長さhが0.1mm付近において平坦化が著しくなり、逆に、隙間dが0.1mm、長さhが20mm付近において凸型化が著しくなることが分かる。これらのことから、多結晶6の析出割合を減らし、かつ、単結晶の表面形状を適切なものにするためには、隙間dを0.1〜5mmの範囲とするとともにその長さhを0.1〜20mmの範囲に設定することが望ましい。
【0013】
また、コーン状ガイド9は台座7の表面に対し角度θで広がった形状をしている。図4に示すように、コーン状ガイド9の広がりの角度θは、単結晶5の拡大率α、表面形状及びガイド内壁への多結晶付着量に影響を及ぼすものである。角度θを大きくすることにより、成長結晶の拡大率を上げ、1回の成長で大口径の結晶を得ることは可能となるが、急激な口径の拡大は結晶に歪みを与える原因となる。
図4は、コーン状ガイド9の広がりの角度θと単結晶の拡大率、表面形状及びコーン状ガイド内壁への多結晶付着との関係を説明する図である。
図4によると、角度θが60゜以上の場合、コーン状ガイド9内壁へ多結晶6が付着し、単結晶5の拡大が阻害されることもあるので、コーン状ガイド9の角度θは、θ≦60゜が望ましい。
また、角度θによる単結晶5の表面形状の変化は、前述の隙間d及び隙間の高さ方向長さh以上の大きな影響があり、結晶性の影響を考慮すると、20゜≦θ≦50゜が適切である。
さらに、結晶に歪みを与えず、すなわち結晶性を損なわず、且つ結晶拡大率の効率化の面からの適切な拡大率は30゜≦θ≦60゜である。
したがって、コーン状ガイド9の広がりの角度θは、得られる単結晶の使用目的に応じて適宜設定されるものであるが、上記のことを総合して考慮すると、コーン状ガイド9の角度θは、30゜≦θ≦50゜が最適と言える。
【0014】
炭化珪素原料4には通常、アチソン法もしくは化学合成によって得られたSiC粉末を用いる。種結晶3にはアチソン法もしくはレリー法によって得られたSiC単結晶、または、アチソン結晶やレリー結晶から昇華法で成長させたSiC単結晶が使用される。種結晶3は厚さ0.1〜30mmとする。
【0015】
結晶の成長は、高純度Arガス雰囲気内で高周波炉や抵抗加熱炉、赤外炉などによって坩堝を加熱し、坩堝上端の温度(種結晶温度:Ta)と下端の温度(原料温度:Tb)を色温度計で測定しながら制御する。このとき、種結晶温度および原料温度を2000〜2500℃、原料−種結晶間の温度勾配(Tb-Ta)を0〜20℃/cmに制御する。結晶の成長は、前記制御的温度まで加熱した後に成長装置内を減圧することで開始し、1〜100Torrに定圧保持することで行う。この装置により上記条件で成長を実施することにより、種結晶3上には単結晶5のみが成長し、多結晶6は台座7の周辺部に完全に分離されて析出する。
【0016】
【実施例】
図1に示すように坩堝1を内径75mmとし、蓋体2から突出させた台座7を直径45mm、高さ10mmの円柱とし、その台座7に直径45mm、厚さ1mmの種結晶3を載置固着して成長をした。コーン状ガイド9は角度θを45°とし、坩堝1との隙間dを1mm、コーン状ガイド9の外周面の高さ方向長さhを2mmとした。種結晶3は昇華法によって作成された円盤状の六方晶SiC単結晶とし、成長面の方位を(0001)面とした。坩堝1はまず高周波炉内に支持し、炉内の圧力を2×10-5Torrまで減圧した。 その後、高純度Arで700Torrまで昇圧し、種結晶3の温度を2200℃まで昇温した。種結晶3の温度が目的値に到達した後、10Torrまで炉内を減圧し成長を始め、70時間保持した後に常圧まで昇圧、冷却し、単結晶5を取り出した。単結晶5は生長量L=31mmと長尺に成長し、直径はφ=63mmまで口径拡大した。また、口径拡大率αはコーン状ガイド9の角度θと同じ45°である。さらに、単結晶の表面形状も適切なものであった。このとき台座周辺に析出した多結晶6は少量で、コーン状ガイド9にも接触せず、単結晶5は多結晶6とは完全に分離して成長した。
【0017】
結晶の口径拡大率αはコーン状ガイド9の角度θに依存し、θが大きくなれば単結晶5の口径拡大率αは同じ角度で増加する。ただし、坩堝1の大きさや加熱条件、成長雰囲気、温度条件によってはθ>60°以上の高角度でコーン状ガイド9の内壁に多結晶が付着し、単結晶5のみを分離させた成長が難しくなる場合があった。従って、成長条件に応じて、結晶性を劣化させないようにコーン状ガイド9への多結晶付着を抑制しつつ、口径拡大率αが最も大きくなるようにθを調節する。
コーン状ガイド9の角度θは結晶の成長表面の形状にも影響を与える。θが0に近づくほど単結晶5の表面は平滑に、90°に近づくほど成長方向に凸の表面形状となった。
【0018】
また、コーン状ガイド9と坩堝1との隙間dおよびその距離を形成する外周面の高さ方向長さhは、台座の周辺に付着する多結晶6の量に変化を与える。隙間dを狭く、隙間の高さ方向長さhを大きくすると、多結晶6の付着は少なくなる。多結晶6の付着量は前述したコーン状ガイド9の角度θによる効果と同様、成長する単結晶5の表面形状に影響する。
【0019】
表面形状は単結晶5の結晶性に影響を与えるため、θ、d、hを制御し、単結晶5の劣化を防ぐことが可能な最適な形状となる範囲に調節する。
上記の要領で品質の良い状態で単結晶のみを分離させながら一層効率の良い口径拡大成長をすることが可能となった。
【0020】
【発明の効果】
本発明は、以下の効果を奏する。
(1)種結晶を固定する台座にコーン状のガイドを取り付けた昇華再結晶法における結晶成長装置において、口径拡大率αを上げつつ、単結晶と多結晶を完全に分離し、かつ結晶品質を劣化させずに成長可能な成長装置を可能にする。
(2)長尺な単結晶成長を可能にする。
(3)高い口径拡大率および成長結晶の長尺化を可能することにより、成長効率、単結晶ウェハの量産性に貢献できる。
【図面の簡単な説明】
【図1】本発明の実施の形態に係る単結晶成長装置を示す正面断面図である。
【図2】隙間d及び長さhと空間11に析出する多結晶の関係を説明する図である。
【図3】隙間d及び長さhと単結晶の表面形状との関係を説明する図である。
【図4】コーン状ガイドの広がりの角度θと単結晶5の拡大率、表面形状及びコーン状ガイド内壁への多結晶付着との関係を説明する図である。
【図5】昇華再結晶法における従来技術1を示す正面断面図である。
【図6】昇華再結晶法における従来技術2を示す正面断面図である。
【図7】昇華再結晶法における従来技術3を示す正面断面図である。
【符号の説明】
1 坩堝
2 蓋体
3 種結晶
4 炭化珪素原料
5 単結晶
6 多結晶
7 台座
9 コーン状ガイド
10 坩堝の内壁
11 台座周辺の空間
θ コーン状ガイドの角度
α 単結晶の口径拡大率
L 単結晶の生長量
d 坩堝内壁とコーン状ガイドとの隙間
h 隙間の高さ方向長さ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an apparatus for growing a single crystal such as silicon carbide.
[0002]
[Prior art]
Silicon carbide single crystal (SiC) is superior in thermal and chemical characteristics, and has excellent electrical characteristics such as a large forbidden band compared to Si semiconductors. Therefore, it is a semiconductor for high output, high temperature, high frequency devices. It is attracting attention as a material. Large bulk crystal growth for the purpose of hexagonal SiC wafer manufacturing is a sublimation recrystallization method in which the raw material is heated and sublimated to grow on the seed crystal (modified Lerry method: described in J. Cryst. Growth 43 (1978) 209) Is generally done by
FIG. 5 shows an example of the most common growth apparatus in recent years in the sublimation recrystallization method (hereinafter referred to as “prior art 1”). A SiC seed crystal 3 is placed and fixed on the lid 2. When the SiC raw material 4 is heated and sublimated, the sublimation gas is recrystallized on the opposing seed crystal 3, and a SiC single crystal 5 grows. By the way, as a SiC single crystal substrate for manufacturing a semiconductor device, a substrate having a diameter of about 2 inches is currently on the market. In order to improve mass productivity, a SiC single crystal substrate having a larger diameter is required. Yes.
[0003]
On the other hand, as shown in FIG. 6, a growth apparatus has been proposed in which a pedestal protruding from a lid is formed and a seed crystal is placed and fixed on the pedestal (see, for example, Patent Documents 1 and 2). In this apparatus, the seed crystal 3 is placed and fixed on a pedestal 7 formed at the center of the lower surface of the lid 2, so that the single crystal 5 that grows on the seed crystal 3 and the polycrystalline 6 that precipitates around the pedestal 7. Is delayed to increase the diameter expansion rate α of the grown crystal (hereinafter referred to as “Prior Art 2”).
[0004]
[Patent Document 1]
JP-A-1-305898 [Patent Document 2]
Japanese Patent Laid-Open No. 10-36195 [Patent Document 3]
Japanese Patent Laid-Open No. 2002-60297
[Problems to be solved by the invention]
However, in the prior art 1, since the seed crystal 3 is directly joined to the lid 2, the polycrystalline 6 that is deposited on the surface of the lid 2 around the seed crystal 3 and the single crystal 5 that is grown on the seed crystal 3. Touch. For this reason, there is a problem that the diameter expansion of the grown crystal is hindered.
In the prior art 2, it is possible to delay the contact timing between the single crystal 5 and the polycrystal 6, but as the growth proceeds, the single crystal and the polycrystal finally come into contact as shown in FIG. Further, there was a problem that the diameter expansion of the grown crystal was hindered.
On the other hand, it is well known that when a polycrystal comes into contact with a single crystal, strain is introduced from the interface toward the single crystal, and defects called macro defects (published in Physica B 185 (1993) 211) also occur. . These phenomena are considered to cause the crystallinity of the grown crystal to be remarkably lowered and the semiconductor grade crystal quality cannot be achieved.
[0006]
In order to solve these problems, the present inventors can realize improvement in crystal quality and promotion of diameter expansion by separating and growing a single crystal in Japanese Patent Application No. 2000-249634 (see Patent Document 3). A growth apparatus was proposed (hereinafter referred to as “Prior Art 3”). In this growth apparatus, the single crystal 5 is expanded on the seed crystal 3 while being separated from the polycrystal 6 by the guide member 8 as shown in FIG. By guiding the flow of sublimation gas from the SiC raw material 4 by the guide member 8, the growth of the single crystal is dominant, and the precipitation of the polycrystal 6 is effectively delayed, so that the separated state can be continuously grown for a long time. It is a feature that is possible. With this growth apparatus, the growth amount L = 12 cm and the aperture enlargement ratio α = 30 ° are achieved.
It is another object of the present invention to obtain a highly efficient growth apparatus that can increase the growth amount L and the crystal diameter enlargement ratio α, and can grow without deteriorating the crystal quality, with a simple structure and reduced production costs. .
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the single crystal growth apparatus of the present invention accommodates a raw material of a growing single crystal in a container, and projects a seed crystal by protruding a part of the inner wall surface of the container facing the raw material to the raw material side. In an apparatus for heating and sublimating the raw material to grow a single crystal on the seed crystal, a small diameter portion of a cone-shaped guide is connected to the pedestal and the large diameter portion is conical toward the inner wall surface of the container. And a gap d is formed between the large-diameter portion of the cone-shaped guide and the inner wall surface of the container. The gap d is set to 0.1 to 5 mm, and the height direction of the gap d The length h is 0.1 to 20 mm .
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 shows a crystal growth apparatus used in the method of the present invention, which is an example of an apparatus for growing single crystal silicon carbide (SiC) by sublimation recrystallization on a seed crystal by an improved Lerry method.
The apparatus mainly includes a crucible 1 and a lid 2 constituting a container, a pedestal 7 and a cone-shaped guide 9 projecting downward from the lid 2. The crucible 1 is mainly composed of columnar and cylindrical graphite, and forms a semi-enclosed space in which the upper portion of the crucible is closed by the lid 2 made of graphite. The silicon carbide (SiC) raw material 4 is loaded in the lower part of the crucible 1, and the seed crystal 3 is placed and fixed on the lower end surface of the pedestal 7 that sufficiently protrudes from the lid 2, and the positional relationship facing the silicon carbide raw material 4 To do. The diameter of the pedestal 7 is about 1/2 to 1/3 of the inner diameter of the crucible 1.
[0009]
The cone-shaped guide 9 has a conical structure in which the small-diameter portion is integrated with the pedestal 7, and the large-diameter portion is provided toward the inner wall surface of the container. The inner wall surface 10 of the crucible 1 is not in contact with the gap d. The gap d is kept at a distance h by the crucible inner wall surface and the large diameter portion of the cone-shaped guide 9 over the length h in the height direction. The gap d and its length h in the height direction are for controlling the amount of source gas flowing into the space 11 around the base of the lid 2.
[0010]
FIG. 2 shows the relationship between the gap d and length h and the polycrystals deposited in the space 11. As can be seen from FIG. 2, by narrowing the gap d and increasing the length h, the amount of gas flowing into the space 11 is reduced, and the precipitation ratio of the polycrystalline 6 that precipitates in the space 11 around the pedestal 3 is reduced. Therefore, only the single crystal 5 precipitated in the cone-shaped guide 9 can be grown more efficiently.
[0011]
On the other hand, the change in the precipitation ratio of the single crystal 5 and the polycrystal 6 changes the spatial structure in the container, and the temperature distribution in all the containers such as the crucible 1 and the lid 2 changes. FIG. 3 illustrates the relationship between the surface shape of the single crystal, the gap d, and the length h. The surface shape of the growing single crystal 5 changes greatly from a convex shape to a flat shape. That is, when the gap d is narrowed and the length h is lengthened, the surface shape of the single crystal becomes convex. Conversely, when the gap d is wide and the length h is shortened, the surface shape of the single crystal becomes flat. This change in the surface shape greatly affects the crystallinity. Generally, when flat, defects grow in the center of the crystal, and in the case of a convex type, a large strain is generated from the center of the single crystal toward the outside. Therefore, in order to reduce the precipitation ratio of the polycrystal 6 that precipitates in the space 11 around the pedestal 3 and to form an appropriate surface shape, in which range the gap d and the height direction length h of the gap are set. Becomes important.
[0012]
From FIG. 2, in order to reduce the precipitation ratio of the polycrystal 6, it is desired that the gap d is narrow and the length h is long. Also, from FIG. 3, the surface shape of the single crystal is markedly flat when the gap d is 5 mm and the length h is near 0.1 mm, and conversely, the convex shape is when the gap d is 0.1 mm and the length h is 20 mm. It turns out that conversion becomes remarkable. From these facts, in order to reduce the precipitation ratio of polycrystal 6 and to make the surface shape of the single crystal appropriate, the gap d is set in the range of 0.1 to 5 mm and the length h is set to 0.1 to 20 mm. It is desirable to set it within the range.
[0013]
Further, the cone-shaped guide 9 has a shape that spreads at an angle θ with respect to the surface of the base 7. As shown in FIG. 4, the spread angle θ of the cone-shaped guide 9 affects the enlargement ratio α of the single crystal 5, the surface shape, and the amount of polycrystal adhered to the guide inner wall. By increasing the angle θ, it is possible to increase the growth rate of the grown crystal and obtain a large-diameter crystal by one growth, but sudden expansion of the diameter causes distortion of the crystal.
FIG. 4 is a diagram for explaining the relationship between the angle θ of the spread of the cone-shaped guide 9, the enlargement ratio of the single crystal, the surface shape, and the polycrystal adhesion to the inner wall of the cone-shaped guide.
According to FIG. 4, when the angle θ is 60 ° or more, the polycrystal 6 adheres to the inner wall of the cone-shaped guide 9 and the expansion of the single crystal 5 may be hindered. θ ≦ 60 ° is desirable.
In addition, the change in the surface shape of the single crystal 5 due to the angle θ has a large effect that is greater than the gap d and the height length h of the gap, and considering the crystallinity, 20 ° ≦ θ ≦ 50 °. Is appropriate.
Further, an appropriate enlargement ratio from the standpoint of improving the efficiency of the crystal enlargement ratio without distorting the crystal, that is, without impairing the crystallinity, is 30 ° ≦ θ ≦ 60 °.
Therefore, the spread angle θ of the cone-shaped guide 9 is appropriately set according to the purpose of use of the single crystal to be obtained. In consideration of the above, the angle θ of the cone-shaped guide 9 is It can be said that 30 ° ≦ θ ≦ 50 ° is optimal.
[0014]
For the silicon carbide raw material 4, SiC powder obtained by the Atchison method or chemical synthesis is usually used. As the seed crystal 3, an SiC single crystal obtained by the Atchison method or the Lely method, or an SiC single crystal grown from the Atchison crystal or the Lely crystal by the sublimation method is used. The seed crystal 3 has a thickness of 0.1 to 30 mm.
[0015]
For crystal growth, the crucible is heated in a high-purity Ar gas atmosphere by a high-frequency furnace, resistance heating furnace, infrared furnace, etc., and the temperature at the top of the crucible (seed crystal temperature: Ta) and the temperature at the bottom (raw material temperature: Tb) Is controlled while measuring with a color thermometer. At this time, the seed crystal temperature and the raw material temperature are controlled to 2000 to 2500 ° C., and the temperature gradient between the raw material and the seed crystal (Tb-Ta) is controlled to 0 to 20 ° C./cm. Crystal growth is started by depressurizing the inside of the growth apparatus after heating to the control temperature, and by maintaining the pressure constant at 1 to 100 Torr. By carrying out growth under the above conditions using this apparatus, only the single crystal 5 grows on the seed crystal 3, and the polycrystal 6 is completely separated and deposited on the periphery of the pedestal 7.
[0016]
【Example】
As shown in FIG. 1, the crucible 1 has an inner diameter of 75 mm, the pedestal 7 protruding from the lid 2 is a cylinder having a diameter of 45 mm and a height of 10 mm, and the seed crystal 3 having a diameter of 45 mm and a thickness of 1 mm is placed on the pedestal 7. Fixed and grew. The cone-shaped guide 9 has an angle θ of 45 °, the gap d with the crucible 1 is 1 mm, and the height h of the outer peripheral surface of the cone-shaped guide 9 is 2 mm. The seed crystal 3 was a disc-shaped hexagonal SiC single crystal prepared by the sublimation method, and the orientation of the growth surface was the (0001) plane. The crucible 1 was first supported in a high frequency furnace, and the pressure in the furnace was reduced to 2 × 10 −5 Torr. Thereafter, the pressure was increased to 700 Torr with high purity Ar, and the temperature of the seed crystal 3 was increased to 2200 ° C. After the temperature of the seed crystal 3 reached the target value, the inside of the furnace was depressurized to 10 Torr and growth started. After holding for 70 hours, the pressure was increased to normal pressure and cooled, and the single crystal 5 was taken out. The single crystal 5 grew as long as the growth amount L = 31 mm, and the diameter expanded to φ = 63 mm. The aperture enlargement ratio α is 45 °, which is the same as the angle θ of the cone-shaped guide 9. Furthermore, the surface shape of the single crystal was also appropriate. At this time, a small amount of the polycrystal 6 deposited around the pedestal was not in contact with the cone-shaped guide 9, and the single crystal 5 grew completely separated from the polycrystal 6.
[0017]
The diameter expansion rate α of the crystal depends on the angle θ of the cone-shaped guide 9, and as θ increases, the diameter expansion rate α of the single crystal 5 increases at the same angle. However, depending on the size of the crucible 1, the heating conditions, the growth atmosphere, and the temperature conditions, polycrystals adhere to the inner wall of the cone-shaped guide 9 at a high angle of θ> 60 ° or more, and it is difficult to grow the single crystal 5 alone. There was a case. Therefore, according to the growth conditions, θ is adjusted so that the aperture expansion rate α is maximized while suppressing the polycrystal adhesion to the cone-shaped guide 9 so as not to deteriorate the crystallinity.
The angle θ of the cone-shaped guide 9 also affects the shape of the crystal growth surface. The surface of the single crystal 5 becomes smoother as θ approaches 0, and the surface shape becomes convex in the growth direction as it approaches 90 °.
[0018]
Further, the gap d between the cone-shaped guide 9 and the crucible 1 and the height direction length h of the outer peripheral surface forming the distance change the amount of the polycrystal 6 adhering to the periphery of the pedestal. When the gap d is narrowed and the height h in the height direction of the gap is increased, the adhesion of the polycrystal 6 is reduced. The adhesion amount of the polycrystal 6 influences the surface shape of the growing single crystal 5 similarly to the effect by the angle θ of the cone-shaped guide 9 described above.
[0019]
Since the surface shape affects the crystallinity of the single crystal 5, θ, d, and h are controlled and adjusted to a range in which the single crystal 5 is in an optimum shape that can prevent the deterioration of the single crystal 5.
In the above-described manner, it is possible to perform the diameter expansion growth more efficiently while separating only the single crystal in a good quality state.
[0020]
【The invention's effect】
The present invention has the following effects.
(1) In a crystal growth apparatus in a sublimation recrystallization method in which a cone-shaped guide is attached to a pedestal for fixing a seed crystal, the single crystal and the polycrystal are completely separated and the crystal quality is improved while increasing the aperture enlargement ratio α. It enables a growth apparatus that can grow without deteriorating.
(2) Enables long single crystal growth.
(3) By enabling a high aperture enlargement ratio and a lengthy growth crystal, it is possible to contribute to growth efficiency and mass productivity of single crystal wafers.
[Brief description of the drawings]
FIG. 1 is a front sectional view showing a single crystal growth apparatus according to an embodiment of the present invention.
FIG. 2 is a diagram for explaining a relationship between a gap d and a length h and polycrystals precipitated in the space 11;
FIG. 3 is a diagram illustrating a relationship between a gap d and a length h and a surface shape of a single crystal.
FIG. 4 is a diagram for explaining the relationship between the cone guide spread angle θ, the enlargement ratio of the single crystal 5, the surface shape, and the polycrystal adherence to the inner wall of the cone guide.
FIG. 5 is a front sectional view showing prior art 1 in a sublimation recrystallization method.
FIG. 6 is a front sectional view showing a prior art 2 in a sublimation recrystallization method.
FIG. 7 is a front sectional view showing prior art 3 in the sublimation recrystallization method.
[Explanation of symbols]
1 crucible 2 lid 3 seed crystal 4 silicon carbide raw material 5 single crystal 6 polycrystal 7 pedestal 9 cone-shaped guide 10 crucible inner wall 11 space around the pedestal θ angle of the cone-shaped guide α single crystal diameter expansion ratio L single crystal Growing amount d Gap between the crucible inner wall and the cone-shaped guide h Height of the gap in the height direction

Claims (1)

容器内に成長単結晶の原料を収容し、該原料に対向する容器内壁面の一部を上記原料側に突出させて種結晶を支持する台座とし、上記原料を加熱昇華させて上記種結晶上に単結晶を成長させる装置において、上記台座にコーン状ガイドの小径部を接続するとともに大径部が容器内壁面に向かって円錐形をしたコーン状ガイドを設け、該コーン状ガイドの大径部と上記容器内壁面との間に隙間dを形成し、該隙間dを0.1〜5mmとするとともにその隙間dの高さ方向長さhを0.1〜20mmとすることを特徴とするの単結晶成長装置。A raw material for the grown single crystal is housed in a container, a part of the inner wall surface of the container facing the raw material is protruded toward the raw material side to form a pedestal that supports the seed crystal, and the raw material is heated and sublimated to form a base on the seed crystal. In the apparatus for growing a single crystal, a cone-shaped guide having a large-diameter portion conically shaped toward the inner wall of the container is connected to the pedestal, and the large-diameter portion of the cone-shaped guide is provided. A gap d is formed between the container and the inner wall surface of the container, the gap d is set to 0.1 to 5 mm, and the height h of the gap d is set to 0.1 to 20 mm. Single crystal growth equipment.
JP2003016921A 2003-01-27 2003-01-27 Single crystal growth equipment Expired - Lifetime JP4102876B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003016921A JP4102876B2 (en) 2003-01-27 2003-01-27 Single crystal growth equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003016921A JP4102876B2 (en) 2003-01-27 2003-01-27 Single crystal growth equipment

Publications (2)

Publication Number Publication Date
JP2004224663A JP2004224663A (en) 2004-08-12
JP4102876B2 true JP4102876B2 (en) 2008-06-18

Family

ID=32904208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003016921A Expired - Lifetime JP4102876B2 (en) 2003-01-27 2003-01-27 Single crystal growth equipment

Country Status (1)

Country Link
JP (1) JP4102876B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4833780B2 (en) * 2006-09-21 2011-12-07 新日本製鐵株式会社 Lid graphite crucible and silicon carbide single crystal growth apparatus
JP4894717B2 (en) * 2007-10-23 2012-03-14 株式会社デンソー Method for manufacturing silicon carbide single crystal substrate
JP5271601B2 (en) * 2008-05-16 2013-08-21 株式会社ブリヂストン Single crystal manufacturing apparatus and manufacturing method
JP5210732B2 (en) * 2008-07-01 2013-06-12 昭和電工株式会社 Silicon carbide single crystal growth vessel structure
US20110239930A1 (en) * 2008-10-28 2011-10-06 Bridgestone Corporation Method for manufacturing silicon carbide single crystal
JP2010138048A (en) * 2008-12-15 2010-06-24 Bridgestone Corp Apparatus and method for manufacturing silicon carbide
JP5432573B2 (en) * 2009-04-16 2014-03-05 株式会社ブリヂストン Silicon carbide single crystal manufacturing apparatus and silicon carbide single crystal manufacturing method
JP5403671B2 (en) 2009-06-10 2014-01-29 昭和電工株式会社 Silicon carbide single crystal manufacturing equipment
JP2011184208A (en) 2010-03-04 2011-09-22 Bridgestone Corp Apparatus and method for producing silicon carbide single crystal
DE102015212323A1 (en) * 2014-07-04 2016-01-07 Sumitomo Electric Industries, Ltd. Crucible and process for producing a single crystal
JP6964520B2 (en) 2015-12-28 2021-11-10 昭和電工株式会社 Cleaning method for SiC single crystal growth furnace
JP7305818B1 (en) 2022-01-26 2023-07-10 國家中山科學研究院 Thermal field adjustment method for silicon carbide single crystal growth

Also Published As

Publication number Publication date
JP2004224663A (en) 2004-08-12

Similar Documents

Publication Publication Date Title
US7396411B2 (en) Apparatus for manufacturing single crystal
US9068277B2 (en) Apparatus for manufacturing single-crystal silicon carbide
JP3961750B2 (en) Single crystal growth apparatus and growth method
JP4102876B2 (en) Single crystal growth equipment
JP2018030773A (en) Apparatus used for single crystal growth
JP2001072491A (en) Method and apparatus for producing single crystal
JP5012655B2 (en) Single crystal growth equipment
JPH0791153B2 (en) Method for producing α-SiC single crystal
TWI750630B (en) PREPERATION METHOD FOR SiC INGOT, PREPERATION METHOD FOR SiC WAFER AND A SYSTEM THEREOF
JP2008110907A (en) Method for producing silicon carbide single crystal ingot, and silicon carbide single crystal ingot
CN108149324B (en) Aluminum nitride self-nucleation growth method
JP2005239496A (en) Silicon carbide raw material for growing silicon carbide single crystal, silicon carbide single crystal, and method for producing the same
JP4450118B2 (en) Method for producing silicon carbide single crystal
JPH05178698A (en) Apparatus and process for production of silicon carbide bulk single crystal
JPH03295898A (en) Method and device for growing silicon carbide single crystal
JP6829767B2 (en) Manufacturing method and manufacturing equipment for SiC raw materials for SiC crystal growth
JP3848446B2 (en) Method for growing low resistance SiC single crystal
JP2012158520A (en) Apparatus for growing single crystal
JPH10139589A (en) Production of single crystal
JP6856705B2 (en) Ingot manufacturing equipment and method for manufacturing silicon carbide single crystal ingots using this
JP4947383B2 (en) Single crystal growth method and growth apparatus
JP7305818B1 (en) Thermal field adjustment method for silicon carbide single crystal growth
JPH1179896A (en) Production of silicon carbide single crystal
CN213172684U (en) Special-shaped seed crystal and high-quality aluminum nitride crystal
WO2008018322A1 (en) Single-crystal silicon carbide and process for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070717

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071121

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080226

R150 Certificate of patent or registration of utility model

Ref document number: 4102876

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term