JP2019535632A - Method and apparatus for producing SiC raw material for SiC crystal growth - Google Patents

Method and apparatus for producing SiC raw material for SiC crystal growth Download PDF

Info

Publication number
JP2019535632A
JP2019535632A JP2019527120A JP2019527120A JP2019535632A JP 2019535632 A JP2019535632 A JP 2019535632A JP 2019527120 A JP2019527120 A JP 2019527120A JP 2019527120 A JP2019527120 A JP 2019527120A JP 2019535632 A JP2019535632 A JP 2019535632A
Authority
JP
Japan
Prior art keywords
sic
graphite crucible
heating device
raw material
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019527120A
Other languages
Japanese (ja)
Other versions
JP6829767B2 (en
Inventor
同華 彭
同華 彭
春俊 劉
春俊 劉
波 王
波 王
平 張
平 張
宇 鄒
宇 鄒
寧 趙
寧 趙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xinjiang Tankeblue Semiconductor Co Ltd
Xinjiang Tankebluesemiconductor Co Ltd
Tankeblue Semiconductor Co Ltd
Original Assignee
Xinjiang Tankeblue Semiconductor Co Ltd
Xinjiang Tankebluesemiconductor Co Ltd
Tankeblue Semiconductor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xinjiang Tankeblue Semiconductor Co Ltd, Xinjiang Tankebluesemiconductor Co Ltd, Tankeblue Semiconductor Co Ltd filed Critical Xinjiang Tankeblue Semiconductor Co Ltd
Publication of JP2019535632A publication Critical patent/JP2019535632A/en
Application granted granted Critical
Publication of JP6829767B2 publication Critical patent/JP6829767B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • C30B23/06Heating of the deposition chamber, the substrate or the materials to be evaporated
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本発明はSiC結晶成長用SiC原料の製造方法及び製造装置に関する。SiC結晶成長用SiC原料の製造方法において、SiC粉末を第1黒鉛坩堝に入れ、第1黒鉛坩堝に第2黒鉛坩堝を反転して取り付けるステップと、第1黒鉛坩堝が加熱装置内の相対的高温領域に位置し、第2黒鉛坩堝が加熱装置内の相対的低温領域に位置するように、取り付けられた2つの黒鉛坩堝を加熱装置にセットし、加熱装置を真空引きし且つ加熱装置内の温度を所定温度まで上昇し、SiC粉末を昇華させ且つ相対的低温領域に位置する第2黒鉛坩堝に移送して結晶化させ、結晶化されたSiC原料を得るステップとを含む。本発明の製造方法及び製造装置は、SiC結晶における不純物含有量を低減させ、SiC結晶にけるミクロ被覆物を減少し、SiC結晶の転位密度を低減させ、SiC結晶の中後期の成長速度及び収率を向上させる。The present invention relates to a method and an apparatus for producing a SiC raw material for growing a SiC crystal. In the method for producing a SiC raw material for growing a SiC crystal, a step of putting SiC powder into a first graphite crucible, and inverting and attaching a second graphite crucible to the first graphite crucible; The two attached graphite crucibles are set in the heating device so that the second graphite crucible is located in the region, and the second graphite crucible is located in the relatively low temperature region in the heating device, the heating device is evacuated and the temperature in the heating device is reduced. To a predetermined temperature, sublimate the SiC powder, and transfer to a second graphite crucible located in a relatively low temperature region to crystallize, thereby obtaining a crystallized SiC raw material. The production method and production apparatus of the present invention reduce the content of impurities in the SiC crystal, reduce the micro-coating on the SiC crystal, reduce the dislocation density of the SiC crystal, and increase the growth rate and yield in the middle and late stages of the SiC crystal. Improve rate.

Description

本発明は、SiC結晶における不純物含有量を有意に低減させ、SiC結晶にけるミクロ被覆物を減少し、SiC結晶の転位密度を低減させ、結晶成長速度及び収率を向上させることができるSiC結晶成長用SiC原料の製造方法及び製造装置に関し、結晶成長の分野に関する。 The present invention significantly reduces the impurity content in SiC crystals, reduces the micro-coating in the SiC crystals, reduces the dislocation density of the SiC crystals, and improves the crystal growth rate and yield. The present invention relates to a method and apparatus for manufacturing a SiC raw material for growth, and relates to the field of crystal growth.

炭化ケイ素(SiC)、窒化ガリウム(GaN)を代表とするワイドバンドギャップ半導体材料は、シリコン(Si)、ガリウムヒ素(GaAs)に続く第3世代の半導体材料である。Si及びGaAsのような従来の半導体材料に比べて、SiCは、高熱導率、高破壊電界強度、高飽和電子ドリフト速度及び高い結合エネルギーなどの良好な特性を有し、高温、高周波、高電力及び耐放射デバイスにおいて将来性が期待できる。また、SiCはGaNに近い格子定数及び熱膨張係数を有するため、光電子デバイスの分野にも極めて有望とされる。 Wide band gap semiconductor materials typified by silicon carbide (SiC) and gallium nitride (GaN) are third-generation semiconductor materials following silicon (Si) and gallium arsenide (GaAs). Compared to conventional semiconductor materials such as Si and GaAs, SiC has good properties such as high thermal conductivity, high breakdown field strength, high saturation electron drift velocity and high binding energy, high temperature, high frequency, high power And future prospects can be expected in radiation resistant devices. Further, since SiC has a lattice constant and a thermal expansion coefficient close to those of GaN, it is extremely promising in the field of optoelectronic devices.

SiC結晶成長方法は主に、物理的気相移送成長法(Physical Vapor Transport Method)であり、その成長室の構造が図1に示される。坩堝内の温度を2100〜2400℃に上昇し、SiC粉末を昇華させ、昇華により気相物質SiC、SiC及びSiを生成し、SiC粉末の温度よりわずかに低い坩堝の上部にSiC種結晶を投入して、昇華により生じた気相物質が温度勾配の作用でSiC粉末の表面から温度が比較的低いSiC種結晶に移送され、且つSiC種結晶において結晶化してブロック状のSiC結晶を形成する。 The SiC crystal growth method is mainly a physical vapor transport method, and the structure of the growth chamber is shown in FIG. The temperature in the crucible is raised to 2100 to 2400 ° C., the SiC powder is sublimated, and vapor phase materials Si 2 C, SiC 2 and Si are generated by sublimation, and the SiC seeds are slightly above the temperature of the SiC powder. The gas phase substance generated by sublimation is transferred from the surface of the SiC powder to the SiC seed crystal having a relatively low temperature by the action of the temperature gradient, and crystallized in the SiC seed crystal to form a block-like SiC crystal. Form.

現在、このような方法を用いたSiC結晶成長には以下の技術的問題がある。先ず、SiC粉末に一定量の不純物が存在し、且つSiC粉末内部にあるこれらの不純物は従来の酸洗方式で除去できないため、SiC粉末を用いて成長されるSiC結晶における不純物の含有量が比較的高く、その結果、SiC結晶の品質に深刻に影響し、成長されたSiC結晶は高圧・ハイパワーデバイスによるSiC単結晶基板の品質への要求を満たすことができない。 Currently, SiC crystal growth using such a method has the following technical problems. First, there is a certain amount of impurities in the SiC powder, and since these impurities inside the SiC powder cannot be removed by the conventional pickling method, the content of impurities in the SiC crystal grown using the SiC powder is compared. As a result, the quality of the SiC crystal is seriously affected, and the grown SiC crystal cannot satisfy the requirement for the quality of the SiC single crystal substrate by the high-voltage / high-power device.

また、物理的気相移送成長法でSiC結晶を成長させる過程において、SiC粉末が高温で蒸発して発生する基本的な反応は、以下を含む。
SiC(s)→Si(g)+C(s)
2SiC(s)→Si(g)+SiC(g)
2SiC(s)→SiC(g)+C(s)
式中、s及びgはそれぞれ固相及び気相を表す。
Further, in the process of growing the SiC crystal by the physical vapor transport growth method, the basic reaction that occurs when the SiC powder evaporates at a high temperature includes the following.
SiC (s) → Si (g) + C (s)
2SiC (s) → Si (g ) + SiC 2 (g)
2SiC (s) → Si 2 C (g) + C (s)
In the formula, s and g represent a solid phase and a gas phase, respectively.

