JPH0788274B2 - Method for growing SiC single crystal - Google Patents

Method for growing SiC single crystal

Info

Publication number
JPH0788274B2
JPH0788274B2 JP60205551A JP20555185A JPH0788274B2 JP H0788274 B2 JPH0788274 B2 JP H0788274B2 JP 60205551 A JP60205551 A JP 60205551A JP 20555185 A JP20555185 A JP 20555185A JP H0788274 B2 JPH0788274 B2 JP H0788274B2
Authority
JP
Japan
Prior art keywords
raw material
single crystal
temperature
seed crystal
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60205551A
Other languages
Japanese (ja)
Other versions
JPS6266000A (en
Inventor
和幸 古賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP60205551A priority Critical patent/JPH0788274B2/en
Publication of JPS6266000A publication Critical patent/JPS6266000A/en
Publication of JPH0788274B2 publication Critical patent/JPH0788274B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明はSiC(シリコンカーバイド)単結晶の成長方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a method for growing a SiC (silicon carbide) single crystal.

(ロ) 従来の技術 SiC単結晶は物理的、化学的に安定で、しかも高温、放
射線に耐える素材であるため、耐環境性半導体素子材料
として注目をあびている。また、なかでも6HタイプSiC
単結晶はエネルギーギヤツプが3.0eVと大きく青色発光
ダイオード等の材料として供されつつある。現在、6Hタ
イプSiCのインゴツド状単結晶の成長は主に昇華方が採
用されている。
(B) Conventional technology Since SiC single crystal is a material that is physically and chemically stable and can withstand high temperature and radiation, it is drawing attention as an environment-resistant semiconductor element material. Among them, 6H type SiC
The single crystal has a large energy gap of 3.0 eV and is being used as a material for blue light emitting diodes and the like. At present, the sublimation method is mainly used for the growth of 6H type SiC ingot-shaped single crystals.

ジヤーナル オブ クリスタル グロウス(Jouranl o
f Crystal Gaowth)52(1981)P146〜150には、SiC単
結晶からなる種結晶温度を1800℃、SiC粉末からなる原
材料温度を2200℃以下とし、真空昇華法により6Hタイプ
SiC単結晶を成長させる方法が開示されている。
Journal of Crystal Grouse
f Crystal Gaowth) 52 (1981) P146-150, the seed crystal temperature of SiC single crystal is 1800 ℃, the raw material temperature of SiC powder is 2200 ℃ or less, 6H type by vacuum sublimation method.
A method of growing a SiC single crystal is disclosed.

また、特開昭59−35099号公報には、原材料を1800〜220
0℃で加熱昇華させ、更に種結晶を2000℃以下で且つ原
材料より50〜200℃低い温度に保つとともに不活性気体
の圧力を数百Torrの高圧としてSiC単結晶を成長させ、
次にその圧力を1〜10Torr迄の低圧に漸減し、この低圧
状態でSiC単結晶を成長させる方法が開示されている。
Further, JP-A-59-35099 discloses that raw materials are 1800 to 220
Sublimate by heating at 0 ° C, and further grow the SiC single crystal by keeping the seed crystal at a temperature of 2000 ° C or lower and a temperature of 50 to 200 ° C lower than the raw material and the pressure of the inert gas at a high pressure of several hundred Torr,
Next, a method is disclosed in which the pressure is gradually reduced to a low pressure of 1 to 10 Torr and a SiC single crystal is grown in this low pressure state.

(ハ) 発明が解決しようとする問題点 然るに前者の方法では成長速度が数mm/hと極めて大きい
が、柱状に成長しやすく、色々の形や方向の結晶面が現
われ結晶性が悪い。また、後者の方法では成長速度が数
100μm/hと遅く実用的ではない。
(C) Problems to be solved by the invention Although the former method has a very high growth rate of several mm / h, it easily grows in a columnar shape, and crystal faces of various shapes and directions appear, resulting in poor crystallinity. In addition, the latter method has a growth rate of several
It is as slow as 100 μm / h and not practical.

(ニ) 問題点を解決するための手段 本発明方法は斯る点を鑑みて成されたもので、その構成
的特徴は、SiCからなる原材料を加熱し、該原材料の上
方側に配置されたSiC単結晶からなる種結晶に向って上
方への昇華ガスを生じさせ、該種結晶上にSiC単結晶を
成長させるSiC単結晶の成長方法であって、上記原材料
温度を2300〜2500℃、上記種結晶と該原材料との間の温
度勾配を5〜20℃/cm、該種結晶温度を該原材料温度よ
り低く且つその温度差が300℃以下である2200〜2400
℃、反応系内の雰囲気ガス圧を1〜10Torrとすると共
に、上記昇華ガスを上記種結晶表面上へ集中して導くた
めの黒鉛からなる集中手段を介して該種結晶表面上へ指
向せしめたことにある。
(D) Means for Solving the Problems The method of the present invention has been made in view of the above point, and its structural feature is that the raw material made of SiC is heated and disposed above the raw material. A method for growing a SiC single crystal in which a sublimation gas is generated upward toward a seed crystal made of a SiC single crystal, and a SiC single crystal is grown on the seed crystal, wherein the raw material temperature is 2300 to 2500 ° C., 2200 to 2400 in which the temperature gradient between the seed crystal and the raw material is 5 to 20 ° C / cm, the seed crystal temperature is lower than the raw material temperature, and the temperature difference is 300 ° C or less.
C., the atmospheric gas pressure in the reaction system was set to 1 to 10 Torr, and the sublimation gas was directed onto the seed crystal surface through a concentrating means made of graphite for concentrating and guiding the sublimation gas onto the seed crystal surface. Especially.

(ホ) 作用 これにより、結晶性の秀れた単結晶を速い速度で成長で
きる。
(E) Action As a result, a single crystal having excellent crystallinity can be grown at a high speed.

(ヘ) 実施例 第1図及び第2図は本発明の実施例に用いるるつぼ
(1)及び成長装置を示す。
(F) Example FIG. 1 and FIG. 2 show a crucible (1) and a growth apparatus used in an example of the present invention.

まず第1図中、(2)はSiCからなる原材料(3)を収
納するための有底で円筒形の収納部であり、該収納部の
円柱状の内部空間(4)は該空間内に同心円状に配置さ
れた円筒状の壁(5)により外周室(6)と中央室
(7)との2室に分割される。また上記原材料(3)は
上記外周室(6)に収納される。これはるつぼ(1)が
加熱される場合、収納部(4)の中央部(中央室
(7))は温度が低く、この部分では原材料(3)が再
結晶化して昇華しにくくなることを考慮したためであ
る。特に、大きなSiC単結晶を得るために大型化された
るつぼ(1)の場合に、上述のような構造にし、外周室
(6)に原材料を入れると効率良く原材料が昇華する。
First, in FIG. 1, (2) is a bottomed cylindrical storage part for storing the raw material (3) made of SiC, and the cylindrical internal space (4) of the storage part is inside the space. A cylindrical wall (5) arranged concentrically divides the chamber into two chambers, an outer chamber (6) and a central chamber (7). The raw material (3) is stored in the outer peripheral chamber (6). This means that when the crucible (1) is heated, the temperature of the central part (central chamber (7)) of the storage part (4) is low, and in this part, the raw material (3) is recrystallized and becomes difficult to sublime. This is because of consideration. In particular, in the case of a crucible (1) having a large size in order to obtain a large SiC single crystal, if the raw material is put in the outer peripheral chamber (6) with the above structure, the raw material is efficiently sublimated.

(8)は上記収納部(2)上に取付けられた円筒状の集
中管(集中手段)であり、該集中管はその内径が上方に
向って徐々に小さくなる。(9)は上記集中管(8)上
に取付けられた断熱部材であり、該断熱部材は下端が開
きかつ上端に上壁を備える円筒状の部材である。また上
記上壁の中央部には上下に貫通する孔(10)が形成され
ている。(11)は上記断熱部材(10)上に取付けられた
蓋体であり、該蓋体の上壁中央部にはねじ山が切られた
ねじ孔(12)が形成されている。
Reference numeral (8) is a cylindrical concentrating pipe (concentrating means) mounted on the storage portion (2), and the inner diameter of the concentrating pipe is gradually reduced upward. (9) is a heat insulating member mounted on the concentrating pipe (8), and the heat insulating member is a cylindrical member having an open lower end and an upper wall at the upper end. Further, a hole (10) penetrating vertically is formed in the central portion of the upper wall. Reference numeral (11) is a lid mounted on the heat insulating member (10), and a screw hole (12) having a thread is formed at the center of the upper wall of the lid.

(13)は円柱状の摺動部材であり、該摺動部材は上記蓋
体(11)のねじ孔(12)と螺合すると共に断熱部材
(9)の孔(10)を貫通する。(14)は上記摺動部材
(13)の下端に装着された基板ホルダであり、該基板ホ
ルダは上記集中管(8)と断熱部材(9)とによって形
成される内部空間(15)内に配される。そして、斯る基
板ホルダ(14)の下端面は保持面(16)となり、6Hタイ
プSiC(6H形SiC)単結晶からなる種結晶(17)が固着さ
れる。(18)は円筒状のガス侵入防止管であり、該ガス
侵入防止管はその外径が孔(10)の内径とほぼ等しく選
ばれ、かつ上記摺動部材(13)に通されて基板ホルダ
(14)上に載置されている。したがって、内部空間(1
5)内のガスは、このガス侵入防止管(18)によって蓋
体(11)内に侵入できない。
Reference numeral (13) is a cylindrical sliding member, and the sliding member is screwed into the screw hole (12) of the lid (11) and penetrates the hole (10) of the heat insulating member (9). (14) is a substrate holder attached to the lower end of the sliding member (13), and the substrate holder is inside an internal space (15) formed by the concentrating pipe (8) and the heat insulating member (9). Will be distributed. The lower end surface of the substrate holder (14) serves as a holding surface (16), and a seed crystal (17) made of 6H type SiC (6H type SiC) single crystal is fixed. Reference numeral (18) is a cylindrical gas intrusion prevention tube, the outer diameter of which is selected to be substantially equal to the inner diameter of the hole (10), and the gas invasion prevention tube is passed through the sliding member (13) so as to pass through the substrate holder. (14) is placed on. Therefore, the internal space (1
The gas inside 5) cannot enter the inside of the lid (11) by the gas intrusion prevention pipe (18).

従って、摺動部材(13)を図示の矢印(19)の方向に回
動させることにより、蓋体(11)によって支持された摺
動部材(13)は上下に摺動する。これに伴なって、基板
ホルダ(14)の保持面(16)の高さ(言い換えれば原材
料(3)から種結晶(17)の下面までの高さ)を任意の
結晶成長に好ましい高さに調節できる。なお、ガス侵入
防止管(18)は、摺動部材(13)に通され基板ホルダ
(14)上に単に載せられているだけであるから、摺動部
材(14)の上下動に伴いガス侵入防止管(18)も上下動
する。
Therefore, by rotating the sliding member (13) in the direction of the arrow (19), the sliding member (13) supported by the lid (11) slides up and down. Along with this, the height of the holding surface (16) of the substrate holder (14) (in other words, the height from the raw material (3) to the lower surface of the seed crystal (17)) is set to a preferable height for arbitrary crystal growth. Can be adjusted. Since the gas intrusion prevention pipe (18) is passed through the sliding member (13) and simply placed on the substrate holder (14), gas invasion occurs as the sliding member (14) moves up and down. The prevention pipe (18) also moves up and down.

さらに、この実施例では、収納部(2)の底壁に連通孔
(20)が形成されている。そして、通常は、内部空間
(4)と外部空間とを遮断するために、連通孔(20)に
は栓(21)がされている。連通孔(20)は、栓(21)が
外されることにより、種結晶(17)の表面温度測定に利
用されたり、また、種結晶(17)表面に形成する単結晶
に不純物をドープする場合、ドーパント導入孔としても
利用される。さらに、連通孔(20)を設けたことによ
り、このるつぼ(1)を後述する成長装置内に取付けや
すいという利点もある。すなわち、連通孔(20)によっ
てるつぼ(1)の位置決めがしやすく、かつ、連通孔
(20)を取付用突起等に差し込むことにより、るつぼ
(1)が容易に取付けられるからである。
Further, in this embodiment, a communication hole (20) is formed in the bottom wall of the storage section (2). And, normally, in order to block the internal space (4) from the external space, the communication hole (20) is provided with a plug (21). The communication hole (20) is used for measuring the surface temperature of the seed crystal (17) by removing the plug (21), and the single crystal formed on the surface of the seed crystal (17) is doped with impurities. In this case, it is also used as a dopant introduction hole. Further, by providing the communication hole (20), there is an advantage that the crucible (1) can be easily attached to the growth device described later. That is, the crucible (1) can be easily positioned by the communication hole (20), and the crucible (1) can be easily mounted by inserting the communication hole (20) into the mounting projection or the like.

この実施例で説明したるつぼ(1)の収納部(2)、円
筒状の壁(5)、集中管(8)、断熱部材(9)、蓋体
(11)、摺動部材(13)、基板ホルダ(14)、ガス侵入
防止管(18)および栓(21)は、ともに、高熱に耐え得
るように、黒鉛によって形成されている。
The storage portion (2) of the crucible (1), the cylindrical wall (5), the concentrating pipe (8), the heat insulating member (9), the lid body (11), the sliding member (13), which are described in this embodiment. The substrate holder (14), the gas intrusion prevention tube (18) and the plug (21) are all made of graphite so as to withstand high heat.

なお、上述したるつぼ(1)では、保温効果を高めると
ともに、SiCの昇華ガスがねじ孔(12)に付着しないよ
うに、断熱部材(9)と蓋体(11)とによる2室構造と
したが、基板ホルダ(14)を上下させない場合等であれ
ば、断熱部材(9)を蓋体(11)と兼用して、構造を簡
単にしてもよい。
In addition, the above-mentioned crucible (1) has a two-chamber structure including a heat insulating member (9) and a lid (11) so as to enhance the heat retention effect and prevent the sublimation gas of SiC from adhering to the screw hole (12). However, if the substrate holder (14) is not moved up and down, for example, the heat insulating member (9) may also be used as the lid body (11) to simplify the structure.

次に、第2図に示した結晶成長装置について説明する。Next, the crystal growth apparatus shown in FIG. 2 will be described.

図中、(30)は成長管であり、該成長管内には、上述し
たるつぼ(1)が配されている。(31)は放熱シールド
であり、該シールドは上記るつぼ(1)を覆い、るつぼ
(1)からの放熱を極力抑える。(32)は上記成長管
(30)の周囲に巻回された高周波コイルであり、該高周
波コイルの電磁誘導加熱により成長管(30)内が加熱さ
れる。尚、成長管(30)自体は上記加熱により溶けない
ように、二重構造とされ内部に常時水が流されて冷却さ
れている。
In the figure, (30) is a growth tube, and the crucible (1) described above is arranged in the growth tube. (31) is a heat radiation shield, which covers the crucible (1) and suppresses heat radiation from the crucible (1) as much as possible. (32) is a high-frequency coil wound around the growth tube (30), and the inside of the growth tube (30) is heated by electromagnetic induction heating of the high-frequency coil. The growth tube (30) itself has a double structure and is cooled by constantly flowing water inside so as not to melt by the above heating.

(33)(34)は夫々成長管(30)に結合されたガス流入
/流出用の経路であり、該ガス流入用経路から流量計
(35)及びバルブ(36)で流量が調整されたアルゴン
(Ar)ガス(雰囲気ガス)が成長管(30)内に流入さ
れ、他方、成長管(30)内のArガスはガス流出用経路
(34)を介して抜きとられる。従って、成長管(30)内
のArガス圧は結晶成長に好ましい圧力に制御される。
(33) and (34) are gas inflow / outflow paths respectively connected to the growth tube (30), and the flow rate of the argon is adjusted by a flow meter (35) and a valve (36) from the gas inflow path. (Ar) gas (atmosphere gas) flows into the growth tube (30), while Ar gas in the growth tube (30) is extracted via the gas outflow path (34). Therefore, the Ar gas pressure in the growth tube (30) is controlled to a pressure suitable for crystal growth.

以下に上記装置を用いた本発明の実施例を説明する。Examples of the present invention using the above apparatus will be described below.

まず、常圧(約760Torr)のArガス雰囲気中で、種結晶
(17)及び原材料(3)を夫々2300℃及び2360℃に上昇
させる。尚、この種結晶と原材料料との間の温度勾配は
約12℃/cmである。またこのように常圧で温度上昇を行
なうことにより、温度上昇過程において種結晶(17)に
結晶性の悪い結晶が成長することを防止できる。
First, in an Ar gas atmosphere at normal pressure (about 760 Torr), the seed crystal (17) and the raw material (3) are raised to 2300 ° C. and 2360 ° C., respectively. The temperature gradient between the seed crystal and the raw material is about 12 ° C / cm. Further, by increasing the temperature at normal pressure in this way, it is possible to prevent the crystal having poor crystallinity from growing on the seed crystal (17) during the temperature increasing process.

この後、成長管(30)内のArガス雰囲気(成長管内圧
力)を5Torrまで下げ、この状態を保持することにより
種結晶(17)表面にSiC単結晶が1〜2mm/hの速度で成長
する。
After this, the Ar gas atmosphere (pressure inside the growth tube) in the growth tube (30) is lowered to 5 Torr, and by maintaining this state, the SiC single crystal grows on the seed crystal (17) surface at a rate of 1 to 2 mm / h. To do.

このようにして得られた単結晶のフオトルミネツセンス
特性を調べたところ、そのピーク波長は約490nmであ
り、明らかに6HタイプのSiC単結晶であることが判明し
た。また、斯る6HタイプSiC単結晶の電気的特性は比抵
抗10Ω・cm、キヤリア濃度約4×1016/cm3、導電型n型
と高抵抗、低キヤリア濃度の単結晶が製造が可能である
ことがわかる。更に上記SiC単結晶を厚さ約550μmのウ
エハ上にスライスし、この結晶の光透過性を調べたとこ
ろ第3図に示す如く、2.5〜5.0μmの波長に対して良好
であり、これにより斯る結晶は不純物の取込みが少な
い、良好な結晶であることが理解できる。
When the photoluminescence characteristics of the single crystal thus obtained were examined, it was found that the peak wavelength was about 490 nm, which was clearly a 6H type SiC single crystal. Moreover, the electrical characteristics of such 6H type SiC single crystal are such that a specific resistance of 10 Ω · cm, a carrier concentration of about 4 × 10 16 / cm 3 , a conductivity type n type and a high resistance, a low carrier concentration of a single crystal can be manufactured. I know there is. Further, the above-mentioned SiC single crystal was sliced on a wafer having a thickness of about 550 μm, and the light transmittance of this crystal was examined. As shown in FIG. 3, it was good for wavelengths of 2.5 to 5.0 μm. It can be understood that the crystal that is a good crystal has few impurities taken in.

尚、本実施例では種結晶温度、原材料温度及びArガス雰
囲気を5Torrとしたが、本願はこれに限定されるもので
はなく、下表に示す条件で成長を行なえば上記と同様な
効果が得られる。
In this example, the seed crystal temperature, the raw material temperature and the Ar gas atmosphere were set to 5 Torr, but the present application is not limited to this, and the same effects as above can be obtained if the growth is performed under the conditions shown in the table below. To be

上記表に示すように、種結晶温度は2200〜2400℃に保つ
のが好ましく、種結晶温度が2200℃未満では成長した結
晶の結晶性が悪く、2400℃を越えると熱エツチングによ
り成長が困難となる。また原材料温度は2300〜2500℃と
することが好ましく、2300℃未満では原材料の昇華量が
少なく成長速度の低下を招き、2500℃を越えると原材料
の昇華量が多過ぎ結晶性の劣化を招く。尚、上記種結晶
温度と原材料との間には種結晶温度の方が低くなるよう
に5〜20℃/cmの温度勾配をもたせることが必要でこの
ような温度勾配があるとき結晶性が良好となる。更に、
Arガス圧力は1〜10Torrとすることが好ましく、1Torr
未満では結晶性が悪くグレインの集合となり、また10To
rr以上では熱エツチングにより成長速度が低下する。
As shown in the above table, the seed crystal temperature is preferably maintained at 2200 to 2400 ° C, and the crystallinity of the grown crystal is poor if the seed crystal temperature is less than 2200 ° C, and if the temperature exceeds 2400 ° C, it is difficult to grow due to thermal etching. Become. The raw material temperature is preferably 2300 to 2500 ° C. If the raw material temperature is lower than 2300 ° C., the sublimation amount of the raw material is small and the growth rate is lowered, and if it exceeds 2500 ° C., the sublimation amount of the raw material is too large and the crystallinity is deteriorated. In addition, it is necessary to have a temperature gradient of 5 to 20 ° C./cm between the seed crystal temperature and the raw material so that the seed crystal temperature is lower. Becomes Furthermore,
Ar gas pressure is preferably 1 to 10 Torr, 1 Torr
If it is less than 10, crystallinity is poor and grains are aggregated.
Above rr, the growth rate decreases due to thermal etching.

(ト) 発明の効果 本発明は、昇華ガスを原材料の上方側に配置された種結
晶表面へ集中して導くための集中手段を会して該結晶表
面上へ指向せしめたので、種結晶表面へ昇華ガスが効率
よく指向される。しかも、この昇華ガスと接触しやすい
集中手段は黒鉛からなるので、昇華ガス中に含まれるSi
Cの結晶成長に寄与しないSi等のガスは接触の際に集中
手段から炭素が供給されて結晶成長に寄与するガスが増
加する。
(G) Effect of the Invention According to the present invention, the concentrating means for concentrating and guiding the sublimation gas to the seed crystal surface disposed on the upper side of the raw material is met and directed toward the seed crystal surface. The sublimation gas is efficiently directed. Moreover, since the concentrating means that is easily contacted with the sublimation gas is made of graphite, Si contained in the sublimation gas
For gases such as Si that do not contribute to the crystal growth of C, carbon is supplied from the concentrating means during contact, and the amount of gas that contributes to crystal growth increases.

加えて、原材料温度を2300〜2500℃、種結晶と原材料と
の間の温度勾配を5〜20℃/cm、種結晶温度を原材料温
度より低く且つその温度差が300℃以下である2200〜240
0℃、反応系内の雰囲気ガス圧を1〜10Torrとした。
In addition, the raw material temperature is 2300 ~ 2500 ℃, the temperature gradient between the seed crystal and the raw material 5 ~ 20 ℃ / cm, the seed crystal temperature is lower than the raw material temperature and the temperature difference is 300 ℃ or less 2200 ~ 240
The atmospheric gas pressure in the reaction system was 0 ° C. and 1 to 10 Torr.

この結果、不純物の取り込み及び結晶性の悪い結晶の成
長が抑えられ、結晶の優れたSiC単結晶を短時間で成長
できる。
As a result, the incorporation of impurities and the growth of crystals with poor crystallinity are suppressed, and a SiC single crystal with excellent crystals can be grown in a short time.

【図面の簡単な説明】[Brief description of drawings]

第1図及び第2図は本発明の実施例で用いるるつぼの断
面図及び結晶成長装置の模式図、第3図は本発明方法に
より得られた単結晶の光透過性を示す特性図である。 (3)……原材料、(17)……種結晶
1 and 2 are cross-sectional views of crucibles used in the examples of the present invention and schematic views of a crystal growth apparatus, and FIG. 3 is a characteristic diagram showing the light transmittance of a single crystal obtained by the method of the present invention. . (3) …… Raw material, (17) …… Seed crystal

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】SiCからなる原材料を加熱し、該原材料の
上方側に配置されたSiC単結晶からなる種結晶に向って
上方への昇華ガスを生じさせ、該種結晶上にSiC単結晶
を成長させるSiC単結晶の成長方法であって、 上記原材料温度を2300〜2500℃、上記種結晶と該原材料
との間の温度勾配を5〜20℃/cm、該種結晶温度を該原
材料温度より低く且つその温度差が300℃以下である220
0〜2400℃、反応系内の雰囲気ガス圧を1〜10Torrとす
ると共に、上記昇華ガスを上記種結晶表面へ集中して導
くための黒鉛からなる集中手段を介して該種結晶表面上
へ指向せしめたことを特徴とするSiC単結晶の成長方
法。
1. A raw material made of SiC is heated to generate a sublimation gas upward toward a seed crystal made of a SiC single crystal arranged above the raw material, and the SiC single crystal is formed on the seed crystal. A method for growing a SiC single crystal to be grown, wherein the raw material temperature is 2300 to 2500 ° C, the temperature gradient between the seed crystal and the raw material is 5 to 20 ° C / cm, and the seed crystal temperature is higher than the raw material temperature. Low and the temperature difference is less than 300 ℃ 220
0 to 2400 ° C., the atmospheric gas pressure in the reaction system is set to 1 to 10 Torr, and the sublimation gas is directed to the seed crystal surface through a concentrating means made of graphite for concentrating and guiding the sublimation gas to the seed crystal surface. A method for growing a SiC single crystal characterized by being hardened.
JP60205551A 1985-09-18 1985-09-18 Method for growing SiC single crystal Expired - Fee Related JPH0788274B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60205551A JPH0788274B2 (en) 1985-09-18 1985-09-18 Method for growing SiC single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60205551A JPH0788274B2 (en) 1985-09-18 1985-09-18 Method for growing SiC single crystal

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP16322796A Division JPH08325099A (en) 1996-06-24 1996-06-24 Method for growing silicon carbide single crystal

Publications (2)

Publication Number Publication Date
JPS6266000A JPS6266000A (en) 1987-03-25
JPH0788274B2 true JPH0788274B2 (en) 1995-09-27

Family

ID=16508764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60205551A Expired - Fee Related JPH0788274B2 (en) 1985-09-18 1985-09-18 Method for growing SiC single crystal

Country Status (1)

Country Link
JP (1) JPH0788274B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4866005A (en) * 1987-10-26 1989-09-12 North Carolina State University Sublimation of silicon carbide to produce large, device quality single crystals of silicon carbide
SE9502288D0 (en) * 1995-06-26 1995-06-26 Abb Research Ltd A device and a method for epitaxially growing objects by CVD
JP2010251724A (en) 2009-03-26 2010-11-04 Semiconductor Energy Lab Co Ltd Method for manufacturing semiconductor substrate
US8513090B2 (en) 2009-07-16 2013-08-20 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor substrate, and semiconductor device
JP5287675B2 (en) * 2009-11-12 2013-09-11 株式会社デンソー Silicon carbide single crystal manufacturing equipment
JP5187300B2 (en) * 2009-11-12 2013-04-24 株式会社デンソー Silicon carbide single crystal manufacturing equipment
JP5440260B2 (en) * 2010-03-02 2014-03-12 住友電気工業株式会社 Method for manufacturing silicon carbide crystal and apparatus for manufacturing the same
JP2011195360A (en) * 2010-03-18 2011-10-06 Sumitomo Electric Ind Ltd Crucible, crystal production apparatus and holder
DE102014217956B4 (en) * 2014-09-09 2018-05-09 Sicrystal Ag A method of producing a vanadium-doped SiC bulk single crystal and a vanadium-doped SiC substrate
DE102018129492B4 (en) * 2018-11-22 2022-04-28 Ebner Industrieofenbau Gmbh Apparatus and method for growing crystals

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3230727A1 (en) * 1982-08-18 1984-02-23 Siemens AG, 1000 Berlin und 8000 München Process for the preparation of silicon carbide

Also Published As

Publication number Publication date
JPS6266000A (en) 1987-03-25

Similar Documents

Publication Publication Date Title
US11761117B2 (en) SiC single crystal sublimation growth apparatus
KR970008332B1 (en) Sublimation growth of silicon carbide single crystals
EP2330236B1 (en) METHOD AND APPARATUS FOR MANUFACTURING SiC SINGLE CRYSTAL FILM
CN113151897B (en) Crucible structure
JPH0788274B2 (en) Method for growing SiC single crystal
JPH07172998A (en) Production of single crystal of silicon carbide
US3344071A (en) High resistivity chromium doped gallium arsenide and process of making same
JP4052678B2 (en) Large silicon carbide single crystal growth equipment
JP3637157B2 (en) Method for producing silicon carbide single crystal and seed crystal used therefor
JPH08325099A (en) Method for growing silicon carbide single crystal
JPH11209198A (en) Synthesis of silicon carbide single crystal
JP3590464B2 (en) Method for producing 4H type single crystal silicon carbide
JPH0977594A (en) Production of low resistance single crystal silicon carbide
KR20190058963A (en) Reactor for growing silicon carbide single crystal
KR20220089732A (en) Method for semi-insulating sic single crystal growth
JPH0645519B2 (en) Method for growing p-type SiC single crystal
JP2680617B2 (en) Method for growing silicon carbide single crystal
JP2002274995A (en) Method of manufacturing silicon carbide single crystal ingot
KR20130066976A (en) Single crystal growth apparatus and method
KR20130084496A (en) Single crystal growth apparatus and method
WO2014189010A1 (en) Single-crystal silicon carbide and process for producing same
JPH06298514A (en) Production of highly pure silicon carbide
JPH031486Y2 (en)
JP2002012500A (en) Method of and device for producing silicon carbide single crystal, and silicon carbide single crystal
JPH09142995A (en) Production of p-type single crystal silicon carbide

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees