JP2680617B2 - Method for growing silicon carbide single crystal - Google Patents

Method for growing silicon carbide single crystal

Info

Publication number
JP2680617B2
JP2680617B2 JP19691288A JP19691288A JP2680617B2 JP 2680617 B2 JP2680617 B2 JP 2680617B2 JP 19691288 A JP19691288 A JP 19691288A JP 19691288 A JP19691288 A JP 19691288A JP 2680617 B2 JP2680617 B2 JP 2680617B2
Authority
JP
Japan
Prior art keywords
sic
crystal
single crystal
silicon carbide
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19691288A
Other languages
Japanese (ja)
Other versions
JPH0248495A (en
Inventor
和幸 古賀
康博 上田
俊武 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP19691288A priority Critical patent/JP2680617B2/en
Publication of JPH0248495A publication Critical patent/JPH0248495A/en
Application granted granted Critical
Publication of JP2680617B2 publication Critical patent/JP2680617B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明は電子デバイスに用いられる炭化ケイ素単結晶
の成長方法に関する。
TECHNICAL FIELD The present invention relates to a method for growing a silicon carbide single crystal used in an electronic device.

(ロ) 従来の技術 炭化ケイ素(SiC)は物理的、化学的に安定で、且つ
禁制帯幅が広い半導体材料であることから、耐環境性半
導体素子及び短波長発光ダイオードの材料として注目さ
れている。
(B) Conventional technology Since silicon carbide (SiC) is a semiconductor material that is physically and chemically stable and has a wide band gap, it has attracted attention as a material for environment-resistant semiconductor elements and short wavelength light emitting diodes. There is.

SiCには、同一組成で3C形、4H形、6H形、15R形等各種
の結晶形が存在する。このうち3C形のSiCは高温あるい
は放射線の照射される環境下で作動する能動素子に用途
が考えられている。また6H形のSiCは禁止帯幅が約3.0eV
であり、青色発光素子として用いられている。4H形のSi
Cは、約3.2eVと6H形のものよりも広い禁止帯幅を持つた
め、青色から紫色の発光ダイオードや、その他の結晶形
のSiCとのヘデロ接合デバイスに用途が考えられてい
る。
SiC has various crystal forms such as 3C type, 4H type, 6H type and 15R type with the same composition. Of these, 3C-type SiC is expected to be used as an active device that operates under high temperature or radiation irradiation. In addition, 6H type SiC has a band gap of approximately 3.0 eV.
And is used as a blue light emitting element. 4H type Si
Since C has a bandgap of about 3.2 eV and is wider than that of the 6H type, it is considered to be used for a blue to violet light emitting diode and a hedello junction device with other crystalline SiC.

SiC基板用単結晶の成長方法としては、SiC原材料の分
解昇華過程を利用した昇華法と、SiC化合物とC化合物
を高温で合成するアチソン法とが用いられる。しかし、
アチソン法では、不純物制御及び結晶サイズの制御が困
難であることから、昇華法が多く採用されている。この
昇華法では、特開昭62−66000号公報に開示されている
ように、特定の成長条件で良質な単結晶が得られてい
る。
As a method for growing a single crystal for a SiC substrate, a sublimation method utilizing a decomposition sublimation process of a SiC raw material and an Acheson method for synthesizing a SiC compound and a C compound at a high temperature are used. But,
In the Acheson method, it is difficult to control the impurities and the crystal size, and thus the sublimation method is often used. According to this sublimation method, as disclosed in JP-A-62-66000, a high quality single crystal is obtained under specific growth conditions.

(ハ) 発明が解決しようとする課題 第3図は、Philips Research Reports,18巻(1963),
P161に記載されており、るつぼ内に収納したSiC原材料
を常圧中で加熱した時のるつぼ内で発生するSiC結晶の
各結晶形の発生割合を加熱温度をパラメータとして示し
たものである。但し、この成長方法では種結晶を用いて
おらず、SiC粉末から成長させたもので、したがって発
生した結晶は、自然核発生によるものである。同図から
わかるように4H形は約1800℃から約2600℃まで開く発生
しているもの、6H形、15R形等他の結晶を同時に多く発
生している。このように一般的に成長させるSiCの結晶
形を制御することは難しく、特開昭62−66000号公報に
開示されている成長方法においても4H形を独立して成長
させることは困難であった。
(C) Problems to be solved by the invention Fig. 3 shows Philips Research Reports, Volume 18 (1963),
P161 describes the generation rate of each crystal form of SiC crystals generated in the crucible when the SiC raw material housed in the crucible is heated under normal pressure, with the heating temperature as a parameter. However, in this growth method, a seed crystal was not used, but it was grown from SiC powder, and thus the generated crystal is due to spontaneous nucleation. As can be seen from the figure, the 4H type has a large number of other crystals such as those that open from approximately 1800 ° C to approximately 2600 ° C, 6H type and 15R type. As described above, it is generally difficult to control the crystal form of SiC to be grown, and it is difficult to independently grow the 4H form even in the growth method disclosed in JP-A-62-66000. .

