JPS6357400B2 - - Google Patents

Info

Publication number
JPS6357400B2
JPS6357400B2 JP58150122A JP15012283A JPS6357400B2 JP S6357400 B2 JPS6357400 B2 JP S6357400B2 JP 58150122 A JP58150122 A JP 58150122A JP 15012283 A JP15012283 A JP 15012283A JP S6357400 B2 JPS6357400 B2 JP S6357400B2
Authority
JP
Japan
Prior art keywords
manufacturing
silicon carbide
temperature
reaction chamber
seeds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58150122A
Other languages
Japanese (ja)
Other versions
JPS5954697A (en
Inventor
Chiiguraa Gyuntaa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of JPS5954697A publication Critical patent/JPS5954697A/en
Publication of JPS6357400B2 publication Critical patent/JPS6357400B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】 本発明は炭化ケイ素SiCの単結晶、特にこの結
晶の6H変態を工業用炭化ケイ素結晶の昇華と部
分的分解および保護ガス下での反応容器中の種の
上への成長によつて製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a single crystal of silicon carbide, SiC, and in particular to the 6H modification of this crystal by sublimation and partial decomposition of an industrial silicon carbide crystal and onto the seeds in a reaction vessel under a protective gas. Relating to a method of manufacturing by growth.

炭化ケイ素SiCからなる青色光LED(発光ダイ
オード)の大量生産のため、ならびにその広いバ
ンドギヤツプ、高い融点および高い熱伝導度の利
用のためには、所定の特性をもつできるだけ大き
な基板が必要である。そのような基板は、いわゆ
るアチエソン(Acheson)法の際にたまたま生ず
る結晶滓から加工される結晶板片から調整され
る。しかしそれは、エピタキシーの際に他の色の
発光現象を有する領域が生ずるからしばしば個々
の基板に不適当に見える。
For mass production of blue-light LEDs (light emitting diodes) made of silicon carbide SiC and to take advantage of their wide bandgap, high melting point and high thermal conductivity, as large a substrate as possible with certain properties is required. Such substrates are prepared from crystalline plates processed from the crystal slag that happens to occur during the so-called Acheson process. However, it often appears unsuitable for the individual substrates, since during epitaxy regions are created with luminescent phenomena of other colors.

周知のように炭素およびケイ素に富む蒸気に一
部分分解した化合物の昇華と反応室中の成長によ
るいわゆるLely法によつて炭化ケイ素からなる
単結晶を製造することができる。この方法の場合
には、工業用炭化ケイ素は分解し、α−SiCから
なる単結晶が約2500℃の比較的高い温度と比較的
高い圧力において反応室中に配置された工業用
SiCの塊からつくられた中空円筒の内壁に成長し
得る。その場合温度勾配は中空円筒の中心から反
応室の天井に向けても底に向けても保持される。
この単結晶板の広がりは小さい〔Inst.Phys.Conf.
第53号(1980年)21〜35ページ〕。
As is well known, single crystals of silicon carbide can be produced by the so-called Lely process by sublimation of partially decomposed compounds into carbon- and silicon-rich vapors and growth in a reaction chamber. In the case of this method, industrial silicon carbide is decomposed and a single crystal consisting of α-SiC is placed in a reaction chamber at a relatively high temperature of about 2500°C and a relatively high pressure.
It can grow on the inner walls of hollow cylinders made from chunks of SiC. A temperature gradient is then maintained from the center of the hollow cylinder both towards the ceiling and towards the bottom of the reaction chamber.
The spread of this single crystal plate is small [Inst.Phys.Conf.
No. 53 (1980) pages 21-35].

さらに炭化ケイ素の単結晶を炭化ケイ素からな
る種結晶の上へ1800ないし2600℃の温度において
成長させ得ることが知られている。その成長速度
は温度、軸方向の温度勾配および保護ガスの圧力
により影響される。単結晶は1800℃の温度と10-3
〜10-4mbarの圧力において約30℃/cmの温度勾
配によつて生ずる。この方法においては結晶の望
ましい変態、特に6H変態の単結晶の生成は固難
である〔Inorganic Materials、第14巻(1978
年)、830〜838ページ〕。
Furthermore, it is known that single crystals of silicon carbide can be grown on seed crystals of silicon carbide at temperatures of 1800 to 2600°C. The growth rate is influenced by temperature, axial temperature gradient and protective gas pressure. Single crystal has a temperature of 1800℃ and 10 -3
This is caused by a temperature gradient of approximately 30° C./cm at a pressure of ~10 −4 mbar. In this method, it is difficult to produce single crystals with desired crystal transformations, especially 6H transformation [Inorganic Materials, Vol. 14 (1978
), pp. 830-838].

本発明は、発光ダイオードの基板として用いる
ことのできるような十分な大きさで僅かな不純物
を有する炭化ケイ素の6H変態の単結晶を製造す
ることを目的とする。それは、単結晶の種を用い
てそのような単結晶の公知の製造方法において、
温度勾配の選定が高すぎ、保護ガスの圧力の選定
が低すぎるとの認識に基づいている。
The object of the present invention is to produce a 6H-transformed single crystal of silicon carbide having a sufficient size and a small amount of impurities so that it can be used as a substrate for a light emitting diode. In a known method for producing such single crystals using single crystal seeds,
This is based on the recognition that the temperature gradient has been selected too high and the protective gas pressure has been selected too low.

さらにSiC系上の平衡蒸気圧が温度に関連して
プロツトされている線図が公知である。この線図
から全蒸気圧の調整が推定できる(Knippenberg
著)“Growth Phenomena in Silicon Garbide”
Philips Research Reports 18号(1963年6月)
161〜274ページ中の164〜166ページ)。
Furthermore, diagrams are known in which the equilibrium vapor pressure on SiC systems is plotted as a function of temperature. From this diagram, the adjustment of the total vapor pressure can be estimated (Knippenberg
Author) “Growth Phenomena in Silicon Garbide”
Philips Research Reports No. 18 (June 1963)
Pages 164-166 of 161-274).

上述の目的は、本発明によれば、反応容器中の
成長方向の温度勾配が高くとも25℃/cmであり、
種を2100〜2300℃の温度に保持し、保護ガスの圧
力を少なくとも析出物の成分のガス圧力の和と同
じ大きさであるように調整することによつて達せ
られる。この場合温度勾配を特に高くとも20℃/
cmに選定し、保護ガスの圧力を、高温に加熱され
たSiC系によつて引き起こされる内部圧力を補償
するように調整する。この目的のために保護ガス
の圧力を約1〜5mbarの範囲、望ましくは約1.5
〜2.5mbarの範囲に選定する。その場合数cmの長
さの単結晶が種の上に成長する。
The above object, according to the invention, is such that the temperature gradient in the growth direction in the reaction vessel is at most 25°C/cm;
This is achieved by maintaining the seeds at a temperature of 2100-2300° C. and adjusting the pressure of the protective gas to be at least as great as the sum of the gas pressures of the components of the deposit. In this case, the temperature gradient should be at most 20℃/
cm and the pressure of the protective gas is adjusted to compensate for the internal pressure caused by the highly heated SiC system. For this purpose, the pressure of the protective gas is adjusted to a range of approximately 1 to 5 mbar, preferably approximately 1.5 mbar.
Select a range of ~2.5mbar. In that case, a single crystal several centimeters long grows on the seed.

本発明による方法の実施のための特に有利な装
置の中では、ガス状の析出物成分が実質的に温度
勾配に逆つて析出帯域に導かれる。この導入は、
例えば析出帯域の両側に反応室の外において多孔
質の黒鉛のみを配置し、昇華のために用意された
炭化ケイ素を析出帯域の上方において反応室と並
んで多孔室の分離壁の背後に配置することによつ
て簡単に行える。
In a particularly advantageous apparatus for carrying out the process according to the invention, the gaseous precipitate components are conducted into the precipitation zone substantially against the temperature gradient. This introduction
For example, only porous graphite is placed outside the reaction chamber on both sides of the precipitation zone, and silicon carbide prepared for sublimation is placed above the precipitation zone, alongside the reaction chamber and behind the separation wall of the porous chamber. This can be done easily.

必要な温度勾配は、種に対して付加的な冷却、
反応室の蓋に対して付加的な熱絶縁を備えること
によつて得られる。装置の特に有効な別の構成
は、蓋の中あるいは蓋の上に付加的な加熱装置を
備えることによつて得られる。
The required temperature gradient provides additional cooling to the seeds,
This is achieved by providing additional thermal insulation to the lid of the reaction chamber. A particularly advantageous alternative configuration of the device is obtained by providing an additional heating device in or on the lid.

次に、本発明による方法の実施のための装置の
一実施例を示す図面について、本発明をさらに説
明する。
The invention will now be further explained with reference to the drawing, which shows an example of a device for carrying out the method according to the invention.

析出装置の図示された実施例においては、反応
室2は析出領域4と導入領域6を含み、例えば約
25mmの内径と例えば約100mmの長さLを持ち、比
較的大きな穴を持つ固体の多孔質黒鉛からなる円
筒状側壁8を備えている。例えば約15mmの直径d
と例えば約0.5mmの高さhを持つ単結晶の炭化ケ
イ素からなる円板状の種10が、例えば電気黒鉛か
らなり反応室2の底を形成する台12の上に配置
されている。反応室の上部は、側壁8の心出しに
用いられる図には詳細に符号を付していない肉厚
部を備えている蓋14によつて閉じられている。
反応室2ならびに析出物成分の加熱のために、中
空円筒状加熱壁16および上部加熱板17ならび
に下部加熱板18が備えられ、それらは例えば電
気黒鉛からなるのがよく、望ましくは水冷された
加熱コイル20と誘導結合されている。側壁8と
加熱壁16との間の空間は、その下部の析出領域
4の周りに位置する部分が固体の多孔質黒鉛から
なる充てん物22を備えている。充てん物22の
上には導入領域に同心に上記中間空間が高い純度
の粒状の工業用炭化ケイ素24、望ましくは例え
ば約200〜300μmの粒度をもち、かなりの部分ま
で6H変態からなるが例えば4H変態ならびに立方
晶構造の結晶も含んでよいグリーン炭化ケイ素に
よつて満たされている。
In the illustrated embodiment of the precipitation apparatus, the reaction chamber 2 comprises a precipitation region 4 and an introduction region 6, for example about
It has a cylindrical side wall 8 made of solid porous graphite with an inner diameter of 25 mm and a length L of, for example, about 100 mm, with relatively large holes. For example, a diameter d of about 15 mm
A disk-shaped seed 10 made of single-crystal silicon carbide and having a height h of, for example, about 0.5 mm is arranged on a platform 12 made of, for example, electrolytic graphite and forming the bottom of the reaction chamber 2. The upper part of the reaction chamber is closed by a lid 14, which is provided with a thickened section, not labeled in detail in the figure, which is used for centering the side wall 8.
For heating the reaction chamber 2 and the precipitate components, a hollow cylindrical heating wall 16 and an upper heating plate 17 and a lower heating plate 18 are provided, which may be made of electrolytic graphite, for example, and are preferably water-cooled. It is inductively coupled to the coil 20. The space between the side wall 8 and the heating wall 16 is provided with a filling 22 of solid porous graphite located around the deposition region 4 in its lower part. Above the filling 22, concentrically to the introduction region, the intermediate space is made of highly pure granular industrial silicon carbide 24, preferably having a particle size of, for example, about 200 to 300 μm, and consisting to a large extent of 6H transformation, but for example 4H. It is filled with green silicon carbide which may also contain crystals of modified as well as cubic structure.

加熱手段を備えた反応容器は、熱絶縁物からな
るのが望ましく熱遮蔽に役立つ容器26によつて
囲まれている。熱絶縁物としては、中空円筒とし
て巻き付けられるかもしくは積み重ねられる黒鉛
箔(Sigraflex)が適している。それは、例えば
石英からなり図には破線によつ輪郭のみを概略的
に示している真空容器28の中に配置されてい
る。真空容器28は公知のように運転のために必
要な手段、例えば真空ポンプに対する接続管およ
びガス導管を備えている。
The reaction vessel equipped with heating means is surrounded by a vessel 26, which preferably consists of a thermal insulator and serves as a heat shield. Graphite foil (Sigraflex), which is wound or stacked as a hollow cylinder, is suitable as a thermal insulator. It is arranged in a vacuum vessel 28, made of quartz, for example, and only schematically shown in outline by dashed lines in the figure. The vacuum container 28 is equipped in a known manner with the necessary means for operation, such as connections to a vacuum pump and gas lines.

析出過程の開始のために、真空容器28および
それと共に反応室2を保護ガス、例えばアルゴン
で満たし、それから反応室2を約2200℃が望まし
い運転温度まで加熱する。つづいて、生ずるガス
状のSiC系の成分、すなわちSi,Si2CおよびSiC2
のガス圧力にほぼ相当する圧力まで排気する。こ
れらの成分のガス圧力の和は約2トルになる。反
応室2の圧力が減少するにつれて種10の上に数
cm、例えば3cmの高さHを持つ単結晶30が成長
する。この大きさは炭化ケイ素からなる半導体素
子の基板として直接使用するのに十分である。
To start the precipitation process, the vacuum vessel 28 and with it the reaction chamber 2 are filled with a protective gas, for example argon, and then the reaction chamber 2 is heated to the desired operating temperature of about 2200.degree. Subsequently, the resulting gaseous SiC system components, namely Si, Si 2 C and SiC 2
evacuate to a pressure approximately equivalent to the gas pressure of The sum of the gas pressures of these components is approximately 2 Torr. The number above species 10 as the pressure in reaction chamber 2 decreases
A single crystal 30 with a height H of cm, for example 3 cm, is grown. This size is sufficient for direct use as a substrate for a semiconductor device made of silicon carbide.

装置の別の実施例においては種10のために、例
えば台12で終り真空容器28を貫通している冷
却フインガー30からなるのがよい特別の冷却装
置を備えることができる。
In another embodiment of the device, a special cooling system can be provided for the seeds 10, which may consist, for example, of a cooling finger 30 terminating in the platform 12 and passing through the vacuum vessel 28.

さらに上部加熱板17の上に、望ましくは特別
な熱絶縁を備え、それによつて析出領域4から導
入領域6への加熱勾配を制御することができる。
装置の別の実施例ではこの熱絶縁層は同時に、例
えば黒鉛からなり誘導コイル20と誘導結合させ
ることができる付加的加熱手段19として形成す
ることができる。
Furthermore, above the upper heating plate 17 there is preferably a special thermal insulation, by means of which the heating gradient from the deposition zone 4 to the introduction zone 6 can be controlled.
In a further embodiment of the device, this thermally insulating layer can be designed at the same time as an additional heating means 19 made of graphite, for example, and which can be inductively coupled to the induction coil 20.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明方法を実施するための装置の断面図
である。 2……反応室、4……析出領域、10……種、
14……蓋、16……加熱壁、17……上部加熱
板、18……下部加熱板、20……誘導コイル、
28……真空容器、30……単結晶。
The figure is a sectional view of an apparatus for carrying out the method of the invention. 2...Reaction chamber, 4...Precipitation region, 10...Seed,
14... Lid, 16... Heating wall, 17... Upper heating plate, 18... Lower heating plate, 20... Induction coil,
28...Vacuum container, 30...Single crystal.

Claims (1)

【特許請求の範囲】 1 工業用炭化ケイ素結晶の昇華と部分的分解お
よび保護ガス下での反応容器中の種の上への成長
により炭化ケイ素の6H変態単結晶を製造するた
めの方法において、反応容器中の成長方向の温度
勾配が高くとも25℃/cmであり、種を2100〜2300
℃の温度に保持し、保護ガスの圧力を少なくとも
析出物の成分のガス圧力の和と同じ大きさである
ように調整することを特徴とする炭化ケイ素単結
晶の製造方法。 2 温度勾配が高くとも20℃/cmであることを特
徴とする特許請求の範囲第1項記載の製造方法。 3 種の温度が約2200℃であることを特徴とする
特許請求の範囲第1項記載の製造方法。 4 保護ガスの圧力を1ないし5mbarの範囲に保
持することを特徴とする特許請求の範囲第1項な
いし第3項のいずれか1項に記載の製造方法。 5 種を冷却することを特徴とする特許請求の範
囲第1項ないし第4項のいずれか1項に記載の製
造方法。 6 反応室の蓋からの熱放散を妨げることを特徴
とする特許請求の範囲第1項ないし第5項のいず
れか1項に記載の製造方法。 7 反応室の蓋を付加的に加熱することを特徴と
する特許請求の範囲第1項ないし第5項のいずれ
か1項に記載の製造方法。
Claims: 1. A method for producing 6H-transformed single crystals of silicon carbide by sublimation and partial decomposition of industrial silicon carbide crystals and growth on the seeds in a reaction vessel under protective gas, comprising: The temperature gradient in the growth direction in the reaction vessel is at most 25℃/cm, and the seeds are
A method for producing a silicon carbide single crystal, the method comprising: maintaining the temperature at a temperature of °C, and adjusting the pressure of a protective gas so that it is at least as large as the sum of the gas pressures of the components of the precipitate. 2. The manufacturing method according to claim 1, wherein the temperature gradient is at most 20°C/cm. 3. The manufacturing method according to claim 1, wherein the temperature is about 2200°C. 4. The manufacturing method according to any one of claims 1 to 3, characterized in that the pressure of the protective gas is maintained in the range of 1 to 5 mbar. 5. The manufacturing method according to any one of claims 1 to 4, characterized by cooling the seeds. 6. The manufacturing method according to any one of claims 1 to 5, characterized in that heat dissipation from the lid of the reaction chamber is prevented. 7. The manufacturing method according to any one of claims 1 to 5, characterized in that the lid of the reaction chamber is additionally heated.
JP58150122A 1982-08-18 1983-08-17 Manufacture of silicon carbide single crystal Granted JPS5954697A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3230727A DE3230727C2 (en) 1982-08-18 1982-08-18 Process for producing single crystals of silicon carbide SiC
DE3230727.6 1982-08-18

Publications (2)

Publication Number Publication Date
JPS5954697A JPS5954697A (en) 1984-03-29
JPS6357400B2 true JPS6357400B2 (en) 1988-11-11

Family

ID=6171140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58150122A Granted JPS5954697A (en) 1982-08-18 1983-08-17 Manufacture of silicon carbide single crystal

Country Status (2)

Country Link
JP (1) JPS5954697A (en)
DE (1) DE3230727C2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09263497A (en) * 1996-03-29 1997-10-07 Denso Corp Production of silicon carbide single crystal

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0788274B2 (en) * 1985-09-18 1995-09-27 三洋電機株式会社 Method for growing SiC single crystal
US4866005A (en) * 1987-10-26 1989-09-12 North Carolina State University Sublimation of silicon carbide to produce large, device quality single crystals of silicon carbide
DE3915053C2 (en) * 1989-05-08 1995-03-30 Siemens Ag Process for producing single-crystal silicon carbide SiC
DE59001292D1 (en) * 1989-06-20 1993-06-03 Siemens Ag METHOD FOR PRODUCING SINGLE CRYSTALLINE SILICON CARBIDE.
DE4310744A1 (en) * 1993-04-01 1994-10-06 Siemens Ag Device for producing SiC single crystals
SE9503426D0 (en) * 1995-10-04 1995-10-04 Abb Research Ltd A device for heat treatment of objects and a method for producing a susceptor
RU2094547C1 (en) * 1996-01-22 1997-10-27 Юрий Александрович Водаков Sublimation method for growing silicon carbide monocrystals and silicon carbide source involved
US6547877B2 (en) 1996-01-22 2003-04-15 The Fox Group, Inc. Tantalum crucible fabrication and treatment
US6537371B2 (en) 1997-01-22 2003-03-25 The Fox Group, Inc. Niobium crucible fabrication and treatment
US6562130B2 (en) 1997-01-22 2003-05-13 The Fox Group, Inc. Low defect axially grown single crystal silicon carbide
ATE217368T1 (en) 1997-01-22 2002-05-15 Yury Alexandrovich Vodakov GROWING SILICON CARBIDE SINGLE CRYSTALS
ATE202807T1 (en) * 1997-01-31 2001-07-15 Northrop Grumman Corp DEVICE FOR GROWING LARGE SILICON CARBIDE CRYSTALS
EP1105555B1 (en) 1998-07-13 2002-04-24 Siemens Aktiengesellschaft METHOD FOR GROWING SiC MONOCRYSTALS
US6063185A (en) * 1998-10-09 2000-05-16 Cree, Inc. Production of bulk single crystals of aluminum nitride, silicon carbide and aluminum nitride: silicon carbide alloy
EP1803840B1 (en) * 1998-12-25 2009-02-04 Showa Denko Kabushiki Kaisha Method for growing single crystal of silicon carbide
DE50004010D1 (en) 1999-07-07 2003-11-13 Siemens Ag METHOD FOR SUBLIMATION GROWING A SIC SINGLE CRYSTAL WITH HEATING UNDER GROWING PRESSURE
JP4691292B2 (en) 1999-07-07 2011-06-01 エスアイクリスタル アクチエンゲゼルシャフト Seed crystal holder having outer peripheral wall of SiC seed crystal
DE19931332C2 (en) * 1999-07-07 2002-06-06 Siemens Ag Device for producing a SiC single crystal with a double-walled crucible
JP4691291B2 (en) 1999-07-07 2011-06-01 エスアイクリスタル アクチエンゲゼルシャフト SiC single crystal sublimation growth apparatus having crucible lined with foil
US6562131B2 (en) 1999-07-20 2003-05-13 The Fox Group, Inc. Method for growing single crystal silicon carbide
US6824611B1 (en) 1999-10-08 2004-11-30 Cree, Inc. Method and apparatus for growing silicon carbide crystals
US7056383B2 (en) 2004-02-13 2006-06-06 The Fox Group, Inc. Tantalum based crucible
EP2411569B1 (en) 2009-03-26 2021-09-22 II-VI Incorporated Sic single crystal sublimation growth method and apparatus
JP4888548B2 (en) * 2009-12-24 2012-02-29 株式会社デンソー Silicon carbide single crystal manufacturing apparatus and manufacturing method
EP3353339A4 (en) 2015-09-24 2019-05-08 Melior Innovations Inc. Vapor deposition apparatus and techniques using high purity polymer derived silicon carbide

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF CRYSTAL GROWTH=1976 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09263497A (en) * 1996-03-29 1997-10-07 Denso Corp Production of silicon carbide single crystal

Also Published As

Publication number Publication date
DE3230727A1 (en) 1984-02-23
DE3230727C2 (en) 1987-02-19
JPS5954697A (en) 1984-03-29

Similar Documents

Publication Publication Date Title
JPS6357400B2 (en)
US5968261A (en) Method for growing large silicon carbide single crystals
EP1144737B1 (en) Production of bulk single crystals of aluminum nitride, silicon carbide and aluminum nitride:silicon carbide alloy
EP0712150B1 (en) Sublimation growth of silicon carbide single crystals
EP1218572B1 (en) Method and apparatus for growing silicon carbide crystals
US7524376B2 (en) Method and apparatus for aluminum nitride monocrystal boule growth
JP3898278B2 (en) Method for manufacturing silicon carbide single crystal and apparatus for manufacturing the same
US5879462A (en) Device for heat treatment of objects and a method for producing a susceptor
KR20120082873A (en) Sublimation growth of sic single crystals
EP1803840A2 (en) Method for growing single crystal of silicon carbide
US3275415A (en) Apparatus for and preparation of silicon carbide single crystals
RU2094547C1 (en) Sublimation method for growing silicon carbide monocrystals and silicon carbide source involved
EP1540048B1 (en) Silicon carbide single crystal and method and apparatus for producing the same
JP4052678B2 (en) Large silicon carbide single crystal growth equipment
JPH10509689A (en) Method and apparatus for producing silicon carbide single crystal by sublimation breeding
JP3590485B2 (en) Single crystal silicon carbide ingot and method for producing the same
JPH03295898A (en) Method and device for growing silicon carbide single crystal
JP3590464B2 (en) Method for producing 4H type single crystal silicon carbide
JPH06298600A (en) Method of growing sic single crystal
JPH10139589A (en) Production of single crystal
JP4309509B2 (en) Method for producing crucible for single crystal growth comprising pyrolytic graphite
JP2680617B2 (en) Method for growing silicon carbide single crystal
NL2029666B1 (en) MANUFACTURING METHOD OF SILICON CARBIDE (SiC) SINGLE CRYSTAL
JPH06298514A (en) Production of highly pure silicon carbide
JPH0648898A (en) Production of silicon carbide single crystal