上記反応式から分かるように、成長室内に形成される気相物質は主にSi、SiC及びSiCである。結晶成長に必要な2100℃〜2400℃温度範囲内において、3種類の気相物質(Si、SiC及びSiC)のうち、Si蒸気の分圧がC蒸気の分圧よりずっと高い。SiC粉末自体の高温蒸発特性、すなわち系に要求される気相分圧割合のため、SiC粉末は必然的に黒鉛化し、これによりSiC粉末には黒鉛粒子が残留される。物理的気相移送成長法でSiC結晶を成長させる過程には、使用されるSiC粉末の粒径が一般的に数ミクロン−数ミリメートルであり、且つSiC粉末の粒子同士が互いに孤立している。SiC結晶が徐々に厚くなることに伴い、黒鉛坩堝の壁に接近するSiC粉末の温度が最も高いため、黒鉛化の程度が最も深刻であり、それにより大量の黒鉛粒子が残留される。これらの黒鉛粒子はSiC粉末の黒鉛化により形成されるもので、粒子の粒径が小さく、密度が小さく、且つこれらの黒鉛粒子同士が互いに孤立しており、したがって、これらの微細な黒鉛粒子は、SiC粉末の昇華で形成される気相物質によってSiC結晶の表面に移送され、SiC結晶内に取り込まれて、被覆物の欠陥を形成し、SiC結晶の品質及び収率に悪影響を与えることが発生しやすい。 As can be seen from the above reaction formula, the gas phase substances formed in the growth chamber are mainly Si, Si 2 C and SiC 2 . Of the three gas phase materials (Si, Si 2 C and SiC 2 ), the partial pressure of Si vapor is much higher than the partial pressure of C vapor within the temperature range of 2100 ° C. to 2400 ° C. necessary for crystal growth. Because of the high-temperature evaporation characteristics of the SiC powder itself, that is, the gas phase partial pressure ratio required for the system, the SiC powder inevitably graphitizes, thereby leaving graphite particles in the SiC powder. In the process of growing the SiC crystal by the physical vapor transport growth method, the particle size of the SiC powder used is generally several microns to several millimeters, and the particles of the SiC powder are isolated from each other. As the SiC crystal gradually thickens, the temperature of the SiC powder approaching the wall of the graphite crucible is the highest, so the degree of graphitization is the most severe, thereby leaving a large amount of graphite particles. These graphite particles are formed by graphitization of SiC powder, the particle size is small, the density is small, and these graphite particles are isolated from each other. Therefore, these fine graphite particles are Can be transferred to the surface of the SiC crystal by the vapor phase material formed by sublimation of the SiC powder, and taken into the SiC crystal to form defects in the coating, adversely affecting the quality and yield of the SiC crystal. Likely to happen.

また、物理的気相移送成長法でSiC結晶を成長させる過程において、温度場の設定の要因により、SiC粉末内部に軸方向と半径方向の温度勾配が存在し、且つSiC粉末の間に非常に大きい隙間が存在する。統計の結果、SiC粉末の密度がSiC結晶密度の60%程度、すなわち約1.9グラム/立方センチしかない。SiC結晶の成長初期に、黒鉛坩堝の内壁に接近するSiC粉末が昇華し、生じた気相物質が坩堝壁とSiC粉末の周囲の間から結晶の成長面に輸送されるとともに、SiC粉末の内部と上部に輸送される。SiC粉末に輸送される気相物質は、粉末間の隙間を通じて結晶の成長面に輸送され続ける一方、温度が比較的低い粉末の内部及び上部で既存のSiC粒子を結晶核として結晶成長し、SiC粉末の昇華により生じた気相物質を絶えず消費し、それによりSiC粉末における結晶成長部のSiC粉末の粒径が増大し、密度が増加し、隙間が減少していく。結晶成長の続きに伴って、SiC粉末の内部と上部の隙間が徐々になくなり、密度がSiC結晶に近い密度である約3.2グラム/立方センチに達する。このように、SiC粉末の昇華により生じた気相物質が深刻に消費されて、SiC結晶の中後期の成長速度及び収率を低減させる。
現在、上記技術的問題に対して、有効な解決策はまだ提案されていない。
In addition, in the process of growing SiC crystals by physical vapor transfer growth, there is a temperature gradient in the axial direction and the radial direction inside the SiC powder due to the setting factor of the temperature field, and there is a very large gap between the SiC powder. There is a large gap. As a result of statistics, the density of SiC powder is only about 60% of the SiC crystal density, that is, about 1.9 grams / cubic centimeter. At the initial stage of SiC crystal growth, SiC powder approaching the inner wall of the graphite crucible sublimates, and the generated vapor phase material is transported from between the crucible wall and the periphery of the SiC powder to the crystal growth surface, And transported to the top. The vapor phase material transported to the SiC powder continues to be transported to the crystal growth surface through the gaps between the powders, while the existing SiC particles grow as crystal nuclei inside and above the powder having a relatively low temperature, and grows. The gas phase substance generated by the sublimation of the powder is constantly consumed, whereby the particle size of the SiC powder in the crystal growth portion of the SiC powder increases, the density increases, and the gap decreases. As the crystal growth continues, the gap between the inside and the top of the SiC powder gradually disappears, and the density reaches about 3.2 grams / cubic centimeter, which is a density close to that of SiC crystals. In this way, the gas phase material generated by sublimation of the SiC powder is seriously consumed, reducing the growth rate and yield of the middle and late stages of the SiC crystal.
At present, no effective solution has been proposed for the above technical problem.

従来の物理的気相移送成長法によるSiC結晶成長に存在する技術的問題に対して、本発明は、SiC結晶における不純物含有量を有意的に低減させ、SiC結晶にけるミクロ被覆物を減少し、SiC結晶の転位密度を低減させ、SiC結晶の中後期の成長速度及び収率を向上させることができるSiC原料の製造方法及びSiC原料の製造装置を提供することを目的とする。 In contrast to the technical problems existing in SiC crystal growth by conventional physical vapor transport growth methods, the present invention significantly reduces the impurity content in SiC crystals and reduces the micro-coating in SiC crystals. An object of the present invention is to provide an SiC raw material manufacturing method and an SiC raw material manufacturing apparatus capable of reducing the dislocation density of an SiC crystal and improving the growth rate and yield of the SiC crystal in the latter and latter stages.

本発明の一局面によれば、SiC粉末を第1黒鉛坩堝に入れ、前記第1黒鉛坩堝に第2黒鉛坩堝を反転して取り付けるステップと、前記第1黒鉛坩堝が加熱装置内の相対的高温領域に位置し、前記第2黒鉛坩堝が前記加熱装置内の相対的低温領域に位置するように、取り付けられた2つの黒鉛坩堝を前記加熱装置にセットし、前記加熱装置を真空引きし且つ前記加熱装置内の温度を所定温度まで上昇し、前記SiC粉末を昇華させ且つ相対的低温領域に位置する前記第2黒鉛坩堝に移送して結晶化させ、結晶化されたSiC原料を得るステップとを含む、SiC結晶成長用SiC原料の製造方法を提供する。 According to one aspect of the present invention, placing SiC powder in a first graphite crucible and reversing and attaching a second graphite crucible to the first graphite crucible, the first graphite crucible is a relatively high temperature in a heating device. Set the two graphite crucibles attached to the heating device so that the second graphite crucible is located in a relatively low temperature region in the heating device, evacuate the heating device and Raising the temperature in the heating device to a predetermined temperature, sublimating the SiC powder and transferring it to the second graphite crucible located in a relatively low temperature region to obtain a crystallized SiC raw material; A method for producing a SiC raw material for SiC crystal growth is provided.

好ましくは、該方法はさらに、第2黒鉛坩堝の側壁と所定距離離れたスペーサを、第2黒鉛坩堝内に底部から上に設置するステップを含む。 Preferably, the method further includes the step of placing a spacer spaced apart from the side wall of the second graphite crucible in the second graphite crucible from the bottom to the top.

好ましくは、スペーサは第2黒鉛坩堝内の中心位置に位置する。 Preferably, the spacer is located at the center position in the second graphite crucible.

好ましくは、スペーサは黒鉛を含む。 Preferably, the spacer includes graphite.

好ましくは、スペーサは中実又は中空構造である。 Preferably, the spacer has a solid or hollow structure.

好ましくは、スペーサの第2黒鉛坩堝の底部からの上方の高さを、少なくとも結晶化対象となるSiC原料の高さ以上に設定する。 Preferably, the height above the bottom of the second graphite crucible of the spacer is set to at least the height of the SiC raw material to be crystallized.

好ましくは、第1黒鉛坩堝に第2黒鉛坩堝を反転して取り付けることは、ネジ式シール、係止リング式のシール、係止スリーブ式シールのうちの少なくとも1種を含むシール方式によって、第2黒鉛坩堝を第1黒鉛坩堝に反転して取り付けるステップを含む。 Preferably, the second graphite crucible is inverted and attached to the first graphite crucible by a sealing method including at least one of a screw type seal, a locking ring type seal, and a locking sleeve type seal. Inverting and attaching the graphite crucible to the first graphite crucible.

好ましくは、加熱装置を真空引きすることは、加熱装置を排気しその内部圧力を10Pa未満にした後、所定圧力の不活性ガスを導入し第1所定期間維持するステップと、第1所定期間後、その内部圧力を1Pa未満にするまで加熱装置を排気するステップと、加熱装置内の温度を所定温度の半分である第1温度に上昇し、第1温度を維持したまま加熱装置を第2所定期間まで連続的に排気するステップと、第2所定期間後、加熱装置内に所定圧力の不活性ガスを導入し第3所定期間維持した後、その内部圧力を10−1Pa未満にするまで加熱装置を排気するステップとを含む。 Preferably, the evacuation of the heating device includes evacuating the heating device and reducing its internal pressure to less than 10 Pa, then introducing an inert gas at a predetermined pressure and maintaining it for a first predetermined period, and after the first predetermined period. Evacuating the heating device until the internal pressure is less than 1 Pa, raising the temperature in the heating device to a first temperature that is half of the predetermined temperature, and maintaining the first temperature at the second predetermined temperature A step of continuously exhausting to a period, and after a second predetermined period, after introducing an inert gas of a predetermined pressure into the heating apparatus and maintaining it for a third predetermined period, the heating apparatus until the internal pressure is less than 10-1 Pa Evacuating.

好ましくは、加熱装置内の温度を所定温度まで上昇することは、誘導加熱又は抵抗加熱によって加熱装置内の温度を所定温度まで上昇するステップを含む。 Preferably, raising the temperature in the heating device to a predetermined temperature includes a step of raising the temperature in the heating device to a predetermined temperature by induction heating or resistance heating.

好ましくは、該方法はさらに、加熱装置内の温度勾配を5℃/cm〜100℃/cmとして設定し、昇華されたSiC粉末を温度勾配に起因する作用の下で第2黒鉛坩堝に移送して結晶化させる。 Preferably, the method further sets the temperature gradient in the heating device as 5 ° C./cm to 100 ° C./cm, and transfers the sublimated SiC powder to the second graphite crucible under the action due to the temperature gradient. To crystallize.

好ましくは、温度勾配の範囲は10℃/cm〜50℃/cmである。 Preferably, the temperature gradient ranges from 10 ° C / cm to 50 ° C / cm.

本発明の別の局面によれば、SiC結晶成長用SiC原料の製造装置を提供し、第1黒鉛坩堝と、その側壁と所定距離離れたスペーサが底部から上に設置される第2黒鉛坩堝と、内部に相対的高温領域と相対的低温領域を有する加熱装置とを備え、前記SiC原料を製造する際に、第2黒鉛坩堝は、SiC粉末が充填された第1黒鉛坩堝に反転して取り付けられ、且つ第1黒鉛坩堝は加熱装置内の相対的高温領域に位置し、第2黒鉛坩堝は加熱装置内の相対的低温領域に位置する。 According to another aspect of the present invention, there is provided an apparatus for producing an SiC raw material for SiC crystal growth, a first graphite crucible, and a second graphite crucible in which a spacer spaced from the side wall by a predetermined distance is installed above the bottom. And a heating device having a relatively high temperature region and a relatively low temperature region therein, and when producing the SiC raw material, the second graphite crucible is inverted and attached to the first graphite crucible filled with SiC powder. The first graphite crucible is located in a relatively high temperature region in the heating device, and the second graphite crucible is located in a relatively low temperature region in the heating device.

好ましくは、スペーサは第2黒鉛坩堝内の中心位置に位置する。 Preferably, the spacer is located at the center position in the second graphite crucible.

好ましくは、スペーサは黒鉛を含む。 Preferably, the spacer includes graphite.

好ましくは、スペーサは中実又は中空構造である。 Preferably, the spacer has a solid or hollow structure.

好ましくは、スペーサの第2黒鉛坩堝の底部からの上方の高さは、少なくとも結晶化対象となるSiC原料の高さ以上である。 Preferably, the height above the bottom of the second graphite crucible of the spacer is at least the height of the SiC raw material to be crystallized.

本発明の顕著な効果は主に3つである。
1.本発明では、SiC粉末の昇華結晶化過程において、不純物含有量が大幅に低減するため、SiC原料中の不純物含有量をSiC粉末よりも大幅に低減させる。本発明により製造されるSiC原料を用いて結晶成長を行うと、得られるSiC結晶中の鉄、アルミニウム不純物の含有量がそれぞれ0.1ppm未満であり、このため、SiC結晶中の不純物による結晶品質の低下が抑制される。
2.本発明では、SiC原料はSiC粉末の高温昇華により得られるものであって、緻密に結晶化されて密度が3.2グラム/立方センチに近いSiC多結晶ブロックである。従来の物理的気相移送成長法でSiC結晶を成長するときに用いられるSiC粉末に比べて、SiC多結晶ブロックが緻密に結晶化し、SiC粒界間の相互作用が強い。該SiC原料を用いてSiC結晶を成長させる過程において、SiC多結晶ブロックの表面も、成長過程が続くのに伴って黒鉛化されるが、SiC多結晶ブロックの表面の黒鉛間に強い相互作用が存在するため、昇華により生じた気相物質によって結晶成長界面に運ばれにくく、それによりSiC結晶成長過程におけるミクロ黒鉛被覆物の発生が回避される。
3.本発明では、SiC原料を結晶化させる坩堝にスペーサが設置されているため、最後に形成されるSiC原料が中空環形構造となる。該構造を有するSiC原料を用いてSiC結晶を成長させる場合、SiC原料が環形中空構造であるため、SiC原料の中央部位にはSiC原料の昇華で得られた気相物質の移送の妨げや消費がなく、気相物質を結晶成長面に直移送送でき、これにより、SiC原料の利用率を有意的に向上させる。さらに、SiC原料の中央部位にはSiC原料の昇華で得られた気相物質の移送の妨げや消費がないため、SiC結晶の成長速度が生産過程にわたってほぼ変化しないので、収率を向上させる。
The remarkable effects of the present invention are mainly three.
1. In the present invention, since the impurity content is greatly reduced in the sublimation crystallization process of the SiC powder, the impurity content in the SiC raw material is significantly reduced as compared with the SiC powder. When the crystal growth is performed using the SiC raw material produced according to the present invention, the content of iron and aluminum impurities in the obtained SiC crystal is less than 0.1 ppm, respectively. Therefore, the crystal quality due to the impurities in the SiC crystal. Is suppressed.
2. In the present invention, the SiC raw material is obtained by high-temperature sublimation of SiC powder, and is a SiC polycrystalline block that is densely crystallized and has a density close to 3.2 gram / cubic centimeter. Compared with the SiC powder used when growing a SiC crystal by a conventional physical vapor transport growth method, the SiC polycrystal block is crystallized densely and the interaction between SiC grain boundaries is strong. In the process of growing a SiC crystal using the SiC raw material, the surface of the SiC polycrystalline block is graphitized as the growth process continues, but there is a strong interaction between the graphite on the surface of the SiC polycrystalline block. Due to the presence, it is difficult for the vapor phase material generated by sublimation to be carried to the crystal growth interface, thereby avoiding the generation of a micrographite coating during the SiC crystal growth process.
3. In this invention, since the spacer is installed in the crucible for crystallizing the SiC raw material, the SiC raw material formed last has a hollow ring structure. When a SiC crystal is grown using a SiC raw material having the structure, since the SiC raw material has a ring-shaped hollow structure, the central part of the SiC raw material is hindered or consumed by the vapor phase material obtained by sublimation of the SiC raw material. Therefore, the vapor phase substance can be directly transferred to the crystal growth surface, thereby significantly improving the utilization rate of the SiC raw material. Furthermore, since there is no hindrance or consumption of the vapor phase material obtained by sublimation of the SiC raw material at the central part of the SiC raw material, the growth rate of the SiC crystal is not substantially changed throughout the production process, thereby improving the yield.

は物理的気相移送成長法でSiC結晶を成長させる成長室の構造模式図である。FIG. 3 is a structural schematic diagram of a growth chamber in which a SiC crystal is grown by a physical vapor transfer growth method. はSiC原料の製造方法のフローチャートである。These are the flowcharts of the manufacturing method of a SiC raw material. はSiC原料製造装置の部分断面図である。FIG. 3 is a partial cross-sectional view of an SiC raw material manufacturing apparatus.

以下、実施形態を用いて本発明を更に説明するが、実施可能なプロセスはこれらの具体的な実施形態に限定されない。 Hereinafter, the present invention will be further described with reference to embodiments. However, processes that can be performed are not limited to these specific embodiments.

本発明の実施例によれば、SiC結晶成長用SiC原料の製造方法の実施例を提供する。
図2はSiC原料の製造方法のフローチャートを示す。図2に示すように、該方法は、ステップS101とステップS102とを含む。
According to an embodiment of the present invention, an embodiment of a method for producing a SiC raw material for SiC crystal growth is provided.
FIG. 2 shows a flowchart of a method for producing a SiC raw material. As shown in FIG. 2, the method includes step S101 and step S102.

ステップS101:SiC粉末を第1黒鉛坩堝に入れ、第1黒鉛坩堝に第2黒鉛坩堝を反転して取り付ける。
通常、上記SiC粉末は所定量の不純物を含有し、第1黒鉛坩堝と第2黒鉛坩堝の灰分が所定値未満である。
Step S101: Put SiC powder in the first graphite crucible, and invert and attach the second graphite crucible to the first graphite crucible.
Usually, the SiC powder contains a predetermined amount of impurities, and the ash content of the first graphite crucible and the second graphite crucible is less than a predetermined value.

ステップS102:第1黒鉛坩堝が加熱装置内の相対的高温領域に位置し、第2黒鉛坩堝が加熱装置内の相対的低温領域に位置するように、取り付けられた2つの黒鉛坩堝を加熱装置にセットし、加熱装置を真空引きし且つ加熱装置内の温度を所定温度まで上昇し、SiC粉末を昇華させ且つ相対的低温領域に位置する第2黒鉛坩堝に移送して結晶化させ、結晶化されたSiC原料を得る。 Step S102: Two graphite crucibles attached to the heating device so that the first graphite crucible is located in a relatively high temperature region in the heating device and the second graphite crucible is located in a relatively low temperature region in the heating device. Set, evacuate the heating device and raise the temperature in the heating device to a predetermined temperature, sublimate the SiC powder and transfer it to the second graphite crucible located in a relatively low temperature region to be crystallized. A SiC raw material is obtained.

具体的には、加熱装置は、加熱炉を含むが、それに限定されない。加熱装置内の温度場が制御可能であるので、加熱装置には相対的高温領域と相対的低温領域が存在し、様々な方式、たとえば機械ポンプによって加熱装置を真空引きすることができるが、本発明では、これに限定されない。 Specifically, the heating device includes a heating furnace, but is not limited thereto. Since the temperature field in the heating device can be controlled, the heating device has a relatively high temperature region and a relatively low temperature region, and the heating device can be evacuated by various methods, for example, a mechanical pump. The invention is not limited to this.

そして、加熱装置を真空引きする過程において、加熱装置内の圧力が所望の真空に達するように、排気時間、加熱装置内の温度、温度保持時間等を設定することができる。 In the process of evacuating the heating device, the exhaust time, the temperature in the heating device, the temperature holding time, and the like can be set so that the pressure in the heating device reaches a desired vacuum.

SiC粉末が充填された第1黒鉛坩堝は、通常、加熱装置内の相対的高温領域に位置し、それに対向して設置された第2黒鉛坩堝は、通常、加熱装置内の相対的低温領域に位置し、このように、第1黒鉛坩堝と第2黒鉛坩堝の間に温度差を形成して、第1黒鉛坩堝内で昇華させたSiC粉末を第2黒鉛坩堝に結晶化させる。 The first graphite crucible filled with SiC powder is usually located in a relatively high temperature region in the heating device, and the second graphite crucible placed opposite thereto is usually in a relatively low temperature region in the heating device. In this way, a temperature difference is formed between the first graphite crucible and the second graphite crucible, and the SiC powder sublimated in the first graphite crucible is crystallized in the second graphite crucible.

上記実施例によれば、SiC原料はSiC粉末の高温昇華により得られるものであり、SiC粉末の昇華結晶化過程において、不純物含有量が大幅に低減されるため、SiC原料中の不純物含有量がSiC粉末よりも大幅に低減され、これによりSiC原料を用いて成長させるSiC結晶の品質を顕著に向上させる。 According to the above embodiment, the SiC raw material is obtained by high-temperature sublimation of the SiC powder, and the impurity content is greatly reduced in the sublimation crystallization process of the SiC powder. It is significantly reduced compared to SiC powder, thereby significantly improving the quality of SiC crystals grown using SiC raw materials.

好ましくは、本発明の実施例によれば、SiC結晶成長用SiC原料の製造方法はさらに、第2黒鉛坩堝の側壁と所定距離離れたスペーサを、第2黒鉛坩堝内に底部から上に設置するステップを含む。 Preferably, according to the embodiment of the present invention, the method for manufacturing the SiC raw material for SiC crystal growth further includes installing a spacer separated from the side wall of the second graphite crucible by a predetermined distance from the bottom in the second graphite crucible. Includes steps.

具体的には、スペーサは、第1黒鉛坩堝で昇華させたSiC粉末が第2黒鉛坩堝の中部位置にて結晶化することを阻止し、最後に形成されるSiC原料を中空構造にするための部材である。 Specifically, the spacer prevents the SiC powder sublimated in the first graphite crucible from crystallizing in the middle position of the second graphite crucible, and makes the SiC raw material finally formed into a hollow structure. It is a member.

スペーサは、昇華されたSiC粉末が第2黒鉛坩堝の中部位置にて結晶化することを阻止できる限り、任意の形状であってもよい。 The spacer may have any shape as long as the sublimated SiC powder can be prevented from crystallizing at the middle position of the second graphite crucible.

第2黒鉛坩堝にスペーサを設置することにより、SiC原料が中空構造に形成され、これは、SiC原料を用いてSiC結晶を成長させる過程においてSiC原料の利用率を向上させ、SiC結晶の成長速度を維持し、かつSiC結晶の収率を向上させる点で、大きな利点を有する。 By installing a spacer in the second graphite crucible, the SiC raw material is formed in a hollow structure, which improves the utilization rate of the SiC raw material in the process of growing the SiC crystal using the SiC raw material, and increases the growth rate of the SiC crystal. And has a great advantage in improving the yield of SiC crystals.

好ましくは、本発明の実施例によれば、スペーサは第2黒鉛坩堝内の中心位置に位置する。 Preferably, according to an embodiment of the present invention, the spacer is located at the center position in the second graphite crucible.

好ましくは、本発明の実施例によれば、スペーサは黒鉛を含む。 Preferably, according to an embodiment of the invention, the spacer comprises graphite.

好ましくは、本発明の実施例によれば、スペーサは中実又は中空構造である。 Preferably, according to an embodiment of the invention, the spacer is solid or hollow.

好ましくは、本発明の実施例によれば、スペーサの第2黒鉛坩堝の底部からの上方の高さを、少なくとも結晶化対象となるSiC原料の高さより高いように設定する。 Preferably, according to the embodiment of the present invention, the height above the bottom of the second graphite crucible of the spacer is set to be at least higher than the height of the SiC raw material to be crystallized.

なお、スペーサの第2黒鉛坩堝の底部からの上方の高さとは、第2黒鉛坩堝の底部を下、開口部を上にして配置するとき、スペーサの縦方向での高さである。 Note that the height above the bottom of the second graphite crucible of the spacer is the height of the spacer in the vertical direction when the bottom of the second graphite crucible is placed down and the opening is up.

SiC原料はスペーサの周りに形成される。最後に形成されるSiC原料を中空構造にするために、スペーサの高さは、少なくとも最後に形成されるSiC原料の高さ以上にする必要がある。 The SiC raw material is formed around the spacer. In order to make the SiC raw material finally formed into a hollow structure, the height of the spacer needs to be at least the height of the SiC raw material formed last.

好ましくは、本発明の実施例によれば、ステップS101において、第1黒鉛坩堝に第2黒鉛坩堝を反転して取り付けることは、ネジ式シール、係止リング式のシール、係止スリーブ式シールのうちの少なくとも1種を含むシール方式によって、第2黒鉛坩堝を第1黒鉛坩堝に反転して取り付けるステップを含む。 Preferably, according to the embodiment of the present invention, in step S101, the second graphite crucible is inverted and attached to the first graphite crucible by screw type seal, lock ring type seal, lock sleeve type seal. Inverting and attaching the second graphite crucible to the first graphite crucible by a sealing method including at least one of them.

対向して設置された2つの黒鉛坩堝において昇華させたSiC粉末が黒鉛坩堝から溢れることを防止するために、2つの黒鉛坩堝の接合部をシールする必要がある。たとえば、2つの黒鉛坩堝のうちの一方の開口部の外部をナットのように形成し、他方の開口部の内部をボルトのように形成し、2つの開口部を締め付けてネジ式で2つの黒鉛坩堝をシールすることができる。しかし、本発明は、これに限定されず、係止リング、係止スリーブなどを設置して2つの黒鉛坩堝をシールしてもよい。 In order to prevent the SiC powder sublimated in the two graphite crucibles installed opposite to each other from overflowing from the graphite crucible, it is necessary to seal the joint between the two graphite crucibles. For example, the outside of one opening of two graphite crucibles is formed like a nut, the inside of the other opening is formed like a bolt, the two openings are tightened, and two graphites are screwed. The crucible can be sealed. However, the present invention is not limited to this, and two graphite crucibles may be sealed by installing a locking ring, a locking sleeve, or the like.

好ましくは、本発明の実施例によれば、ステップS102において、加熱装置を真空引きすることは、加熱装置を排気しその内部圧力を10Pa未満にした後、所定圧力の不活性ガスを導入し第1所定期間維持するステップと、第1所定期間後、その内部圧力を1Pa未満にするまで加熱装置を排気するステップと、加熱装置内の温度を所定温度の半分である第1温度に上昇し、第1温度を維持したまま加熱装置を第2所定期間まで連続的に排気するステップと、第2所定期間後、加熱装置内に所定圧力の不活性ガスを導入し第3所定期間維持した後、その内部圧力を10−1Pa未満にするまで加熱装置を排気するステップとを含む。 Preferably, according to the embodiment of the present invention, in step S102, the evacuation of the heating device is performed by evacuating the heating device and reducing its internal pressure to less than 10 Pa, and then introducing an inert gas having a predetermined pressure. 1 step of maintaining for a predetermined period, after the first predetermined period, exhausting the heating device until the internal pressure is less than 1 Pa, and raising the temperature in the heating device to a first temperature that is half of the predetermined temperature, The step of continuously exhausting the heating device to the second predetermined period while maintaining the first temperature, and after the second predetermined period, after introducing an inert gas at a predetermined pressure into the heating device and maintaining the third predetermined period, Evacuating the heating device until the internal pressure is less than 10-1 Pa.

具体的には、加熱装置に導入される不活性ガスは、アルゴンガス、ヘリウムガスを含む。第1所定期間は5分間〜180分間、第1温度範囲が1000℃〜1250℃、第2所定期間は5分間〜300分間、所定温度範囲は2000℃〜2500℃、所定圧力の範囲は1000Pa〜90000Pa、第3所定期間は5分間〜300分間であってもよい。 Specifically, the inert gas introduced into the heating device includes argon gas and helium gas. The first predetermined period is 5 minutes to 180 minutes, the first temperature range is 1000 ° C. to 1250 ° C., the second predetermined period is 5 minutes to 300 minutes, the predetermined temperature range is 2000 ° C. to 2500 ° C., and the predetermined pressure range is 1000 Pa to 90000 Pa and the third predetermined period may be 5 minutes to 300 minutes.

好ましくは、本発明の実施例によれば、加熱装置内の温度を所定温度まで上昇することは、誘導加熱又は抵抗加熱によって加熱装置内の温度を所定温度まで上昇するステップを含む。
ここで、所定温度の範囲は2000℃〜2500℃であってもよい。
Preferably, according to the embodiment of the present invention, raising the temperature in the heating device to the predetermined temperature includes raising the temperature in the heating device to the predetermined temperature by induction heating or resistance heating.
Here, the range of the predetermined temperature may be 2000 ° C. to 2500 ° C.

好ましくは、本発明の実施例によれば、SiC結晶成長用SiC原料の製造方法はさらに、加熱装置内の温度勾配を5℃/cm〜100℃/cmとして設定し、昇華させたSiC粉末を温度勾配に起因する作用の下で第2黒鉛坩堝に移送して結晶化させるステップを含む。 Preferably, according to the embodiment of the present invention, the method for producing the SiC raw material for SiC crystal growth further sets the temperature gradient in the heating device as 5 ° C./cm to 100 ° C./cm, and sublimates the SiC powder. Transferring to a second graphite crucible under action due to a temperature gradient and crystallizing.

加熱装置内に5℃/cm〜100℃/cmの温度勾配を設定することにより、第2黒鉛坩堝において、緻密に結晶化されて品質が比較的均一であるSiC原料を得ることができる。
好ましくは、本発明の実施例によれば、温度勾配の範囲は10℃/cm〜50℃/cmである。
By setting a temperature gradient of 5 ° C./cm to 100 ° C./cm in the heating device, a SiC raw material that is densely crystallized and relatively uniform in quality can be obtained in the second graphite crucible.
Preferably, according to an embodiment of the present invention, the temperature gradient ranges from 10 ° C./cm to 50 ° C./cm.

以下、図2及び図3を参照しながら、発明の好ましいSiC結晶成長用SiC原料の製造方法を詳細に説明する。図3はSiC結晶成長用SiC原料の製造装置を示す。 Hereinafter, with reference to FIG. 2 and FIG. 3, a preferable method for producing a SiC raw material for SiC crystal growth according to the present invention will be described in detail. FIG. 3 shows an apparatus for producing a SiC raw material for SiC crystal growth.

2つの黒鉛坩堝2、7を用意する。
SiC粉末3を黒鉛坩堝2に充填し、黒鉛坩堝7の底部の中央に接近する位置にスペーサ9を設置する。
SiC粉末3の不純物総含有量が10ppm未満であり、好ましくは1ppm未満であり、SiC粉末3の粒径が10mm未満であり、好ましくは5mm未満である。
黒鉛坩堝2と黒鉛坩堝7の灰分が50ppm未満であり、好ましくは1ppm未満である。
Two graphite crucibles 2 and 7 are prepared.
The SiC powder 3 is filled in the graphite crucible 2 and a spacer 9 is installed at a position approaching the center of the bottom of the graphite crucible 7.
The total impurity content of SiC powder 3 is less than 10 ppm, preferably less than 1 ppm, and the particle size of SiC powder 3 is less than 10 mm, preferably less than 5 mm.
The ash content of the graphite crucible 2 and the graphite crucible 7 is less than 50 ppm, preferably less than 1 ppm.

スペーサ9は、第1端が黒鉛坩堝7の底部に接続されて第2端が第2坩堝7の開口部へ伸びている中実柱状体、たとえば、円柱体、四角柱形、三角柱形、多角柱形等であるが、本発明は、これに限定されない。 The spacer 9 is a solid columnar body having a first end connected to the bottom of the graphite crucible 7 and a second end extending to the opening of the second crucible 7, for example, a cylindrical body, a quadrangular prism, a triangular prism, Although it is a prismatic shape etc., this invention is not limited to this.

たとえば、スペーサ9は中空柱状体であってもよい。柱状体以外、黒鉛坩堝7の中央に接近する位置にSiC原料を形成することを防止できる限り、スペーサ9は、円錐台形、円錐体形などの他の任意の形状であってもよい。 For example, the spacer 9 may be a hollow columnar body. As long as it can prevent forming a SiC raw material in the position which approaches the center of the graphite crucible 7 other than a columnar body, the spacer 9 may be other arbitrary shapes, such as a truncated cone shape and a cone shape.

スペーサ9の第1端が物理的又は化学的方式によって黒鉛坩堝7の底部に接続され、又はスペーサ9と黒鉛坩堝7が一体形成されて黒鉛坩堝7内の底部に固定される。 The first end of the spacer 9 is connected to the bottom of the graphite crucible 7 by a physical or chemical method, or the spacer 9 and the graphite crucible 7 are integrally formed and fixed to the bottom of the graphite crucible 7.

スペーサ9の外壁と黒鉛坩堝7の内壁とが所定間隔離れており、好ましくは、スペーサ9は黒鉛坩堝7の中心位置に位置する。 The outer wall of the spacer 9 and the inner wall of the graphite crucible 7 are separated from each other by a predetermined distance. Preferably, the spacer 9 is located at the center position of the graphite crucible 7.

スペーサ9の黒鉛坩堝7の底部からの上方の高さは、少なくとも結晶することが期待されるSiC原料8の高さより高い。 The height above the bottom of the graphite crucible 7 of the spacer 9 is at least higher than the height of the SiC raw material 8 expected to crystallize.

黒鉛坩堝7を黒鉛坩堝2に反転して取り付け、黒鉛坩堝7と黒鉛坩堝2の開口部を対向させる。ネジ式シール、係止リング式のシール、係止スリーブ式シール等の方式によって、黒鉛坩堝2と7をシールすることができる。 The graphite crucible 7 is inverted and attached to the graphite crucible 2, and the openings of the graphite crucible 7 and the graphite crucible 2 are opposed to each other. The graphite crucibles 2 and 7 can be sealed by a method such as a screw type seal, a locking ring type seal, a locking sleeve type seal or the like.

対向設置される黒鉛坩堝2と黒鉛坩堝7を加熱炉に入れ、機械ポンプで加熱炉を排気し内部を真空状態にする。該真空状態とは加熱炉内の圧力が10−1Pa未満であることを意味する。 The graphite crucible 2 and the graphite crucible 7 which are installed opposite to each other are put in a heating furnace, and the heating furnace is evacuated by a mechanical pump to make the inside vacuum. The vacuum state means that the pressure in the heating furnace is less than 10-1 Pa.

具体的には、その内部圧力を10Pa未満にするまで加熱炉を排気した後、不活性ガスアルゴンガスを導入しその内部圧力を50000Paにし、15分間維持し、15分間後、その内部圧力を1Pa未満にするまで加熱炉を排気し、加熱炉内の温度を1000℃に上昇し、1000℃を維持したまま加熱炉を60分間連続的に排気し、60分間後、加熱炉内に50000Paのアルゴンガスを導入し、60分間維持した後、その内部圧力を10.Pa未満にするまで加熱炉を排気する。 Specifically, after evacuating the heating furnace until the internal pressure is less than 10 Pa, an inert gas argon gas is introduced to bring the internal pressure to 50000 Pa, maintained for 15 minutes, and after 15 minutes, the internal pressure is reduced to 1 Pa. The heating furnace is evacuated until the temperature is less than 1, the temperature in the heating furnace is raised to 1000 ° C., and the heating furnace is continuously evacuated for 60 minutes while maintaining 1000 ° C. After 60 minutes, 50,000 Pa of argon is placed in the heating furnace. After introducing gas and maintaining for 60 minutes, the furnace is evacuated until the internal pressure is less than 10. Pa.

その内部温度がたとえば、2200℃となるように、加熱炉を加熱する。 The heating furnace is heated so that the internal temperature becomes 2200 ° C., for example.

加熱炉内に、温度場を設置することにより、相対的高温領域と相対的低温領域が存在し、通常、相対的高温領域の温度が2000〜2500℃の範囲にあり、相対的低温領域の温度が1900〜2400℃の範囲にある。 By installing a temperature field in the heating furnace, there are a relatively high temperature region and a relatively low temperature region, and usually the temperature of the relative high temperature region is in the range of 2000 to 2500 ° C., and the temperature of the relative low temperature region. Is in the range of 1900-2400 ° C.

黒鉛坩堝2を相対的高温領域、黒鉛坩堝7を相対的低温領域にセットして、黒鉛坩堝2中のSiC粉末を高温作用下で昇華させ、温度勾配に起因する作用の下で相対的低温領域に位置する黒鉛坩堝7内に移送して結晶化させ、結晶化されたSiC原料を得る。 The graphite crucible 2 is set in a relatively high temperature region, the graphite crucible 7 is set in a relatively low temperature region, the SiC powder in the graphite crucible 2 is sublimated under a high temperature action, and the relative low temperature region under an action caused by a temperature gradient. It is transferred into a graphite crucible 7 located at a position to cause crystallization to obtain a crystallized SiC raw material.

本発明の実施例によれば、SiC粉末の昇華結晶化過程において、不純物の含有量が大幅に低減されるため、SiC原料中の不純物含有量がSiC粉末よりも大幅に低減され、さらに、これにより製造されるSiC原料を用いてSiC結晶を成長させるときに、SiC結晶の品質を有意的に向上させる。 According to the embodiment of the present invention, the content of impurities is greatly reduced in the sublimation crystallization process of the SiC powder, so that the content of impurities in the SiC raw material is greatly reduced as compared with the SiC powder. When the SiC crystal is grown using the SiC raw material produced by the above, the quality of the SiC crystal is significantly improved.

また、本発明の実施例によれば、SiC原料は、SiC粉末の高温昇華により得られるものであって、緻密に結晶化して密度が3.2グラム/立方センチに近いSiC多結晶ブロックである。従来の物理的気相移送成長法を用いたSiC結晶成長に使用されるSiC粉末に比べて、SiC多結晶ブロックが緻密に結晶化し、SiC粒界間の相互作用が強い。該SiC原料を用いてSiC結晶を成長させる過程においては、SiC多結晶ブロックの表面は成長過程が続くのに伴って黒鉛化されるが、SiC多結晶ブロックの表面の黒鉛間に強い相互作用が存在するため、昇華により生じた気相物質によって結晶成長界面に運ばれにくく、それによりSiC結晶成長過程におけるミクロ黒鉛被覆物の発生が回避される。 Further, according to the embodiment of the present invention, the SiC raw material is obtained by high temperature sublimation of SiC powder, and is a SiC polycrystalline block that is densely crystallized and has a density close to 3.2 gram / cubic centimeter. . Compared with the SiC powder used for SiC crystal growth using the conventional physical vapor transport growth method, the SiC polycrystal block is crystallized densely and the interaction between SiC grain boundaries is strong. In the process of growing a SiC crystal using the SiC raw material, the surface of the SiC polycrystalline block is graphitized as the growth process continues, but there is a strong interaction between the graphite on the surface of the SiC polycrystalline block. Due to the presence, it is difficult for the vapor phase material generated by sublimation to be transported to the crystal growth interface, thereby avoiding the formation of a micrographite coating during the SiC crystal growth process.

さらに、本発明の実施例によれば、SiC粉末結晶化の坩堝にスペーサが設置されるため、最後に形成されるSiC原料が中空構造となる。該構造を有するSiC原料を用いてSiC結晶を成長させる場合、SiC原料が中空構造であるため、SiC原料の中央部位にはSiC原料の昇華で得られた気相物質の移送の妨げや消費がなく、気相物質を結晶成長面に直接輸送でき、それによりSiC原料の利用率を顕著に向上させる。且つ、SiC原料の中央部位にはSiC原料の昇華で得られた気相物質の移送の妨げや消費がないため、SiC結晶の成長速度が生産過程にわたってほぼ変化しないので、収率を向上させる。 Furthermore, according to the embodiment of the present invention, since the spacer is installed in the crucible for crystallization of SiC powder, the SiC raw material formed last has a hollow structure. When the SiC crystal is grown using the SiC raw material having the structure, since the SiC raw material has a hollow structure, the central portion of the SiC raw material is hindered or consumed by the vapor phase material obtained by sublimation of the SiC raw material. However, the vapor phase material can be directly transported to the crystal growth surface, thereby significantly improving the utilization rate of the SiC raw material. In addition, since there is no hindrance or consumption of the vapor phase material obtained by sublimation of the SiC raw material at the central portion of the SiC raw material, the growth rate of the SiC crystal is not substantially changed throughout the production process, thereby improving the yield.

本発明の実施例によれば、SiC結晶成長用SiC原料の製造装置を提供する。 According to an embodiment of the present invention, an apparatus for producing a SiC raw material for SiC crystal growth is provided.

図3はSiC原料の製造装置の部分断面図である。
図3に示すように、該製造装置は、
第1黒鉛坩堝2と、
その側壁と所定距離離れたスペーサ9が底部から上に設置される第2黒鉛坩堝7と、
内部に相対的高温領域と相対的低温領域を有する加熱装置12とを備え、
具体的には、スペーサ9は、第1端が黒鉛坩堝7の底部に接続されて第2端が第2坩堝7の開口部へ伸びている延在する中実柱状体、たとえば、円柱体、四角柱形、三角柱形、多角柱形等であるが、本発明は、これに限定されない。
FIG. 3 is a partial cross-sectional view of the SiC raw material manufacturing apparatus.
As shown in FIG.
A first graphite crucible 2;
A second graphite crucible 7 on which a spacer 9 spaced apart from the side wall by a predetermined distance is installed from the bottom;
A heating device 12 having a relatively high temperature region and a relatively low temperature region therein,
Specifically, the spacer 9 is a solid columnar body that has a first end connected to the bottom of the graphite crucible 7 and a second end extending to the opening of the second crucible 7, for example, a cylindrical body, The shape is a quadrangular prism, a triangular prism, a polygonal prism, or the like, but the present invention is not limited to this.

たとえば、スペーサ9は中空柱状体であってもよい。柱状体以外、黒鉛坩堝7の中央に接近する位置にSiC原料を形成することを防止できる限り、スペーサ9は円錐台形、円錐体形などの他の任意の形状であってもよい。 For example, the spacer 9 may be a hollow columnar body. As long as it can prevent forming a SiC raw material in the position which approaches the center of the graphite crucible 7 other than a columnar body, the spacer 9 may be other arbitrary shapes, such as a truncated cone shape and a cone shape.

スペーサ9の第1端が物理的又は化学的方式によって黒鉛坩堝7の底部に接続され、又はスペーサ9と黒鉛坩堝7が一体形成されて黒鉛坩堝7内の底部に固定される。 The first end of the spacer 9 is connected to the bottom of the graphite crucible 7 by a physical or chemical method, or the spacer 9 and the graphite crucible 7 are integrally formed and fixed to the bottom of the graphite crucible 7.

スペーサ9の外壁と黒鉛坩堝7の内壁とが所定間隔離れており、好ましくは、スペーサ9が黒鉛坩堝7の中心位置に位置する。 The outer wall of the spacer 9 and the inner wall of the graphite crucible 7 are separated from each other by a predetermined distance. Preferably, the spacer 9 is located at the center position of the graphite crucible 7.

スペーサ9の黒鉛坩堝7の底部からの上方の高さは、少なくとも結晶化対象となるSiC原料の高さより高い。 The height above the bottom of the graphite crucible 7 of the spacer 9 is at least higher than the height of the SiC raw material to be crystallized.

加熱装置12では、SiC原料8を製造する時に、第2黒鉛坩堝7は、SiC粉末3が充填された第1黒鉛坩堝2に反転して取り付けられ、且つ第1黒鉛坩堝2は加熱装置12内の相対的高温領域に位置し、第2黒鉛坩堝7は相対的低温領域に位置する。 In the heating device 12, when producing the SiC raw material 8, the second graphite crucible 7 is inverted and attached to the first graphite crucible 2 filled with the SiC powder 3, and the first graphite crucible 2 is in the heating device 12. The second graphite crucible 7 is located in a relatively low temperature region.

具体的には、加熱装置12は、加熱炉を含むが、これに限定されない。加熱装置12内の温度場が制御可能であるため、加熱装置12に相対的高温領域と相対的低温領域が存在し、
SiC原料を製造する際に、黒鉛坩堝7を黒鉛坩堝2に反転して取り付け、黒鉛坩堝7と黒鉛坩堝2の開口部を対向させる。ネジ式シール、係止リング式のシール、係止スリーブ式シールなどの方式によって、黒鉛坩堝2と7をシールすることができる。
Specifically, the heating device 12 includes a heating furnace, but is not limited thereto. Since the temperature field in the heating device 12 is controllable, the heating device 12 has a relatively high temperature region and a relatively low temperature region,
When the SiC raw material is manufactured, the graphite crucible 7 is inverted and attached to the graphite crucible 2, and the openings of the graphite crucible 7 and the graphite crucible 2 are made to face each other. The graphite crucibles 2 and 7 can be sealed by a method such as a screw type seal, a locking ring type seal, a locking sleeve type seal or the like.

対向して設置された黒鉛坩堝2と黒鉛坩堝7を加熱炉にセットして、機械ポンプで加熱炉を排気し内部を真空状態にし、該真空状態とは加熱炉内の圧力が10−1Pa未満であることを意味する。 The graphite crucible 2 and the graphite crucible 7 installed facing each other are set in a heating furnace, the heating furnace is evacuated by a mechanical pump, and the inside is evacuated. The vacuum state means that the pressure in the heating furnace is less than 10-1 Pa. It means that.

具体的には、その内部圧力を10Pa未満にするまで加熱炉を排気した後、不活性ガスアルゴンガスを導入しその内部圧力を50000Paにし、15分間維持し、15分間後、その内部圧力を1Pa未満にするまで加熱炉を排気し、加熱炉内の温度を1000℃に上昇し、1000℃を維持したまま加熱炉を60分間連続的に排気し、60分間後、加熱炉内に50000Paのアルゴンガスを導入し、60分間維持した後、その内部圧力を10−1Pa未満にするまで加熱炉を排気する。 Specifically, after evacuating the heating furnace until the internal pressure is less than 10 Pa, an inert gas argon gas is introduced to bring the internal pressure to 50000 Pa, maintained for 15 minutes, and after 15 minutes, the internal pressure is reduced to 1 Pa. The heating furnace is evacuated until the temperature is less than 1, the temperature in the heating furnace is raised to 1000 ° C., and the heating furnace is continuously evacuated for 60 minutes while maintaining 1000 ° C. After 60 minutes, 50,000 Pa of argon is placed in the heating furnace. After introducing gas and maintaining for 60 minutes, the furnace is evacuated until the internal pressure is less than 10-1 Pa.

その内部温度がたとえば、2200℃となるように、加熱炉を加熱する。 The heating furnace is heated so that the internal temperature becomes 2200 ° C., for example.

加熱炉内に、温度場を設置することにより、相対的高温領域と相対的低温領域が存在し、通常、相対的高温領域の温度が2000〜2500℃の範囲にあり、相対的低温領域の温度が1900〜2400℃の範囲にある。 By installing a temperature field in the heating furnace, there are a relatively high temperature region and a relatively low temperature region, and usually the temperature of the relative high temperature region is in the range of 2000 to 2500 ° C., and the temperature of the relative low temperature region. Is in the range of 1900-2400 ° C.

黒鉛坩堝2を相対的高温領域、黒鉛坩堝7を相対的低温領域にセットして、黒鉛坩堝2中のSiC粉末を高温作用下で昇華させ、温度勾配に起因する作用の下で相対的低温領域に位置する黒鉛坩堝7内に移送して結晶化させ、結晶化されたSiC原料を得る。 The graphite crucible 2 is set in a relatively high temperature region, the graphite crucible 7 is set in a relatively low temperature region, the SiC powder in the graphite crucible 2 is sublimated under a high temperature action, and the relative low temperature region under an action caused by a temperature gradient. It is transferred into a graphite crucible 7 located at a position to cause crystallization to obtain a crystallized SiC raw material.

SiC粉末結晶化の坩堝にセパレータが設置されているため、最後に形成されるSiC原料が中空構造である。該構造を有するSiC原料を用いてSiC結晶を成長させる場合、SiC原料が中空構造であるため、SiC原料の中央部位にはSiC原料の昇華で得られた気相物質の移送の妨げや消費がなく、気相物質を結晶成長面に直接輸送でき、それによりSiC原料の利用率を有意的に向上させる。且つ、SiC原料の中央部位にはSiC原料の昇華で得られた気相物質の移送の妨げや消費がないため、SiC結晶の成長速度が成長過程にわたってほぼ変化しないので、収率を向上させる。 Since the separator is installed in the crucible for crystallization of SiC powder, the SiC raw material formed last has a hollow structure. When the SiC crystal is grown using the SiC raw material having the structure, since the SiC raw material has a hollow structure, the central portion of the SiC raw material is hindered or consumed by the vapor phase material obtained by sublimation of the SiC raw material. The vapor phase material can be directly transported to the crystal growth surface, thereby significantly improving the utilization rate of the SiC raw material. In addition, since there is no hindrance or consumption of the vapor phase material obtained by sublimation of the SiC raw material at the central portion of the SiC raw material, the growth rate of the SiC crystal is not substantially changed throughout the growth process, thereby improving the yield.

なお、以上の具体的な実施形態は本発明の好適な実施形態に過ぎず、当業者にとって、請求項の趣旨と範囲を逸脱しない限り、各種の形式と詳細の変化を行うことができ、これらの変化も本発明の保護範囲内である。 The specific embodiments described above are merely preferred embodiments of the present invention, and various forms and details can be changed by those skilled in the art without departing from the spirit and scope of the claims. These changes are also within the protection scope of the present invention.

1.黒鉛蓋、2.第1黒鉛坩堝、3.SiC粉末、4.接着剤、5.SiC種結晶、6.SiC結晶、7.第2黒鉛坩堝、8.SiC原料、9.スペーサ、10.誘導加熱コイル、11.断熱材、12.加熱装置。
1. 1. graphite lid; 1. first graphite crucible; SiC powder, 4. 4. adhesive, SiC seed crystal, 6. SiC crystal, 7. Second graphite crucible, 8. SiC raw material, 9. Spacer, 10. 10. induction heating coil; Insulation, 12. Heating device.

Claims (16)

SiC結晶成長用SiC原料の製造方法であって、
SiC粉末を第1黒鉛坩堝に入れ、前記第1黒鉛坩堝に第2黒鉛坩堝を反転して取り付けるステップと、
前記第1黒鉛坩堝が加熱装置内の相対的高温領域に位置し、前記第2黒鉛坩堝が前記加熱装置内の相対的低温領域に位置するように、取り付けられた2つの黒鉛坩堝を前記加熱装置にセットし、前記加熱装置を真空引きし且つ前記加熱装置内の温度を所定温度まで上昇し、前記SiC粉末を昇華させ且つ相対的低温領域に位置する前記第2黒鉛坩堝に移送して結晶化させ、結晶化されたSiC原料を得るステップとを含むことを特徴とするSiC結晶成長用SiC原料の製造方法。
A method for producing a SiC raw material for SiC crystal growth,
Placing SiC powder in a first graphite crucible, reversing and attaching a second graphite crucible to the first graphite crucible;
The two graphite crucibles attached so that the first graphite crucible is located in a relatively high temperature region in the heating device and the second graphite crucible is located in a relatively low temperature region in the heating device. , Evacuating the heating device, raising the temperature in the heating device to a predetermined temperature, sublimating the SiC powder and transferring it to the second graphite crucible located in a relatively low temperature region for crystallization And obtaining a crystallized SiC raw material. A method for producing a SiC raw material for SiC crystal growth, comprising:
前記第2黒鉛坩堝の側壁と所定距離離れたスペーサを、前記第2黒鉛坩堝内に底部から上に設置するステップを含むことを特徴とする請求項1に記載の製造方法。 The manufacturing method according to claim 1, further comprising the step of installing a spacer spaced apart from the side wall of the second graphite crucible by a predetermined distance from the bottom in the second graphite crucible. 前記スペーサは前記第2黒鉛坩堝内の中心位置に位置することを特徴とする請求項2に記載の製造方法。 The manufacturing method according to claim 2, wherein the spacer is located at a center position in the second graphite crucible. 前記スペーサは黒鉛を含むことを特徴とする請求項2に記載の製造方法。 The manufacturing method according to claim 2, wherein the spacer includes graphite. 前記スペーサは中実又は中空構造であることを特徴とする請求項2-3のいずれか一項に記載の製造方法。 The manufacturing method according to claim 2, wherein the spacer has a solid or hollow structure. 前記スペーサの前記第2黒鉛坩堝の底部からの上方の高さを、少なくとも結晶化対象となるSiC原料の高さ以上に設定することを特徴とする請求項2-3のいずれか一項に記載の製造方法。 The height above the bottom of the second graphite crucible of the spacer is set to at least the height of the SiC raw material to be crystallized. Manufacturing method. 前記第1黒鉛坩堝に第2黒鉛坩堝を反転して取り付けることは、
ネジ式シール、係止リング式のシール、係止スリーブ式シールのうちの少なくとも1種を含むシール方式によって、前記第2黒鉛坩堝を前記第1黒鉛坩堝に反転して取り付けるステップを含むことを特徴とする請求項1に記載の製造方法。
Reversing and attaching the second graphite crucible to the first graphite crucible
A step of inverting and attaching the second graphite crucible to the first graphite crucible by a sealing method including at least one of a screw type seal, a locking ring type seal, and a locking sleeve type seal. The manufacturing method according to claim 1.
前記加熱装置を真空引きすることは、
前記加熱装置を排気しその内部圧力を10Pa未満にした後、所定圧力の不活性ガスを導入し第1所定期間維持するステップと、
前記第1所定期間後、その内部圧力を1Pa未満にするまで前記加熱装置を排気するステップと、
前記加熱装置内の温度を前記所定温度の半分である第1温度に上昇し、前記第1温度を維持して前記加熱装置を第2所定期間連続的に排気するステップと、
前記第2所定期間後、前記加熱装置内に前記所定圧力の不活性ガスを導入し第3所定期間維持した後、その内部圧力を10−1Pa未満にするまで前記加熱装置を排気するステップとを含むことを特徴とする請求項1に記載の製造方法。
Vacuuming the heating device
Evacuating the heating device and reducing its internal pressure to less than 10 Pa, then introducing an inert gas at a predetermined pressure and maintaining for a first predetermined period;
Evacuating the heating device after the first predetermined period until the internal pressure is less than 1 Pa;
Raising the temperature in the heating device to a first temperature that is half of the predetermined temperature, maintaining the first temperature, and continuously evacuating the heating device for a second predetermined period;
After the second predetermined period, after introducing the inert gas at the predetermined pressure into the heating apparatus and maintaining it for the third predetermined period, exhausting the heating apparatus until the internal pressure becomes less than 10-1 Pa. The manufacturing method of Claim 1 characterized by the above-mentioned.
前記加熱装置内の温度を所定温度まで上昇することは、
誘導加熱又は抵抗加熱によって前記加熱装置内の温度を所定温度まで上昇するステップを含むことを特徴とする請求項1に記載の製造方法。
Increasing the temperature in the heating device to a predetermined temperature
The manufacturing method according to claim 1, further comprising a step of increasing the temperature in the heating device to a predetermined temperature by induction heating or resistance heating.
前記加熱装置内の温度勾配を5℃/cm〜100℃/cmとして設定し、昇華させた前記SiC粉末を前記温度勾配に起因する作用の下で前記第2黒鉛坩堝に移送して結晶化させるステップをさらに含むことを特徴とする請求項1に記載の製造方法。 The temperature gradient in the heating device is set as 5 ° C./cm to 100 ° C./cm, and the sublimated SiC powder is transferred to the second graphite crucible under the action due to the temperature gradient and crystallized. The manufacturing method according to claim 1, further comprising a step. 前記温度勾配の範囲が10℃/cm〜50℃/cmであることを特徴とする請求項10に記載の製造方法。 The range of the said temperature gradient is 10 degreeC / cm-50 degreeC / cm, The manufacturing method of Claim 10 characterized by the above-mentioned. SiC結晶成長用SiC原料の製造装置であって、
第1黒鉛坩堝と、
その側壁と所定距離離れたスペーサが底部から上へ設置された第2黒鉛坩堝と、
内部に相対的高温領域と相対的低温領域を有する加熱装置とを備え、
前記SiC原料を製造する際に、前記第2黒鉛坩堝は、SiC粉末が充填された前記第1黒鉛坩堝に反転して取り付けられ、且つ前記第1黒鉛坩堝は前記加熱装置内の前記相対的高温領域に位置し、前記第2黒鉛坩堝は前記加熱装置内の前記相対的低温領域に位置することを特徴とするSiC結晶成長用SiC原料の製造装置。
An SiC raw material manufacturing apparatus for SiC crystal growth,
A first graphite crucible;
A second graphite crucible in which a spacer separated from the side wall by a predetermined distance is installed from the bottom to the top;
A heating device having a relatively high temperature region and a relatively low temperature region inside,
When producing the SiC raw material, the second graphite crucible is inverted and attached to the first graphite crucible filled with SiC powder, and the first graphite crucible is the relative high temperature in the heating device. The SiC raw material production apparatus for SiC crystal growth, wherein the second graphite crucible is located in a region, and the second graphite crucible is located in the relative low temperature region in the heating device.
前記スペーサは前記第2黒鉛坩堝内の中心位置に位置することを特徴とする請求項12に記載の製造装置。 The manufacturing apparatus according to claim 12, wherein the spacer is located at a center position in the second graphite crucible. 前記スペーサは黒鉛を含むことを特徴とする請求項12に記載の製造装置。 The manufacturing apparatus according to claim 12, wherein the spacer includes graphite. 前記スペーサは中実又は中空構造であることを特徴とする請求項12に記載の製造装置。 The manufacturing apparatus according to claim 12, wherein the spacer has a solid or hollow structure. 前記スペーサの前記第2黒鉛坩堝の底部からの上方の高さは、少なくとも結晶化対象となるSiC原料の高さ以上にすることを特徴とする請求項12に記載の製造装置。
The manufacturing apparatus according to claim 12, wherein the height of the spacer from the bottom of the second graphite crucible is at least equal to or higher than the SiC raw material to be crystallized.
JP2019527120A 2017-03-30 2017-03-30 Manufacturing method and manufacturing equipment for SiC raw materials for SiC crystal growth Active JP6829767B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/078726 WO2018176302A1 (en) 2017-03-30 2017-03-30 Method and apparatus for preparing sic raw material for growing sic crystal

Publications (2)

Publication Number Publication Date
JP2019535632A true JP2019535632A (en) 2019-12-12
JP6829767B2 JP6829767B2 (en) 2021-02-10

Family

ID=63673858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019527120A Active JP6829767B2 (en) 2017-03-30 2017-03-30 Manufacturing method and manufacturing equipment for SiC raw materials for SiC crystal growth

Country Status (3)

Country Link
JP (1) JP6829767B2 (en)
CN (1) CN109844185B (en)
WO (1) WO2018176302A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112877771A (en) * 2021-01-04 2021-06-01 山西烁科晶体有限公司 Crucible and method for single crystal growth
CN113622029B (en) * 2021-08-12 2022-11-29 山东天岳先进科技股份有限公司 Crucible assembly having polycrystalline block, method of manufacturing the same, and silicon carbide single crystal manufactured therefrom

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8163086B2 (en) * 2007-08-29 2012-04-24 Cree, Inc. Halogen assisted physical vapor transport method for silicon carbide growth
CN100595144C (en) * 2008-06-04 2010-03-24 山东大学 Artificial synthetic method of high-pure SiC power for semiconductor single-crystal growth
JP5402701B2 (en) * 2010-02-12 2014-01-29 住友電気工業株式会社 Method for producing silicon carbide crystal
JP5565070B2 (en) * 2010-04-26 2014-08-06 住友電気工業株式会社 Silicon carbide crystal and method for producing silicon carbide crystal
CN104862780B (en) * 2015-05-05 2017-11-14 山东天岳先进材料科技有限公司 A kind of method and device for preparing colorless silicon carbide crystal

Also Published As

Publication number Publication date
JP6829767B2 (en) 2021-02-10
WO2018176302A1 (en) 2018-10-04
CN109844185A (en) 2019-06-04
CN109844185B (en) 2020-11-03

Similar Documents

Publication Publication Date Title
US20220002906A1 (en) SiC Single Crystal Sublimation Growth Apparatus
CN110592673B (en) High-quality large-size silicon carbide crystal growth method
TW201807272A (en) Device for growing monocrystalline crystal particularly relating to a device for growing monocrystalline crystals from silicon carbide and nitrides
CN108946735B (en) Synthesis method of large-particle-size silicon carbide powder for silicon carbide crystal growth
CN108118394B (en) Method for reducing nitrogen impurity content in silicon carbide single crystal
CN108624963A (en) A kind of raw material sintering process of carborundum crystals for the growth of PVT methods
CN112553694A (en) Method and device for high-temperature annealing of silicon carbide single crystal
CN109628998B (en) Silicon carbide crystal and method for producing same
JP5293732B2 (en) Method for producing silicon carbide single crystal
JP6829767B2 (en) Manufacturing method and manufacturing equipment for SiC raw materials for SiC crystal growth
JP4102876B2 (en) Single crystal growth equipment
JP5614387B2 (en) Silicon carbide single crystal manufacturing method and silicon carbide single crystal ingot
CN108149324B (en) Aluminum nitride self-nucleation growth method
JP2001509769A (en) Large silicon carbide single crystal growth equipment
JPH03295898A (en) Method and device for growing silicon carbide single crystal
US20240150929A1 (en) Method of growing high-quality single crystal silicon carbide
WO2020087723A1 (en) Silicon carbide single crystal growth device
JP4070353B2 (en) Method for epitaxial growth of silicon carbide
KR100530889B1 (en) Graphite crucible with the cone shape at the bottom part, which is used in growing SiC single crystal
KR20170073834A (en) Growth device for silicon carbide single crystal
JP7072691B1 (en) On Axis Silicon Carbide Single Crystal Growth Method
CN109371467B (en) Method for producing aluminum nitride single crystal and apparatus for producing aluminum nitride single crystal
CN214327973U (en) High-temperature annealing device for silicon carbide single crystal
WO2019222997A1 (en) Apparatus and method for preparing aluminum nitride crystal
CN111197181B (en) Preparation method of high-purity ultrathin silicon carbide substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210122

R150 Certificate of patent or registration of utility model

Ref document number: 6829767

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250