したがって本発明は4H形のSiC単結晶を独立して成長
できる成長方法を提供するものである。
Therefore, the present invention provides a growth method capable of independently growing a 4H-type SiC single crystal.

(ニ) 課題を解決するための手段 本発明は、炭化ケイ素からなる原材料を加熱昇華さ
せ、原材料よりも低い温度に保たれた炭化ケイ素単結晶
からなる種結晶上に4H形SiC単結晶を成長させる方法で
あって、上記種結晶の温度を2350〜2450℃、上記種結晶
と原材料の間の温度勾配を5〜20℃/cmとすると共に、
反応系内のガス圧を5〜10mbarとすることを特徴とす
る。
(D) Means for Solving the Problem The present invention is to grow a 4H-type SiC single crystal on a seed crystal made of a silicon carbide single crystal kept at a temperature lower than that of the raw material by heating and sublimating a raw material made of silicon carbide. In the method, the temperature of the seed crystal is 2350 to 2450 ° C, and the temperature gradient between the seed crystal and the raw material is 5 to 20 ° C / cm,
It is characterized in that the gas pressure in the reaction system is 5 to 10 mbar.

(ホ) 作用 以上の成長条件では4H形SiC単結晶のみが安定して成
長する。
(E) Action Under the above growth conditions, only 4H-type SiC single crystal grows stably.

(ヘ) 実施例 第1図に本発明方法に用いる結晶成長装置の一例を示
す。同図において、(1)は断面円形のグラフアイトか
らなるるつぼ、(2)はSiC原材料、(3)は昇華したS
iCを後述するSiC種結晶(5)へ導くグラフアイトから
なるガイドで、その内径を昇華したSiCの進行方向に沿
って小さくしてある。(4)はグラフアイトからなる成
長容器、(5)はSiC種結晶で、成長容器(4)の内部
上面にSiC原材料と対向して載置固着される。(6)は
種結晶(5)上に成長したSiCインゴツトである。斯る
結晶成長装置は、図示していない反応管内に配され、そ
の回りを巻回する高周波誘導加熱コイルによって加熱さ
れる。
(F) Example FIG. 1 shows an example of a crystal growth apparatus used in the method of the present invention. In the figure, (1) is a crucible made of graphite having a circular cross section, (2) is a SiC raw material, and (3) is sublimated S.
A guide made of graphite that guides iC to a SiC seed crystal (5) described later, and has an inner diameter reduced along the traveling direction of sublimated SiC. (4) is a growth container made of graphite, and (5) is a SiC seed crystal, which is placed and fixed on the inner upper surface of the growth container (4) so as to face the SiC raw material. (6) is a SiC ingot grown on the seed crystal (5). Such a crystal growth apparatus is placed in a reaction tube (not shown) and is heated by a high frequency induction heating coil wound around the reaction tube.

斯る結晶成長装置において、種結晶(5)に六方晶形
(Hexagonal)のSiC基板を用い、種結晶温度と原材料温
度及び反応系内の圧力を種々変化させて結晶成長を行っ
た。ここで原材料温度は原材料と種結晶の間の温度勾配
が10℃/cmとなるように設定した。また、反応系内の圧
力は不活性ガス、例えばArガスを用いて調整した。以上
の実験によって得られた結晶の結晶形と成長条件の関係
を表1に示す。
In such a crystal growth apparatus, a hexagonal type (Hexagonal) SiC substrate was used as the seed crystal (5), and crystal growth was carried out by variously changing the seed crystal temperature, the raw material temperature and the pressure in the reaction system. Here, the raw material temperature was set so that the temperature gradient between the raw material and the seed crystal was 10 ° C / cm. The pressure in the reaction system was adjusted by using an inert gas such as Ar gas. Table 1 shows the relationship between the crystal form of the crystals obtained by the above experiment and the growth conditions.

表1から明らかなように、成長するSiCは、種結晶温
度2250℃付近を境にして、低温側では6H形が、高温側で
は4H形がそれぞれ独立して得られている。但し、種結晶
温度2250℃で成長させたSiCの結晶形は再現性に乏し
く、6H形、4H形が共に得られた。また表には示していな
いが、種結晶温度が2450℃を超えると、熱エツチングが
生じるため結晶成長は困難となる。したがって、種結晶
温度が2350〜2450℃の範囲では4H形のSiCが独立して成
長する。この時反応系内の圧力は5〜10mbarが適当であ
る。即ち、圧力が5mbar以下では、成長速度が速過ぎ、
結晶性の良い結晶は得られず、10mbar以上になると成長
速度が遅くなるため実用的ではなくなる。
As is clear from Table 1, the growing SiC has independently obtained 6H type on the low temperature side and 4H type on the high temperature side with the seed crystal temperature around 2250 ° C as the boundary. However, the crystal form of SiC grown at a seed crystal temperature of 2250 ℃ was poor in reproducibility, and both 6H and 4H forms were obtained. Although not shown in the table, when the seed crystal temperature exceeds 2450 ° C., thermal etching occurs, which makes crystal growth difficult. Therefore, in the seed crystal temperature range of 2350 to 2450 ° C, 4H-type SiC grows independently. At this time, the pressure in the reaction system is appropriately 5 to 10 mbar. That is, if the pressure is 5 mbar or less, the growth rate is too fast,
Crystals with good crystallinity cannot be obtained, and if it exceeds 10 mbar, the growth rate becomes slow and it becomes impractical.

また、本実験では、原材料と種結晶の間の温度勾配を
10℃/cmとしたが、5〜20℃/cmの範囲内であれば表1と
同様の結果が得られ、且つ上述の温度範囲及び圧力範囲
内では結晶性の良い結晶が得られる。
In addition, in this experiment, the temperature gradient between the raw material and the seed crystal was
Although the temperature was set to 10 ° C./cm, the same results as in Table 1 were obtained within the range of 5 to 20 ° C./cm, and crystals having good crystallinity were obtained within the above-mentioned temperature range and pressure range.

次に、六方晶形のSiC基板を種結晶として、種結晶温
度2350℃、原材料温度2450℃、温度勾配10℃/cm、及び
反応系内の圧力7mbarの成長条件でSiC単結晶を成長させ
た。第2図にそのラマン散乱スペクトルの測定結果を示
す。同図に示されるピーク波数の611、781、967はいず
れも4H形SiC単結晶に特有なものであり、6H形に特有な7
68、789のピークは現われていない。即ち、斯るSiC単結
晶の結晶形は4H形であって、且つ6H形の結晶形を含んで
いないことがわかる。
Next, using a hexagonal SiC substrate as a seed crystal, a SiC single crystal was grown under the growth conditions of a seed crystal temperature of 2350 ° C, a raw material temperature of 2450 ° C, a temperature gradient of 10 ° C / cm, and a pressure of 7 mbar in the reaction system. The measurement result of the Raman scattering spectrum is shown in FIG. The peak wave numbers 611, 781, and 967 shown in the figure are all unique to the 4H-type SiC single crystal, and are unique to the 6H-type.
No peaks at 68 and 789 are visible. That is, it is understood that the crystal form of such a SiC single crystal is the 4H type and does not include the 6H type crystal form.

(ト) 発明の効果 本発明方法にいよれば、種結晶温度を2350〜2450℃、
種結晶と原材料の間を温度勾配を5〜20℃/cm、反応系
内のガス圧を5〜10mbarとすることによって、結晶性の
良い4H形SiC単結晶を独立して成長させることができ
る。
(G) Effect of the Invention According to the method of the present invention, the seed crystal temperature is 2350 to 2450 ° C.,
A 4H-type SiC single crystal with good crystallinity can be independently grown by setting the temperature gradient between the seed crystal and the raw material to 5 to 20 ° C / cm and the gas pressure in the reaction system to 5 to 10 mbar. .

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明方法に用いる結晶成長装置の一例を示す
断面図、第2図は本発明方法により作製したSiC単結晶
のラマン散乱スペクトルを示す特性図、第3図はPhilip
s Research Reports,18巻(1963),P161に記載されたSi
Cの各結晶形の発生割合を示す特性図である。 (1)……るつぼ、(2)……SiC原材料、(5)……S
iC種結晶。
FIG. 1 is a sectional view showing an example of a crystal growth apparatus used in the method of the present invention, FIG. 2 is a characteristic view showing a Raman scattering spectrum of a SiC single crystal produced by the method of the present invention, and FIG. 3 is Philip.
Si described in s Research Reports, Volume 18 (1963), P161.
FIG. 7 is a characteristic diagram showing the generation ratio of each crystal form of C. (1) …… crucible, (2) …… SiC raw material, (5) …… S
iC seed crystal.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】炭化ケイ素からなる原材料を加熱昇華さ
せ、原材料よりも低い温度に保たれた炭化ケイ素単結晶
からなる種結晶上に4H形炭化ケイ素単結晶を成長させる
方法において、上記種結晶の温度を2350〜2450℃、上記
種結晶と原材料の間の温度勾配を5〜20℃/cmとすると
共に反応系内のガス圧を5〜10mbarとすることを特徴と
する炭化ケイ素単結晶の成長方法。
1. A method of growing a 4H-type silicon carbide single crystal on a seed crystal made of a silicon carbide single crystal kept at a temperature lower than that of the raw material, by sublimating a raw material made of silicon carbide by heating. Growth of a silicon carbide single crystal characterized in that the temperature is 2350 to 2450 ° C, the temperature gradient between the seed crystal and the raw material is 5 to 20 ° C / cm, and the gas pressure in the reaction system is 5 to 10 mbar. Method.
JP19691288A 1988-08-05 1988-08-05 Method for growing silicon carbide single crystal Expired - Fee Related JP2680617B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19691288A JP2680617B2 (en) 1988-08-05 1988-08-05 Method for growing silicon carbide single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19691288A JP2680617B2 (en) 1988-08-05 1988-08-05 Method for growing silicon carbide single crystal

Publications (2)

Publication Number Publication Date
JPH0248495A JPH0248495A (en) 1990-02-19
JP2680617B2 true JP2680617B2 (en) 1997-11-19

Family

ID=16365726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19691288A Expired - Fee Related JP2680617B2 (en) 1988-08-05 1988-08-05 Method for growing silicon carbide single crystal

Country Status (1)

Country Link
JP (1) JP2680617B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5958132A (en) * 1991-04-18 1999-09-28 Nippon Steel Corporation SiC single crystal and method for growth thereof
DE4310744A1 (en) * 1993-04-01 1994-10-06 Siemens Ag Device for producing SiC single crystals
JP2010251724A (en) 2009-03-26 2010-11-04 Semiconductor Energy Lab Co Ltd Method for manufacturing semiconductor substrate
US8513090B2 (en) 2009-07-16 2013-08-20 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor substrate, and semiconductor device

Also Published As

Publication number Publication date
JPH0248495A (en) 1990-02-19

Similar Documents

Publication Publication Date Title
US5433167A (en) Method of producing silicon-carbide single crystals by sublimation recrystallization process using a seed crystal
JP4530542B2 (en) Production of bulk single crystals of aluminum nitride, silicon carbide, and aluminum nitride: silicon carbide alloys
US6053973A (en) Single crystal SiC and a method of producing the same
US4623425A (en) Method of fabricating single-crystal substrates of silicon carbide
US5441011A (en) Sublimation growth of single crystal SiC
US5746827A (en) Method of producing large diameter silicon carbide crystals
US5037502A (en) Process for producing a single-crystal substrate of silicon carbide
JPH06316499A (en) Production of sic single crystal
JPH0455397A (en) Production of alpha-sic single crystal
JPH0558774A (en) Vessel for silicone carbide single crystal growing device
JP2004099340A (en) Seed crystal for silicon carbide single crystal growth, silicon carbide single crystal ingot and method of manufacturing the same
JP3237069B2 (en) Method for producing SiC single crystal
JP3128179B2 (en) Method for producing n-type silicon carbide single crystal
JPH04193799A (en) Production of silicon carbide single crystal
JP2680617B2 (en) Method for growing silicon carbide single crystal
JPH05178698A (en) Apparatus and process for production of silicon carbide bulk single crystal
JPH04292499A (en) Production of silicon carbide single crystal
JP3590464B2 (en) Method for producing 4H type single crystal silicon carbide
JPH0637354B2 (en) Method and apparatus for growing silicon carbide single crystal
EP1122341A1 (en) Single crystal SiC
JPH0977594A (en) Production of low resistance single crystal silicon carbide
v Münch Silicon carbide technology for blue-emitting diodes
JPH06298600A (en) Method of growing sic single crystal
JPH0416597A (en) Production of silicon carbide single crystal
JPH061698A (en) Production of silicon carbide bulk single crystal

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees