JPH03295898A - Method and device for growing silicon carbide single crystal - Google Patents

Method and device for growing silicon carbide single crystal

Info

Publication number
JPH03295898A
JPH03295898A JP9759090A JP9759090A JPH03295898A JP H03295898 A JPH03295898 A JP H03295898A JP 9759090 A JP9759090 A JP 9759090A JP 9759090 A JP9759090 A JP 9759090A JP H03295898 A JPH03295898 A JP H03295898A
Authority
JP
Japan
Prior art keywords
crucible
single crystal
silicon carbide
carbide single
outer cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9759090A
Other languages
Japanese (ja)
Other versions
JPH0637354B2 (en
Inventor
Masatoshi Kanetani
正敏 金谷
Yuichiro Fujiwara
雄一郎 藤原
Akihiro Moriya
明弘 森谷
Seiji Shinoyama
篠山 誠二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2097590A priority Critical patent/JPH0637354B2/en
Publication of JPH03295898A publication Critical patent/JPH03295898A/en
Publication of JPH0637354B2 publication Critical patent/JPH0637354B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To obtain a large, long and high-quality SiC single crystal by using a split graphite crucible also used as a heating element and consisting of the upper crucible outer cylinder, crucible bottom and expansion crucible outer cylinder to be arranged between them. CONSTITUTION:An SiC single crystal substrate 23 is fixed at the mounting part 22 of a graphite lid 19. The crucible 28 consists of the graphite upper crucible outer cylinder 18, expansion crucible outer cylinder 21 and crucible bottom 20. A powder 26 contg. SiC as the raw material is placed in the crucible 28, and the distance 30 between the growth surface 27 of the substrate and the powder 26 is adjusted by the length of the cylinder 21. The powder 26 is heated, the sublimated SiC is deposited on the substrate 23 to grow a lumpy SiC single crystal 24. When the crystal growth is successively carried out, the residue after crystal growth in the crucible 28 is removed, fresh raw powder 26 is charged, the distance between the growth surface 29 and raw powder 26 surface is adjusted by the length of the outer cylinder 21, and a crystal is again grown.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、炭化珪素単結晶成長方法および装置に関す
る。詳しく述べるとこの発明は、半導体電子材料として
青色発光ダイオード等の応用面に有用な大面積で長尺か
つ高品質の炭化珪素単結晶を安価に効率よく成長させる
炭化珪素単結晶成長方法および装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method and apparatus for growing a silicon carbide single crystal. Specifically, the present invention relates to a method and apparatus for growing silicon carbide single crystals that efficiently grow large-area, long, and high-quality silicon carbide single crystals at low cost that are useful for applications such as blue light emitting diodes as semiconductor electronic materials. .

(従来の技術) 従来塊状の炭化珪素単結晶成長方法としては、アチソン
法、レーリー法、昇華再結晶法(改良レーリー法)等が
知られている。このうち現在では、半導体材料として有
用な成長法としては昇華再結晶法がおもに採用されてい
る。
(Prior Art) Conventionally known bulk silicon carbide single crystal growth methods include the Acheson method, the Rayleigh method, and the sublimation recrystallization method (improved Rayleigh method). Among these, the sublimation recrystallization method is currently mainly used as a growth method useful for semiconductor materials.

第2図に示す装置は、アイイーイーイー トランスアク
ンヨンズ オン エレクトロン デバイシズ、ボリウム
、イーデイ−30,ナンバー4(1983)277〜2
81ページ[IEEE 1’RANSACTION O
N ELECTRON  DEVICES、VOL、E
D−30、No、4(1983)277−281コに記
載された装置であり、同図において、符号1は断面円形
の黒鉛からなるるつぼ、2はるっぽ1内の中央部に配置
された多孔質グラファイトからなる円筒体、3はるつぼ
1と円筒体2との間の下半部分に設けられた多孔質グラ
ファイトからなる原料載置台、4はるつぼ1と円筒体2
との間の上半部に収容された炭化珪素原料、5は円筒体
2の内側に形成された成長室、6は成長室5の下部に配
設されたグラファイトからなる台座、7は台座6上に載
置された炭化珪素単結晶基板であり、るつぼ1の外側に
配置された図示されていない高周波誘導加熱コイルによ
りるつぼ1が加熱されて原料4が昇華し、円筒体2を経
て成長室に到達した昇華ガスが原料4よりも若干低温に
なっている基板7に当って基板7の表面に再結晶するこ
とによって炭化珪素単結晶が成長する。しかし、再結晶
するためのガスは原料がすべて昇華してしまえば補充で
きないため、できる単結晶の大型化あるいは長尺化には
限度がある。さらに、原料を入れ換えて再度成長を行う
場合は、単結晶成長にしたがって単結晶成長面が原料に
近づくため、るつぼの長さが限定されることにより、単
結晶成長面と原料との間の所定の温度勾配を作ることが
できなくなる。このため本方法では、炭化珪素単結晶を
簡単に長く成長させることができないという問題がある
The apparatus shown in FIG.
Page 81 [IEEE 1'RANSACTION O
N ELECTRON DEVICES, VOL, E
D-30, No. 4 (1983) 277-281, in which numeral 1 is a crucible made of graphite with a circular cross section, and 2 is a crucible placed in the center of Luppo 1. 3 is a raw material mounting table made of porous graphite provided in the lower half between the crucible 1 and the cylindrical body 2; 4 is the crucible 1 and the cylindrical body 2;
5 is a growth chamber formed inside the cylindrical body 2; 6 is a pedestal made of graphite disposed at the bottom of the growth chamber 5; 7 is a pedestal 6; A silicon carbide single crystal substrate is placed on top of the crucible 1, and the crucible 1 is heated by a high-frequency induction heating coil (not shown) placed outside the crucible 1, and the raw material 4 sublimates, passing through the cylindrical body 2 into the growth chamber. The sublimated gas that has reached the substrate 7 hits the substrate 7, which is slightly lower in temperature than the raw material 4, and recrystallizes on the surface of the substrate 7, thereby growing a silicon carbide single crystal. However, since the gas for recrystallization cannot be replenished once all the raw materials have sublimated, there is a limit to how large or long a single crystal can be made. Furthermore, when the raw materials are replaced and the growth is performed again, the single crystal growth surface approaches the raw material as the single crystal grows, so the length of the crucible is limited. It becomes impossible to create a temperature gradient. Therefore, this method has a problem in that silicon carbide single crystal cannot be easily grown for a long time.

また、第3図に示す装置は、特開昭62−66゜000
号に開示されている従来装置を示す。黒鉛製有底円筒形
の収納部9と該円筒形収納部の内部に同心円状に配置さ
れた壁12の間に形成される空間11に収納された炭化
珪素原料10が、図示されていない高周波誘導加熱コイ
ルによって加熱されて、できた昇華ガスが成長室13に
到達する。昇華したガスは摺動機構14を有する摺動部
材15に取−り付けられた基板ホルダー16の単結晶基
板保持部17に当って該表面に再結晶することにより、
塊状の単結晶が成長する。基板ホルダー16に保持され
た単結晶基板17の下面から原材料10表面までの高さ
は、摺動機構14によって任意に調節できるようになっ
ている。たしかに本方法を用いれば、塊状の単結晶が大
きくなるにつれて基板ホルダーを摺動させることによっ
て単結晶成長面から原材料までの距離を一定に保ちなが
ら炭化珪素単結晶を長尺化できるが、本方法では設備が
大型化すること、成長方法に熟練が必要とされることな
ど、安価に効率良く炭化珪素単結晶を大型化、長尺化す
るにはまだ問題がある。
Furthermore, the apparatus shown in FIG.
This figure shows a conventional device disclosed in the above issue. A silicon carbide raw material 10 stored in a space 11 formed between a bottomed cylindrical storage section 9 made of graphite and a wall 12 arranged concentrically inside the cylindrical storage section is exposed to a high frequency wave (not shown). The sublimated gas that is heated by the induction heating coil reaches the growth chamber 13 . The sublimated gas hits the single crystal substrate holding portion 17 of the substrate holder 16 attached to the sliding member 15 having the sliding mechanism 14 and is recrystallized on the surface.
A lumpy single crystal grows. The height from the lower surface of the single crystal substrate 17 held by the substrate holder 16 to the surface of the raw material 10 can be arbitrarily adjusted by the sliding mechanism 14. It is true that using this method, it is possible to lengthen the silicon carbide single crystal while keeping the distance from the single crystal growth surface to the raw material constant by sliding the substrate holder as the bulk single crystal grows larger, but this method However, there are still problems in increasing the size and length of silicon carbide single crystals inexpensively and efficiently, such as the need for larger equipment and the need for greater skill in the growth method.

(発明が解決しようとする課題) 上記の如く、従来技術では大型で長尺の炭化珪素単結晶
を安価に製造するにはまだ問題があるため、本発明は、
これらの課題を解決し安価に大型で長尺かつ高品質の炭
化珪素単結晶を製造するための炭化珪素単結晶の成長方
法および装置を提供することを目的とするものである。
(Problems to be Solved by the Invention) As mentioned above, there are still problems in manufacturing large and long silicon carbide single crystals at low cost with the conventional technology, so the present invention solves the following problems:
It is an object of the present invention to provide a silicon carbide single crystal growth method and apparatus for solving these problems and producing a large, long, and high quality silicon carbide single crystal at low cost.

(課題を解決するための手段) 上記目的は、昇華再結晶法により炭化珪素粉末からなる
原料を加熱昇華させ炭化珪素単結晶基板上に炭化珪素単
結晶を成長させる方法において、結晶成長方向にるつほ
の長さを変更することが可能な黒鉛製のるつぼを使用し
、炭化珪素単結晶成長を行なったのち、該るつは内に装
填される原料を入れ換え、かつ前記単結晶成長面から前
記原料の表面までの距離が所定の距離になるようにるつ
ぼの長さを調整し、再度昇華再結晶法により結晶成長を
行う操作を少なくとも一回行うことを特徴とする炭化珪
素単結晶成長方法によって達成される。
(Means for Solving the Problems) The above object is achieved in a method of growing a silicon carbide single crystal on a silicon carbide single crystal substrate by heating and sublimating a raw material made of silicon carbide powder by a sublimation recrystallization method. After growing a silicon carbide single crystal using a graphite crucible whose length can be changed, the raw material charged inside the crucible is replaced, and the crucible is removed from the single crystal growth surface. A method for growing a silicon carbide single crystal, comprising adjusting the length of the crucible so that the distance to the surface of the raw material is a predetermined distance, and performing crystal growth again by a sublimation recrystallization method at least once. achieved by.

上記目的はまた、黒鉛製の発熱体を兼ねるるつぼと、前
記るつぼの上端開口部を藷う黒鉛製のるつぼ蓋体と、る
つぼを加熱する加熱手段と、るつぼを挿入して真空また
は不活性ガス雰囲気に制御する真空系を有する炭化珪素
単結晶成長装置において、前記黒鉛製のるつぼが、上部
るつぼ外筒と、るつぼ底と、この両者間に着脱自在に配
設される増設用るつぼ外筒とからなる分割形であること
を特徴とする炭化珪素単結晶成長装置によって達成され
る。
The above object also includes a crucible that also serves as a heating element made of graphite, a crucible lid made of graphite that covers the upper end opening of the crucible, a heating means for heating the crucible, and a vacuum or inert gas In a silicon carbide single crystal growth apparatus having a vacuum system for controlling the atmosphere, the graphite crucible includes an upper crucible outer cylinder, a crucible bottom, and an additional crucible outer cylinder detachably disposed between the two. This is achieved using a silicon carbide single crystal growth apparatus characterized by being of a split type.

(作用) 本発明の炭化珪素単結晶成長方法は、炭化珪素からなる
原料粉末を加熱昇華させ、るつぼの上部を覆う黒鉛製の
るつぼ蓋体に配置され原料粉末よりやや低温になった炭
化珪素単結晶基板−ヒに、昇華した炭化珪素ガスから炭
化珪素単結晶を堆積成長させるものであるが、−度成長
した後の原料の残滓を取り除いた後、再成長する前の結
晶成長面から再成長のために入れ換えた原料の表面まで
の距離は、るつほの長さが変更できるために所定の距離
にすることができる。この所定の距離は、単結晶が長く
大きく成長したときに成長を続けるための空間であるこ
とと同時に昇華法による炭化珪素単結晶成長のために単
結晶成長面を原料粉末よりやや低温に保持するのに必要
な温度勾配を生じさせるだめの距離である。
(Function) The silicon carbide single crystal growth method of the present invention involves heating and sublimating a raw material powder made of silicon carbide, and placing the silicon carbide single crystal at a slightly lower temperature than the raw material powder in a crucible cover made of graphite that covers the upper part of the crucible. A silicon carbide single crystal is deposited and grown from sublimated silicon carbide gas on a crystal substrate, but after removing the residue of the raw material after growth, regrowth is performed from the crystal growth surface before regrowth. The distance to the surface of the raw material replaced can be set to a predetermined distance because the length of the melt can be changed. This predetermined distance is a space for the single crystal to continue growing when it grows long and large, and at the same time, it maintains the single crystal growth surface at a slightly lower temperature than the raw material powder for silicon carbide single crystal growth by the sublimation method. This is the distance required to create the temperature gradient necessary for

以上、本発明を実施態様に基づきより詳細に説明する。The present invention will be described in more detail based on embodiments.

第1図は本発明の炭化珪素単結晶の成長方法において好
適に用いられる単結晶成長装置に一例を示すものである
FIG. 1 shows an example of a single crystal growth apparatus suitably used in the silicon carbide single crystal growth method of the present invention.

第1図に示されるように、該単結晶成長装置に使用され
る黒鉛製のるつは28は、例えば円形などの断面形状を
有する黒鉛製の上部るつぼ外筒18と、結晶成長方向に
るつぼの長さを調節するために使用される増設用るつぼ
外筒21と、炭化珪素原料粉末26を保持するためのる
つぼ底20によって構成されている。そして、上部るつ
は外筒18と増設用るつぼ外筒21、ならびにるつは外
筒18ないしは増設用るつぼ外筒21とるつぼ底20は
それぞれ、昇華した炭化珪素ガスがるつぼ28の外に出
ないでかつるつぼ温度の不均一ができないような接続部
25で連結されている。接続部25は、例えば、■ねじ
込み式、■すりあわせ式、■嵌め込み式などで代表され
る前記接合部の条件を満たす構造でできている。なお、
前記上部るつぼ外筒18の上端開口部には、内面中央部
に炭化珪素単結晶基板の取り付は部22を有する黒鉛製
のるつは蓋体19が、上部るつぼ外筒18の上端開口部
を田うように取付けられる。
As shown in FIG. 1, the graphite crucible 28 used in the single crystal growth apparatus includes an upper crucible outer cylinder 18 made of graphite having a circular cross-sectional shape, and a crucible in the crystal growth direction. It is composed of an additional crucible outer cylinder 21 used to adjust the length of the crucible, and a crucible bottom 20 for holding silicon carbide raw material powder 26. Then, the sublimated silicon carbide gas flows out of the crucible 28 from the upper crucible outer cylinder 18 and the additional crucible outer cylinder 21, and from the crucible outer cylinder 18 or the additional crucible outer cylinder 21 and the crucible bottom 20. They are connected by a connecting portion 25 that prevents unevenness in crucible temperature. The connecting portion 25 is made of a structure that satisfies the conditions of the above-mentioned joint portion, such as (1) screw-in type, (2) sliding type, and (2) fitting type. In addition,
At the upper end opening of the upper crucible outer cylinder 18, a graphite crucible lid body 19 having a portion 22 for attaching a silicon carbide single crystal substrate at the center of the inner surface is attached. It is installed like a rice field.

この第1図のようなるつぼを使用して単結晶成長を行う
には、まず、黒鉛製の蓋体19の炭化珪素結晶基板の取
り付は部22に炭化珪素単結晶基板23を取り付ける。
To grow a single crystal using the crucible shown in FIG. 1, first, a silicon carbide single crystal substrate 23 is attached to a portion 22 of the graphite lid 19 for attaching the silicon carbide crystal substrate.

上部るつは外筒18と増設用るつぼ外筒21とるつぼ底
20で構成される黒鉛製のるつぼ28には、原料となる
炭化珪素を含む粉末26を収納する。ここで単結晶基板
成長面27から原料粉末26表面までの距離30は、増
設用るつぼ外筒21の長さにより調節する。もちろん、
この増設用るつぼ外筒21は、使用しなくても、例えば
、上部るつぼ外筒18とるつは底20によって、距離3
0が所定の距離になれば良い。
A crucible 28 made of graphite and composed of an upper crucible outer cylinder 18, an additional crucible outer cylinder 21, and a crucible bottom 20 stores powder 26 containing silicon carbide as a raw material. Here, the distance 30 from the single crystal substrate growth surface 27 to the surface of the raw material powder 26 is adjusted by the length of the additional crucible outer cylinder 21. of course,
Even if this additional crucible outer cylinder 21 is not used, for example, the upper crucible outer cylinder 18 and the crucible can be separated by a distance of 3 by the bottom 20.
It is sufficient if 0 is a predetermined distance.

しかして、原料を加熱手段により加熱して昇華した炭化
珪素ガスが、やや低温になっている炭化珪素単結晶基板
23の上に堆積し、塊状の炭化珪素単結晶24を成長さ
せることができる。継続して結晶成長を行なうには、ま
ず、るつは28内の結晶成長後の°残滓を取り除き、再
び結晶成長を行うための新しい炭化珪素を含む原料粉末
26を入れる。再成長を行って大きくあるいは長くしよ
うとする塊状の炭化珪素単結晶24は、最初の結晶成長
において用いられた蓋体19と一体となったままあるい
は新しいるつぼ蓋体19の炭化珪素単結晶取り付は部2
2に取り付けて上部るつぼ外筒18の上に載置する。単
結晶、成長面29から炭化珪素原料粉末26の表面まで
の距離30は、増設用るつは外筒21の長さを調整して
所定の距離にする。この所定の距離30は、5〜25m
m、特に10〜20mmか望ましく、短いと単結晶の成
長が阻害され易く、長いと必要な温度勾配を作りにくい
Thus, the silicon carbide gas that has been sublimed by heating the raw material by the heating means is deposited on the silicon carbide single crystal substrate 23 which is at a slightly lower temperature, and a bulk silicon carbide single crystal 24 can be grown. To continue crystal growth, first, the residue after crystal growth is removed from the melter 28, and new raw material powder 26 containing silicon carbide is introduced into the melter 28 for crystal growth. The lumpy silicon carbide single crystal 24 that is to be regrown to become larger or longer can be left integrated with the lid 19 used for the initial crystal growth or attached to the silicon carbide single crystal of a new crucible lid 19. Part 2
2 and placed on the upper crucible outer cylinder 18. The distance 30 from the single crystal growth surface 29 to the surface of the silicon carbide raw material powder 26 is set to a predetermined distance by adjusting the length of the additional crucible outer cylinder 21. This predetermined distance 30 is between 5 and 25 m.
m, preferably 10 to 20 mm; if it is short, the growth of the single crystal is likely to be inhibited, and if it is long, it is difficult to create the necessary temperature gradient.

しかして、高周波誘導加熱コイルなどの加熱手段でるつ
ぼ28を加熱し、昇i(< シた炭化珪素ガスを単結晶
成長面29に堆積させて炭化珪素単結晶24を長くする
ことができる。炭化珪素単結晶は、例えは、エクステン
デッド アブストラクト オン サ゛ セブンティーン
ス コンファレンス オン ソリッド ステート デバ
イシズ アンドマテリアルス、トウキヨウ、1985.
249〜252ページ[Extendcd abstr
ucts of the 17th、 Confere
ncc on Devices and  Mater
ials、 Tokyo、 1985゜pp249−2
521に記載の如く、結晶成長方向に垂直方向にも成長
することが知られており、半径方向の大型化も可能とな
る。また、アイイーイーイートランスアクションズ オ
ン エレクトロン デバイシズ、ボリウム、  イーデ
イ−30,ナンバー 4 (1983)277〜281
ページ[IEEE TI?ANSACTIONON E
LECTRON DEVICES、 VOL、ED−3
0,No、4(1983)277−2811に記載の如
く、炭化珪素単結晶基板に比べて基板上に成長した単結
晶の方が結晶性が向上し結晶を長く成長させることによ
って次第に結晶性が改善されることが知られており、本
方法を用いて炭化珪素単結晶を長く成長させることによ
り簡単に単結晶の結晶性を向上させることができる。
Thus, by heating the crucible 28 with a heating means such as a high-frequency induction heating coil, silicon carbide gas can be deposited on the single crystal growth surface 29 to lengthen the silicon carbide single crystal 24. Silicon single crystals are, for example, Extended Abstracts on Site Seventeenth Conference on Solid State Devices and Materials, Tokyo, 1985.
Pages 249-252 [Extend CD abstract
ucts of the 17th, Confere
ncc on Devices and Mater
ials, Tokyo, 1985゜pp249-2
As described in No. 521, it is known that crystals grow in the direction perpendicular to the crystal growth direction, and it is also possible to increase the size in the radial direction. Also, IEE Transactions on Electron Devices, Volume, Eday-30, Number 4 (1983) 277-281
Page [IEEE TI? ANSACTIONON E
LECTRON DEVICES, VOL, ED-3
0, No. 4 (1983) 277-2811, the crystallinity of a single crystal grown on a silicon carbide substrate is improved compared to a silicon carbide single crystal substrate, and by growing the crystal for a long time, the crystallinity gradually improves. It is known that the crystallinity of a single crystal can be easily improved by growing a silicon carbide single crystal long using this method.

一方、再成長の成長界面付近は不純物の濃度が不均一に
なり易いので、使用する炭化珪素原料粉末26としては
、不純物を除去した炭化珪素粉末あるいは高純度の炭化
珪素粉末を使用するのが望ましい。
On the other hand, since the concentration of impurities tends to be uneven near the growth interface during regrowth, it is desirable to use silicon carbide powder from which impurities have been removed or high-purity silicon carbide powder as the silicon carbide raw material powder 26 used. .

また、第1図のような構成のるつぼでは。るつぼ蓋体1
9に不必要な多結晶炭化珪素が若干付着する、単結晶成
長を阻害する程度には成長しない。
Also, in a crucible configured as shown in Figure 1. Crucible lid 1
A small amount of unnecessary polycrystalline silicon carbide adheres to 9, but it does not grow to the extent that it inhibits single crystal growth.

前記再成長法を数回繰り返すことによって、実用可能な
大型で長く高品質な炭化珪素単結晶を簡単に安価にしか
も効率よく成長させることができる。なお、成長装置の
大きさの許す限り、るつぼ増設用外筒21を継ぎ足すか
もしくは長さを変えたるつぼ増設用外筒21を使用すれ
ば何回でも成長可能であり、繰り返し成長の回数が制限
されるものではない。
By repeating the above-mentioned regrowth method several times, a practical large, long, and high quality silicon carbide single crystal can be grown simply, inexpensively, and efficiently. In addition, as long as the size of the growth apparatus allows, growth can be performed as many times as possible by adding additional crucible extension outer cylinders 21 or by using crucible extension outer cylinders 21 with different lengths, and the number of repeated growths can be reduced. There are no restrictions.

(実施例) 以下、本発明を実施例によりさらに具体的に説明する。(Example) Hereinafter, the present invention will be explained in more detail with reference to Examples.

第1図に示すような構成の単結晶成長るつぼを用いて、
炭化珪素単結晶の成長を試みた。上部るつぼ外筒18と
増設用るつぼ外筒21とるつぼ底20との接続部25は
ねじ込み方式とした。まず、最初の成長に用いた炭化珪
素単結晶基板23は、炭化珪素研磨材を工業的に製造す
る過程で副産物として得られた単結晶を整形したものま
たは昇華再結晶法にて得られた単結晶を切断、研磨した
ものを用いた。大きさは、約10〜15mmである。
Using a single crystal growth crucible configured as shown in Figure 1,
An attempt was made to grow silicon carbide single crystals. The connection portion 25 between the upper crucible outer cylinder 18, the additional crucible outer cylinder 21, and the crucible bottom 20 is screwed. First, the silicon carbide single crystal substrate 23 used for the initial growth is a shaped single crystal obtained as a by-product in the process of industrially manufacturing a silicon carbide abrasive material or a single crystal obtained by a sublimation recrystallization method. Cut and polished crystals were used. The size is approximately 10-15 mm.

また、炭化珪素原料粉末26としては、市販されている
炭化珪素研磨材を約2000℃で10分間で真空熱処理
したものを用いた。上記のごとく前処理を施した炭化珪
素粉末26をるっは28に入れ、単結晶基板23をるつ
ぼ蓋体19の単結晶基板取り付は部22に取り付は上部
るつぼ外筒18の一ヒに載置し、単結晶基板の成長面2
7から原料粉末26の表面までの距離30を15mmに
調整し、不活性ガス雰囲気中で高周波誘導加熱によりる
つは28を約2350℃に加熱し、成長速度が約0゜5
〜1.5mm毎時になるように雰囲気圧力を調整して結
晶成長を試みた。この結果、直径が13mm、長さが1
0mmの炭化珪素単結晶が得られた。継続して成長させ
るために、るつぼ28外に原料26の残滓を取り出し、
新しい原料26を入れ変え、−度できた単結晶24の結
晶成長面29から原料表面までの距離を15mmに調整
した後、前記と同様の結晶成長条件で再度成長を試みた
結果、直径が18關、長さが18mmの炭化珪素単結晶
が得られた。さらに同様の成長を繰り返し、直径が23
1、長さが25mmの塊状の炭化珪素単結晶が得られた
。この時、単結晶24の周囲の多結晶は単結晶の成長を
阻害するほど成長することはなかった。
Further, as the silicon carbide raw material powder 26, a commercially available silicon carbide abrasive material was vacuum heat-treated at about 2000° C. for 10 minutes. The silicon carbide powder 26 that has been pretreated as described above is put into the container 28, and the single crystal substrate 23 is attached to the single crystal substrate mounting portion 22 of the crucible lid 19, which is attached to one hole of the upper crucible outer cylinder 18. growth surface 2 of the single crystal substrate.
The distance 30 from 7 to the surface of the raw material powder 26 was adjusted to 15 mm, and the melt 28 was heated to about 2350°C by high-frequency induction heating in an inert gas atmosphere, so that the growth rate was about 0°5.
Crystal growth was attempted by adjusting the atmospheric pressure so that the rate was ~1.5 mm/hour. As a result, the diameter is 13 mm and the length is 1
A 0 mm silicon carbide single crystal was obtained. In order to continue growing, the residue of the raw material 26 is taken out of the crucible 28,
After replacing the new raw material 26 and adjusting the distance from the crystal growth surface 29 of the single crystal 24 to 15 mm, growth was attempted again under the same crystal growth conditions as above, and as a result, the diameter was 18 mm. A silicon carbide single crystal with a length of 18 mm was obtained. The same growth continued until the diameter reached 23.
1. A bulk silicon carbide single crystal with a length of 25 mm was obtained. At this time, the polycrystal around the single crystal 24 did not grow to the extent that it inhibited the growth of the single crystal.

また、繰り返し成長の界面での、結晶欠陥密度は8X1
04個/C♂であり、半導体電子材料として十分実用に
なる。さらに、成長にしたがって結晶欠陥密度も改善さ
れ、4 X 104個/C♂にまで改善された。
In addition, the crystal defect density at the interface of repeated growth is 8X1
04 pieces/C♂, which is sufficient for practical use as a semiconductor electronic material. Furthermore, the crystal defect density was improved as the crystal grew, reaching 4 x 104 defects/C♂.

(発明の効果) 以上に述べたように本発明は、長さが変更可能なるつぼ
を使用し、炭化珪素単結晶を行ったのち、るつぼ内に装
填される炭化珪素原料粉末を入れ換え、かつ前記単結晶
成長面から前記原料表面までの距離を所定の距離に調整
し、単結晶成長を繰り返す方法であるから、簡単にしか
も安価に効率良く大型で長くかつ高品質な炭化珪素単結
晶を成長させることができ、炭化珪素単結晶を用いた青
色発光ダイオードをはじめとする各種応用面に有用な炭
化珪素単結晶ウェハの供給を特徴とする特許である。
(Effects of the Invention) As described above, the present invention uses a crucible whose length can be changed, and after forming a silicon carbide single crystal, replaces the silicon carbide raw material powder charged in the crucible, and Since this method adjusts the distance from the single crystal growth surface to the raw material surface to a predetermined distance and repeats single crystal growth, it is possible to grow large, long, and high quality silicon carbide single crystals simply, inexpensively, and efficiently. This patent is characterized by the supply of silicon carbide single crystal wafers that are useful for various applications including blue light emitting diodes using silicon carbide single crystals.

本発明はまた、発熱体を兼ねる黒鉛製のるつぼが、上部
るつぼ外筒と、るつぼ底と、この両者間に着脱自在に配
設される増設用るつぼ外筒とからなる分割形であること
を特徴とする炭化珪素単結晶成長装置であるので、前記
のごとき単結晶成長方法において好適に使用され、この
ような簡単な構成にもかかわらず、大型で長尺の炭化珪
素単結晶を簡単にしかも安価に効率良く成長させること
ができる。
The present invention also provides that the graphite crucible that also serves as a heating element is of a split type, consisting of an upper crucible outer cylinder, a crucible bottom, and an additional crucible outer cylinder that is detachably disposed between the two. Since this is a silicon carbide single crystal growth apparatus with special characteristics, it is suitable for use in the single crystal growth method described above, and despite such a simple configuration, it is possible to easily grow large and long silicon carbide single crystals. It can be grown cheaply and efficiently.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の炭化珪素単結晶成長装置の一例を使用
段階において模式的に示す断面図であり、第2図および
第3図は従来の炭化珪素単結晶成長装置の断面図である
。 18・・・上部るつぼ外筒、19・・・るつぼ蓋体、2
0・・・るつは底、21・・・増設用るつは外筒、22
・・・単結晶基板取り付は部、 23・・・炭化珪素単結晶基板、 24・・・炭化珪素単結晶、25・・・るつは接続部、
26・・・炭化珪素原料粉末、 27・・・単結晶基板成長面、 29・・・単結晶成長面。
FIG. 1 is a cross-sectional view schematically showing an example of a silicon carbide single crystal growth apparatus of the present invention in a use stage, and FIGS. 2 and 3 are cross-sectional views of a conventional silicon carbide single crystal growth apparatus. 18... Upper crucible outer cylinder, 19... Crucible lid body, 2
0... The bolt is the bottom, 21... The extension bolt is the outer cylinder, 22
...Single crystal substrate mounting part, 23...Silicon carbide single crystal substrate, 24...Silicon carbide single crystal, 25...Trust connection part,
26...Silicon carbide raw material powder, 27...Single crystal substrate growth surface, 29...Single crystal growth surface.

Claims (2)

【特許請求の範囲】[Claims] (1)昇華再結晶法により炭化珪素粉末からなる原料を
加熱昇華させ炭化珪素単結晶基板上に炭化珪素単結晶を
成長させる方法において、結晶成長方向にるつぼの長さ
を変更することが可能な黒鉛製のるつぼを使用し、炭化
珪素単結晶成長を行なったのち、該るつぼ内に装填され
る原料を入れ換え、かつ前記単結晶成長面から前記原料
の表面までの距離が所定の距離になるようにるつぼの長
さを調整し、再度昇華再結晶法により結晶成長を行う操
作を少なくとも一回行うことを特徴とする炭化珪素単結
晶成長方法。
(1) In a method of growing a silicon carbide single crystal on a silicon carbide single crystal substrate by heating and sublimating a raw material made of silicon carbide powder using the sublimation recrystallization method, it is possible to change the length of the crucible in the crystal growth direction. After growing a silicon carbide single crystal using a graphite crucible, the raw material loaded in the crucible is replaced, and the distance from the single crystal growth surface to the surface of the raw material is a predetermined distance. 1. A method for growing a silicon carbide single crystal, comprising adjusting the length of a crucible and growing the crystal again by a sublimation recrystallization method at least once.
(2)黒鉛製の発熱体を兼ねるるつぼと、前記るつぼの
上端開口部を覆う黒鉛製のるつぼ蓋体と、るつぼを加熱
する加熱手段と、るつぼを挿入して真空または不活性ガ
ス雰囲気に制御する真空系を有する炭化珪素単結晶成長
装置において、前記黒鉛製のるつぼが、上部るつぼ外筒
と、るつぼ底と、この両者間に着脱自在に配設される増
設用るつぼ外筒とからなる分割形であることを特徴とす
る炭化珪素単結晶成長装置。
(2) A crucible made of graphite that also serves as a heating element, a crucible lid made of graphite that covers the upper opening of the crucible, a heating means for heating the crucible, and a vacuum or inert gas atmosphere controlled by inserting the crucible. In a silicon carbide single crystal growth apparatus having a vacuum system, the graphite crucible is divided into an upper crucible outer cylinder, a crucible bottom, and an additional crucible outer cylinder detachably disposed between the two. A silicon carbide single crystal growth device characterized by a shape.
JP2097590A 1990-04-16 1990-04-16 Method and apparatus for growing silicon carbide single crystal Expired - Lifetime JPH0637354B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2097590A JPH0637354B2 (en) 1990-04-16 1990-04-16 Method and apparatus for growing silicon carbide single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2097590A JPH0637354B2 (en) 1990-04-16 1990-04-16 Method and apparatus for growing silicon carbide single crystal

Publications (2)

Publication Number Publication Date
JPH03295898A true JPH03295898A (en) 1991-12-26
JPH0637354B2 JPH0637354B2 (en) 1994-05-18

Family

ID=14196455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2097590A Expired - Lifetime JPH0637354B2 (en) 1990-04-16 1990-04-16 Method and apparatus for growing silicon carbide single crystal

Country Status (1)

Country Link
JP (1) JPH0637354B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998027251A1 (en) * 1996-12-18 1998-06-25 Northrop Grumman Corporation Apparatus for growing silicon carbide crystals
US5895526A (en) * 1995-08-07 1999-04-20 Nippondenso Co., Ltd. Process for growing single crystal
JP2007223867A (en) * 2006-02-24 2007-09-06 Bridgestone Corp Tool for flattening surface of powder and method for producing silicon carbide single crystal
JP2008074665A (en) * 2006-09-21 2008-04-03 Nippon Steel Corp Graphite crucible with rid and apparatus for growing silicon carbide single crystal
JP2009280463A (en) * 2008-05-26 2009-12-03 Panasonic Corp Crucible for crystal growth
JP2015040146A (en) * 2013-08-22 2015-03-02 三菱電機株式会社 Single crystal production device and single crystal production method using the same
JP2016011215A (en) * 2014-06-27 2016-01-21 三菱電機株式会社 Manufacturing apparatus and manufacturing method for single crystal
EP3666934A1 (en) * 2018-12-12 2020-06-17 SKC Co., Ltd. SKC Apparatus for producing ingot and method for producing silicon carbide ingot using the apparatus
WO2021060365A1 (en) 2019-09-27 2021-04-01 学校法人関西学院 Method for producing semiconductor substrates and device for producing semiconductor substrates

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101649543B1 (en) * 2014-12-05 2016-08-31 주식회사 포스코 Reverse sublimation apparatus for single crystal growth
KR101649539B1 (en) * 2014-12-05 2016-08-22 주식회사 포스코 Reverse sublimation apparatus for single crystal growth

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5895526A (en) * 1995-08-07 1999-04-20 Nippondenso Co., Ltd. Process for growing single crystal
WO1998027251A1 (en) * 1996-12-18 1998-06-25 Northrop Grumman Corporation Apparatus for growing silicon carbide crystals
JP2007223867A (en) * 2006-02-24 2007-09-06 Bridgestone Corp Tool for flattening surface of powder and method for producing silicon carbide single crystal
JP2008074665A (en) * 2006-09-21 2008-04-03 Nippon Steel Corp Graphite crucible with rid and apparatus for growing silicon carbide single crystal
JP2009280463A (en) * 2008-05-26 2009-12-03 Panasonic Corp Crucible for crystal growth
JP2015040146A (en) * 2013-08-22 2015-03-02 三菱電機株式会社 Single crystal production device and single crystal production method using the same
JP2016011215A (en) * 2014-06-27 2016-01-21 三菱電機株式会社 Manufacturing apparatus and manufacturing method for single crystal
EP3666934A1 (en) * 2018-12-12 2020-06-17 SKC Co., Ltd. SKC Apparatus for producing ingot and method for producing silicon carbide ingot using the apparatus
CN111304745A (en) * 2018-12-12 2020-06-19 Skc株式会社 Apparatus for producing ingot and method for producing silicon carbide single crystal ingot
US11078599B2 (en) 2018-12-12 2021-08-03 Skc Co., Ltd. Apparatus for producing an ingot comprising a crucible body with a lid assembly having a movable core member and method for producing silicon carbide ingot using the apparatus
CN111304745B (en) * 2018-12-12 2021-12-03 赛尼克公司 Apparatus for producing ingot and method for producing silicon carbide single crystal ingot
WO2021060365A1 (en) 2019-09-27 2021-04-01 学校法人関西学院 Method for producing semiconductor substrates and device for producing semiconductor substrates

Also Published As

Publication number Publication date
JPH0637354B2 (en) 1994-05-18

Similar Documents

Publication Publication Date Title
US5968261A (en) Method for growing large silicon carbide single crystals
US5746827A (en) Method of producing large diameter silicon carbide crystals
US5433167A (en) Method of producing silicon-carbide single crystals by sublimation recrystallization process using a seed crystal
KR20020042682A (en) Method and apparatus for growing silicon carbide crystals
JPS6357400B2 (en)
JPH0558774A (en) Vessel for silicone carbide single crystal growing device
JPH03295898A (en) Method and device for growing silicon carbide single crystal
US7371281B2 (en) Silicon carbide single crystal and method and apparatus for producing the same
JPH0455397A (en) Production of alpha-sic single crystal
EP0956381B1 (en) Apparatus for growing large silicon carbide single crystals
JP3237069B2 (en) Method for producing SiC single crystal
JPH0230699A (en) Growing method of silicon carbide single crystal and device therefor
JPH05178698A (en) Apparatus and process for production of silicon carbide bulk single crystal
JP3590464B2 (en) Method for producing 4H type single crystal silicon carbide
JPH10139589A (en) Production of single crystal
JPH0412096A (en) Method for growing 6h-type and 4h-type silicon carbide single crystal
JPH06298600A (en) Method of growing sic single crystal
JP2019535632A (en) Method and apparatus for producing SiC raw material for SiC crystal growth
JP3717562B2 (en) Single crystal manufacturing method
JPH0416597A (en) Production of silicon carbide single crystal
JP2680617B2 (en) Method for growing silicon carbide single crystal
JP2004203721A (en) Apparatus and method for growing single crystal
JPH05330995A (en) Production of silicon carbide single crystal and apparatus therefor
JPH1179896A (en) Production of silicon carbide single crystal
JP2946410B2 (en) Single crystal SiC and method for producing the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080518

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090518

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100518

Year of fee payment: 16

EXPY Cancellation because of completion of term