WO2008018322A1 - Single-crystal silicon carbide and process for producing the same - Google Patents
Single-crystal silicon carbide and process for producing the same Download PDFInfo
- Publication number
- WO2008018322A1 WO2008018322A1 PCT/JP2007/064970 JP2007064970W WO2008018322A1 WO 2008018322 A1 WO2008018322 A1 WO 2008018322A1 JP 2007064970 W JP2007064970 W JP 2007064970W WO 2008018322 A1 WO2008018322 A1 WO 2008018322A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- silicon carbide
- raw material
- single crystal
- producing
- crystal
- Prior art date
Links
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 title claims abstract description 194
- 229910021421 monocrystalline silicon Inorganic materials 0.000 title claims abstract description 101
- 238000000034 method Methods 0.000 title claims abstract description 29
- 239000013078 crystal Substances 0.000 claims abstract description 97
- 229910010271 silicon carbide Inorganic materials 0.000 claims abstract description 89
- 239000002994 raw material Substances 0.000 claims abstract description 78
- 238000004519 manufacturing process Methods 0.000 claims abstract description 53
- 238000000354 decomposition reaction Methods 0.000 claims abstract description 27
- 238000005530 etching Methods 0.000 claims abstract description 16
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 33
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 28
- 229910052799 carbon Inorganic materials 0.000 claims description 21
- 239000002245 particle Substances 0.000 claims description 16
- 239000000377 silicon dioxide Substances 0.000 claims description 10
- 230000002265 prevention Effects 0.000 claims description 6
- 238000010438 heat treatment Methods 0.000 abstract description 14
- 230000007547 defect Effects 0.000 abstract description 6
- 230000005764 inhibitory process Effects 0.000 abstract 1
- 235000012431 wafers Nutrition 0.000 description 24
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 10
- 239000012159 carrier gas Substances 0.000 description 9
- 230000006698 induction Effects 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 238000003860 storage Methods 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 6
- 229910002804 graphite Inorganic materials 0.000 description 6
- 239000010439 graphite Substances 0.000 description 6
- 239000011882 ultra-fine particle Substances 0.000 description 6
- 229910052786 argon Inorganic materials 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 239000011261 inert gas Substances 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- 239000001307 helium Substances 0.000 description 4
- 229910052734 helium Inorganic materials 0.000 description 4
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 4
- 239000000203 mixture Substances 0.000 description 3
- 235000012239 silicon dioxide Nutrition 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 239000006229 carbon black Substances 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000000859 sublimation Methods 0.000 description 2
- 230000008022 sublimation Effects 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- 229910002012 Aerosil® Inorganic materials 0.000 description 1
- 229910002019 Aerosil® 380 Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 229910021419 crystalline silicon Inorganic materials 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000011164 primary particle Substances 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 239000011163 secondary particle Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
- C30B25/10—Heating of the reaction chamber or the substrate
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/36—Carbides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
Definitions
- the present invention relates to a single crystal silicon carbide used as a semiconductor device material or LED material and a method for producing the same.
- Single-crystal silicon carbide is useful as a material for harsh environment-resistant devices and power devices because of its large crystal bond energy, large dielectric breakdown electric field, and high thermal conductivity.
- its lattice constant is close to that of GaN, so it is useful as a substrate material for GaN LED.
- this single crystal silicon carbide is produced by using a Rayleigh method in which silicon carbide powder is sublimated in a graphite crucible and single crystal silicon carbide is recrystallized on the inner wall of the graphite crucible, or a raw material based on this Rayleigh method.
- An optimized Rayleigh method in which silicon carbide seed single crystals are placed in the part to be recrystallized by optimizing the arrangement and temperature distribution and epitaxially recrystallized, and a gas source that is a silicon carbide production source is heated by a carrier gas.
- the silicon carbide powder is transferred to the silicon carbide seed single crystal and is epitaxially grown while chemically reacting on the crystal surface.
- the CVD method is used.
- There is a sublimation proximity method in which recrystallization growth is epitaxially grown on a seed single crystal.
- each of these single crystal silicon carbide manufacturing methods is considered to have a problem.
- the Rayleigh method can produce single crystal silicon carbide with good crystallinity, but crystal growth is based on spontaneous nucleation, so shape control and crystal surface control are difficult, and large-diameter wafers can be obtained. There is a problem that can not be.
- the improved Rayleigh method can obtain a large-diameter single-crystal silicon carbide ingot at a high speed of several hundreds of 11 m / h, it grows in a spiral manner, resulting in the generation of many micropipes in the crystal. There's a problem.
- the CVD method can produce high-quality single crystal silicon carbide with high purity and low defect density, but due to the epitaxial growth in a dilute gas source, the growth rate is slow, about 10 11 m / h.
- the problem of not being able to obtain a single crystal silicon carbide ingot is there.
- In the sublimation proximity method there is a problem that it is impossible to obtain a long single-crystal silicon carbide ingot due to restrictions on the force structure that can realize high-purity silicon carbide epitaxial growth with a relatively simple structure.
- the method for producing single-crystal silicon carbide disclosed in Patent Document 1 includes a silicon carbide seed single crystal that is maintained in an inert gas atmosphere in a heated state. It is configured to supply silicon dioxide ultrafine particles and carbon ultrafine particles, which are raw materials for producing single crystal silicon carbide, to the surface from the outside.
- silicon carbide powder which is a raw material for producing single crystal silicon carbide
- the vapor pressure of silicon carbide in the atmosphere near the surface of the silicon carbide seed single crystal is low. For this reason, when the silicon carbide seed single crystal is held in a heated state, there is a concern that self-decomposition and / or etching with an atmospheric gas is caused.
- the surface of the silicon carbide seed single crystal becomes rough due to decomposition and / or etching, the degree of supersaturation on the surface of the silicon carbide seed single crystal due to the difference in the fine shape of the surface of the silicon carbide seed single crystal.
- the variation in the thickness is increased and epitaxial growth is performed on the surface, dislocation increases, polycrystallization occurs, and the crystal quality of the epitaxially grown silicon carbide is remarkably lowered. Therefore, in order to obtain high-quality single-crystal silicon carbide by the method for producing single-crystal silicon carbide disclosed in Patent Document 1, the surface of the silicon carbide seed single crystal must be decomposed while being heated. And / or the occurrence of etching needs to be prevented or avoided by some means.
- Patent Document 1 Japanese Patent No. 3505597
- the present invention has been made in order to solve the above-described problems, and an object of the present invention is to prevent dislocation and / or etching by preventing decomposition and / or etching of the seed crystal surface. Another object of the present invention is to provide high-quality single crystal silicon carbide in which defects such as micropipes are suppressed and a method for producing the same.
- the single crystal silicon carbide is produced on the silicon carbide seed crystal before the decomposition prevention step before the surface temperature of the crucible reaches a temperature at which the surface of the silicon carbide seed crystal is decomposed and / or etched.
- a method for producing single-crystal silicon carbide according to (1) which is a raw material preliminary supply step for starting continuous supply of raw materials for use;
- the raw material pre-feeding process is started from the time when the surface temperature of the crucible is 1,970 ° C. force, 2,100 ° C. Method for producing crystalline silicon carbide,
- the silicon carbide manufacturing raw material supplied in the decomposition prevention step is the same type as the silicon carbide manufacturing raw material supplied in the growth step (2) to (5) V, single crystal silicon carbide according to any one of Manufacturing method, (7)
- the raw materials for silicon carbide production supplied in the decomposition prevention process and the growth process are silica particles and carbon particles, and the weight ratio of silica / carbon is 1.5-5 (2)-(6) Or a method for producing single-crystal silicon carbide according to any one of the above,
- FIG. 1 is a conceptual diagram showing an example of a production apparatus used for producing single crystal silicon carbide.
- a method for producing a silicon carbide single crystal of the present invention is an arrangement in which a susceptor to which a silicon carbide seed crystal is fixed and a raw material supply pipe for supplying a raw material for producing single crystal silicon carbide from the outside are arranged in a crucible.
- a step of preventing the decomposition and / or etching of the silicon carbide seed crystal surface when the crucible is heated by external heating, and the temperature inside the crucible is further raised to a single crystal growth temperature. Maintaining this single crystal growth temperature, the silicon carbide seed crystal And a growth step of growing single crystal silicon carbide by continuously supplying a raw material for producing silicon carbide on the surface.
- a susceptor having a silicon carbide seed crystal fixed and a raw material supply pipe are arranged in a crucible.
- the shape of the crucible used in the present invention is not particularly limited, and can be appropriately selected according to the size and shape of the target single crystal silicon carbide.
- the material of the crucible is made of graphite suitable as a high-temperature heat source.
- a silicon carbide single crystal is preferred, and a silicon carbide single crystal is more preferably used in the form of a wafer.
- the shape of the susceptor that holds the silicon carbide seed crystal, the silicon carbide seed single crystal, or the silicon carbide seed single crystal wafer is not particularly limited, and can be exemplified by a cylindrical shape, which matches the size and shape of the target silicon carbide seed crystal. A shape other than the wafer can be selected as appropriate.
- the material of the susceptor is preferably made of Graphite, taking into consideration the operating temperature range.
- the normal direction of the surface holding the silicon carbide seed single crystal at the upper end or the lower end of the susceptor can be freely set from approximately parallel to the vertical direction of the susceptor to a maximum 45 ° inclination.
- the silicon carbide seed crystal used in the present invention preferably has the ability to use a silicon carbide single crystal in the form of a wafer.
- S The type, size, and shape of the seed single crystal wafer are not particularly limited, and are intended. It can be appropriately selected depending on the type, size, and shape of the single crystal silicon carbide.
- a silicon carbide single crystal wafer obtained by pretreating a silicon carbide single crystal obtained by the modified Rayleigh method as necessary can be suitably used.
- the seed crystal may be a just substrate or an off-angle substrate. Examples of the silicon carbide seed crystal include a just-face Si face substrate and a (0001) Si face substrate having an off angle of several degrees.
- the shape of the raw material supply pipe for continuously supplying the raw material for producing single crystal silicon carbide is not particularly limited, and a hollow cylinder can be exemplified, and its specific shape is appropriately selected according to the size and shape of the target single crystal silicon carbide. Can be selected.
- the material of the supply pipe should take into account the operating temperature range. Preferably it is made of Graphite.
- the raw material supply pipe may be arranged at a right angle or obliquely opposite to the susceptor to which the silicon carbide seed single crystal is fixed in the crucible.
- a decomposition preventing step for preventing the decomposition and / or etching of the silicon carbide seed crystal surface, and further raising the temperature in the crucible to the single crystal growth temperature.
- a growth step is performed in which the growth temperature is maintained and the supply of the raw material for silicon carbide production is continued on the surface of the silicon carbide seed crystal to grow single crystal silicon carbide.
- the raw material for producing silicon carbide is supplied to the surface of the silicon carbide seed crystal from the temperature at which the seed crystal decomposition and / or etching starts. This is also called “preliminary supply”.
- silica particles and carbon particles or secondary particles composed of silica particles and carbon particles can be suitably used as a raw material for producing single crystal silicon carbide used in the present invention.
- the type, particle size, and particle shape of these silica particles and carbon particles are not particularly limited.
- high-purity silica (fomed silica) obtained by flame hydrolysis or high-purity carbon black is preferable.
- Both silica particles and carbon particles are preferably fine particles with a primary particle size of lOOnm or less. Fine particles of 40 nm or less are more preferred. Ultrafine particles of 20 nm or less are more preferred. Ultrafine particles of 5 to 20 nm are particularly preferred. .
- the ratio of the supply amount of the silica particles and the carbon particles is not particularly limited, and is a force S that allows a desired composition ratio to be appropriately selected. It is. Two or more kinds of silica particles and carbon particles may be mixed and used. The silica particles and carbon particles may be pretreated or a small amount of other components may be added as necessary.
- the silica particles and the carbon particles may be supplied onto the silicon carbide seed single crystal wafer as long as both the preliminary supply stage and the single crystal growth stage can be continuously supplied without interruption. It is not specifically limited, For example, use of the apparatus which can carry out powder conveyance continuously like a commercially available powder feeder is mentioned. However, the supply line of the raw material for manufacturing single crystal silicon carbide and the inside of the single crystal silicon carbide manufacturing apparatus are free of argon to prevent oxygen contamination. It is preferable to have a methic structure substituted with an inert gas such as helium
- the supply conditions for the silicon carbide production raw material substantially consisting of the silica particles and the carbon particles to the surface of the silicon carbide single crystal wafer are as follows: Even if the raw materials for producing the single crystal silicon carbide are mixed in advance on the silicon carbide seed single crystal wafer, they are supplied separately and mixed on the surface of the silicon carbide seed single crystal wafer. You may do it. In the growth process, the raw material for producing silicon carbide is supplied to the surface of the growing silicon carbide single crystal, and the single crystal silicon carbide gradually grows and becomes longer. Also, when doping into single crystal silicon carbide, the single crystal silicon carbide described above is used.
- the raw material for production may be mixed as a solid source, or the doping component may be mixed as a gas source in the atmosphere in the single crystal silicon carbide production apparatus.
- valence electrons can be controlled by doping with N A1 (CH 3) B H or the like.
- the configuration of the single-crystal silicon carbide manufacturing apparatus used for obtaining the single-crystal silicon carbide of the present invention is not particularly limited.
- the size, heating method, material, raw material supply method, atmosphere adjustment method, temperature control method, etc. depend on the size, shape and type of the target single crystal silicon carbide, and the type and amount of the raw material for manufacturing single crystal silicon carbide. It can be selected as appropriate.
- PID temperature control technology can be used for temperature measurement and temperature control.
- the production temperature of single-crystal silicon carbide is not particularly limited, and can be set as appropriate according to the size, type, etc. of the desired single-crystal silicon carbide, and the preferred production temperature is 1,6002,400 ° C. This temperature can be measured, for example, as the temperature outside the crucible.
- a silicon carbide seed single crystal wafer table as a raw material for producing single crystal silicon carbide is provided. It is preferable to start the supply to the surface within the range of 1,970 ° C to 2,100 ° C. Decomposition or etching of the silicon carbide seed crystal surface can be efficiently prevented by preliminary supply of the raw material within this temperature range.
- the raw material preliminary supply it is preferable to manufacture the target single crystal silicon carbide by heating the crucible to a more preferable manufacturing (growth) temperature while continuing to supply the raw material for manufacturing single crystal silicon carbide.
- the production temperature in this case is, for example, a crucible. Refers to the outside temperature.
- FIG. 1 is a conceptual diagram showing an example of an apparatus for producing single crystal silicon carbide of the present invention.
- a high frequency induction heating furnace is used as one embodiment.
- Water cooled chamber is used as one embodiment.
- a carbon cylindrical crucible 2 (diameter: 100 mm, height: 150 mm) is disposed in 1, and a high-frequency induction heating coil 3 is disposed outside the water-cooled chamber 1.
- a susceptor 5 for holding a silicon carbide single crystal wafer is inserted through the lower portion of the cylindrical crucible 2.
- the susceptor 5 extends to the outside of the cylindrical crucible 2 and can be rotated about the central axis of the susceptor 5 by a rotating mechanism (not shown).
- the raw material supply pipe 6 for supplying the raw material particles for producing single crystal silicon carbide passes through the upper part of the cylindrical crucible on the opposite side of the susceptor and extends outward, and is directly outside the chamber. It stretches.
- the raw material supply pipe 6 is disposed outside the high-frequency induction heating furnace in the previous period, and is provided with a plurality of raw material storage tanks 7, 7 ', each having flow control valves 8, 8' that can independently adjust the supply amount. And connected to a supply source (not shown) of an inert carrier gas A whose flow rate can be adjusted.
- Silica particles and carbon particles from raw material storage tanks 7 and 7 ' respectively. Both particles can be supplied together with argon gas to the silicon carbide seed crystal surface.
- the silica and carbon powder are filled into the raw material storage tanks 7 and 7 'independently, and the supply from each storage layer is adjusted, and then inert By flowing the carrier gas A while adjusting the flow rate, the raw material for producing single crystal silicon carbide can be continuously supplied into the cylindrical crucible by a set amount.
- the high-frequency induction heating furnace can be controlled by a vacuum exhaust system and a pressure control system (not shown), and includes an inert gas replacement mechanism (not shown).
- the supplied inert carrier gas A is discharged from a duct (not shown) provided in the chamber 1.
- single-crystal silicon carbide was produced under the following conditions.
- a silicon carbide single crystal wafer was fixed to the end face of the susceptor that was inserted through the cylindrical crucible.
- the silicon carbide single crystal wafer used here either single crystal silicon carbide manufactured by the Rayleigh method or single crystal silicon carbide manufactured by the modified Rayleigh method was used.
- Carbon Carbon Black M A600 manufactured by Mitsubishi Chemical Corporation
- silica Alignment 380 manufactured by Nippon Aerosil Co., Ltd.
- the inside of the high frequency induction heating furnace was replaced with an inert gas.
- the inert gas high-purity helium preferred by high-purity argon may be used.
- N is doped, high-purity nitrogen can also be used.
- the temperature outside the carbon cylindrical crucible is 1, 900-1, 970 ° C. (Example A), 1, 970-2, 100 ° C. (Example B) or 2,100-2,140 ° C (Comparative Example C) was heated to a temperature.
- the temperature outside the cylindrical crucible is preferably less than 1, 970 ° C.
- the 6H type was manufactured. This was omitted for the production of single crystal silicon carbide at temperatures below 1,970 ° C.
- the susceptor on which the silicon carbide seed single crystal wafer of each example was fixed was rotated at a rotation speed of 0 to 20 rpm.
- the inert carrier gas (high-purity argon or high-purity helium) is flowed at a flow rate of 0.5 to 101 / min, and the carrier gas is used together with the raw material for producing single-crystal silicon carbide. Then, the supply to the surface of each of the silicon carbide seed single crystal wafers arranged in the facing portion in the cylindrical crucible through the supply pipe was started. In this state, the temperature was further increased until the temperature outside the cylindrical crucible of Example A, B or Comparative Example C was in the range of 2,140-2,400 ° C.
- the single crystal silicon carbide of Example A, B or Comparative Example C has the desired size and thickness while keeping the temperature outside the cylindrical crucible of each of the above examples constant.
- the single crystal silicon carbide of each of the above examples was manufactured by continuously supplying the raw material for manufacturing the single crystal silicon carbide.
- the desired temperature was appropriately adjusted because it varies depending on the atmospheric pressure, the raw material mixture ratio for producing single crystal silicon carbide, the type of silicon carbide single crystal wafer, and the like.
- Comparative Example D the temperature outside the cylindrical crucible was heated up to a temperature in the range of 2, 140-2, 400 ° C, and this temperature was kept constant.
- the inert carrier gas high purity argon or high purity helium
- the inert carrier gas is adjusted to a flow rate of 0.5 to 101 / min while the susceptor to which the crystal wafer is fixed is rotated at a rotation speed of 0 to 20 rpm.
- the single crystal silicon carbide manufacturing raw material is continuously supplied through the raw material supply pipe onto the surface of the silicon carbide seed single crystal wafer disposed at the opposing portion in the cylindrical crucible. was also manufactured.
- Table 1 summarizes the results of single-crystal silicon carbide production under the above four conditions. Both the examples and comparative examples were manufactured for a total of 3 hours to produce single crystal silicon carbide with a thickness of 1.2 mm. The power to build was s. However, in the comparative example, the surface roughness of the silicon carbide seed single crystal occurred, and as a result, a number of dislocations and MP (micropipes) were generated in the manufactured single crystal silicon carbide. On the other hand, in Example B, no surface deterioration was observed, and high-quality single crystal silicon carbide with few defects such as dislocations, polycrystals, and micropipes could be produced.
- Example A In the case of Example A, no surface deterioration was observed, but since the raw material supply start temperature was too low, 3C crystals were deposited on the surface of the silicon carbide seed single crystal, resulting in a high quality single 6H single crystal. Instead, it became polymorphic mixed polycrystalline.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Materials Engineering (AREA)
- Power Engineering (AREA)
- Inorganic Chemistry (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
A single-crystal silicon carbide of high quality that through preventing of decomposition and/or etching of seed crystal surface, attains inhibition of defects, such as micropipe, while avoiding the occurrence of dislocation and polycrystal; and a process for producing the same. The process for producing a single-crystal silicon carbide is characterized by including the disposing step of disposing in a crucible a susceptor having a silicon carbide seed crystal fixed thereto and a raw material supply pipe for supplying a raw material for production of single-crystal silicon carbide from outside; the decomposition preventing step of in the stage of raising the temperature of the crucible by outside heating, preventing the decomposition and/or etching of the surface of the silicon carbide seed crystal; and the growing step of further heating the interior of the crucible to a single-crystal growth temperature, maintaining the single-crystal growth temperature, and continuing the feeding of the raw material for production of silicon carbide onto the surface of the silicon carbide seed crystal to thereby attain growth of single-crystal silicon carbide.
Description
明 細 書 Specification
単結晶炭化珪素及びその製造方法 Single crystal silicon carbide and method for producing the same
技術分野 Technical field
[0001] 本発明は、半導体デバイス用材料や LED用材料として利用される単結晶炭化珪 素及びその製造方法に関する。 The present invention relates to a single crystal silicon carbide used as a semiconductor device material or LED material and a method for producing the same.
背景技術 Background art
[0002] 単結晶炭化珪素は結晶の結合エネルギーが大きぐ絶縁破壊電界が大きぐまた 熱伝導率も大きいため、耐苛酷環境用デバイスやパワーデバイス用の材料として有 用である。またその格子定数が GaNの格子定数と近いため、 GaN— LED用の基板 材料としても有用である。 Single-crystal silicon carbide is useful as a material for harsh environment-resistant devices and power devices because of its large crystal bond energy, large dielectric breakdown electric field, and high thermal conductivity. In addition, its lattice constant is close to that of GaN, so it is useful as a substrate material for GaN LED.
[0003] 従来、この単結晶炭化珪素の製造には、黒鉛坩堝内で炭化珪素粉末を昇華させ、 黒鉛坩堝内壁に単結晶炭化珪素を再結晶化させるレーリー法や、このレーリー法を ベースに原料配置や温度分布を最適化し、再結晶化させる部分に炭化珪素種単結 晶を配置してェピタキシャルに再結晶成長させる改良レーリー法、炭化珪素製造原 料であるガスソースをキャリアガスによって、加熱された炭化珪素種単結晶上に輸送 し結晶表面で化学反応させながらェピタキシャル成長させる CVD法、黒鉛坩堝内で 炭化珪素粉末と炭化珪素種単結晶を近接させた状態で炭化珪素粉末を炭化珪素 種単結晶上にェピタキシャルに再結晶成長させる昇華近接法などがある。 Conventionally, this single crystal silicon carbide is produced by using a Rayleigh method in which silicon carbide powder is sublimated in a graphite crucible and single crystal silicon carbide is recrystallized on the inner wall of the graphite crucible, or a raw material based on this Rayleigh method. An optimized Rayleigh method in which silicon carbide seed single crystals are placed in the part to be recrystallized by optimizing the arrangement and temperature distribution and epitaxially recrystallized, and a gas source that is a silicon carbide production source is heated by a carrier gas. The silicon carbide powder is transferred to the silicon carbide seed single crystal and is epitaxially grown while chemically reacting on the crystal surface. The CVD method is used. There is a sublimation proximity method in which recrystallization growth is epitaxially grown on a seed single crystal.
[0004] ところで現状では、これらの各単結晶炭化珪素製造方法にはいずれも問題があると されている。レーリー法では、結晶性の良好な単結晶炭化珪素が製造できるものの、 自然発生的な核形成をもとに結晶成長するため、形状制御や結晶面制御が困難で あり、且つ大口径ウェハが得られないという問題がある。改良レーリー法では、数 100 11 m/h程度の高速で大口径の単結晶炭化珪素インゴットを得ることができるものの 、螺旋状にェピタキシャル成長するため、結晶内に多数のマイクロパイプが発生する という問題がある。 CVD法では、高純度で低欠陥密度の良質な単結晶炭化珪素が 製造できるものの、希薄なガスソースでのェピタキシャル成長のため、成長速度が〜 10 11 m/h程度と遅ぐ長尺の単結晶炭化珪素インゴットを得られないという問題が
ある。昇華近接法では、比較的簡単な構成で高純度の炭化珪素ェピタキシャル成長 が実現できる力 構成上の制約から長尺の単結晶炭化珪素インゴットを得ることは不 可能という問題がある。 [0004] By the way, at present, each of these single crystal silicon carbide manufacturing methods is considered to have a problem. The Rayleigh method can produce single crystal silicon carbide with good crystallinity, but crystal growth is based on spontaneous nucleation, so shape control and crystal surface control are difficult, and large-diameter wafers can be obtained. There is a problem that can not be. Although the improved Rayleigh method can obtain a large-diameter single-crystal silicon carbide ingot at a high speed of several hundreds of 11 m / h, it grows in a spiral manner, resulting in the generation of many micropipes in the crystal. There's a problem. The CVD method can produce high-quality single crystal silicon carbide with high purity and low defect density, but due to the epitaxial growth in a dilute gas source, the growth rate is slow, about 10 11 m / h. The problem of not being able to obtain a single crystal silicon carbide ingot is there. In the sublimation proximity method, there is a problem that it is impossible to obtain a long single-crystal silicon carbide ingot due to restrictions on the force structure that can realize high-purity silicon carbide epitaxial growth with a relatively simple structure.
[0005] 最近、加熱状態で保持されている炭化珪素種単結晶表面に向けて、二酸化ケイ素 超微粒子及び炭素超微粒子とを不活性キャリアガスで供給して付着させ、炭化珪素 種単結晶上において二酸化ケイ素を炭素により還元することで単結晶炭化珪素を炭 化珪素種単結晶上に成長させる方法が開示された(特許文献 1参照)。この製造方 法では、マイクロパイプ等の欠陥を抑制した高品質な単結晶炭化珪素を高速で得る こと力 Sでさるとされている。 [0005] Recently, silicon dioxide ultrafine particles and carbon ultrafine particles are supplied with an inert carrier gas and adhered to the surface of the silicon carbide seed single crystal held in a heated state. A method of growing single crystal silicon carbide on a silicon carbide seed single crystal by reducing silicon dioxide with carbon has been disclosed (see Patent Document 1). In this manufacturing method, it is said that power S can be used to obtain high-quality single-crystal silicon carbide that suppresses defects such as micropipes at high speed.
[0006] 特許文献 1に開示された単結晶炭化珪素の製造方法は、不活性ガス雰囲気中に 加熱状態で保持されて!/、る炭化珪素種単結晶があって、該炭化珪素種単結晶表面 に外部から単結晶炭化珪素の製造原料である二酸化ケイ素超微粒子と炭素超微粒 子とを供給する構成となっている。この構成の場合、密閉黒鉛坩堝内に単結晶炭化 珪素の製造原料である炭化珪素粉末が予め充填してある改良レーリー法などとは異 なり、外部から単結晶炭化珪素の製造原料の供給を開始するまでは、炭化珪素種単 結晶表面近傍の雰囲気中における炭化珪素の蒸気圧が低い。このため前記炭化珪 素種単結晶が加熱状態で保持されると、自己分解及び/又は雰囲気ガスによるエツ チングが引き起こされる懸念がある。 [0006] The method for producing single-crystal silicon carbide disclosed in Patent Document 1 includes a silicon carbide seed single crystal that is maintained in an inert gas atmosphere in a heated state. It is configured to supply silicon dioxide ultrafine particles and carbon ultrafine particles, which are raw materials for producing single crystal silicon carbide, to the surface from the outside. In this configuration, unlike the modified Rayleigh method in which silicon carbide powder, which is a raw material for producing single crystal silicon carbide, is filled in a closed graphite crucible, supply of the raw material for producing single crystal silicon carbide from the outside is started. Until then, the vapor pressure of silicon carbide in the atmosphere near the surface of the silicon carbide seed single crystal is low. For this reason, when the silicon carbide seed single crystal is held in a heated state, there is a concern that self-decomposition and / or etching with an atmospheric gas is caused.
もし前記炭化珪素種単結晶の表面が分解及び/又はエッチングによって粗面にな ると、前記炭化珪素種単結晶表面の微細な形状の違いにより、前記炭化珪素種単結 晶表面での過飽和度のバラツキが大きくなり、該表面へのェピタキシャル成長をおこ なうと、転位の増大や多結晶化などが生じ、ェピタキシャル成長炭化珪素の結晶品 質が著しく低下する。そのため、特許文献 1に開示された単結晶炭化珪素の製造方 法で高品位の単結晶炭化珪素を得るためには、加熱状態で保持されて!、る炭化珪 素種単結晶の表面の分解及び/又はエッチングの発生を、何らかの手段で防止ま たは回避する必要がある。 If the surface of the silicon carbide seed single crystal becomes rough due to decomposition and / or etching, the degree of supersaturation on the surface of the silicon carbide seed single crystal due to the difference in the fine shape of the surface of the silicon carbide seed single crystal. When the variation in the thickness is increased and epitaxial growth is performed on the surface, dislocation increases, polycrystallization occurs, and the crystal quality of the epitaxially grown silicon carbide is remarkably lowered. Therefore, in order to obtain high-quality single-crystal silicon carbide by the method for producing single-crystal silicon carbide disclosed in Patent Document 1, the surface of the silicon carbide seed single crystal must be decomposed while being heated. And / or the occurrence of etching needs to be prevented or avoided by some means.
[0007] 特許文献 1:特許第 3505597号公報 [0007] Patent Document 1: Japanese Patent No. 3505597
発明の開示
発明が解決しょうとする課題 Disclosure of the invention Problems to be solved by the invention
[0008] 本発明は上記の課題を解決するためになされたものであり、本発明の目的は、種 結晶表面の分解及び/又はエッチングを防止して、転位や多結晶の発生を防止し ながら、マイクロパイプ等の欠陥を抑制した高品質な単結晶炭化珪素及びその製造 方法を提供することにある。 [0008] The present invention has been made in order to solve the above-described problems, and an object of the present invention is to prevent dislocation and / or etching by preventing decomposition and / or etching of the seed crystal surface. Another object of the present invention is to provide high-quality single crystal silicon carbide in which defects such as micropipes are suppressed and a method for producing the same.
課題を解決するための手段 Means for solving the problem
[0009] 上記の課題は、以下に記載の手段(1)及び(8)によって解決された。好ましい実施 態様である(2)〜(7)と共に列記する。 [0009] The above problem has been solved by means (1) and (8) described below. They are listed together with (2) to (7) which are preferred embodiments.
(1)炭化珪素種結晶が固定されたサセプタ及び外部から単結晶炭化珪素製造用 原料を供給するための原料供給管を坩堝の中に配置する配置工程、該坩堝を外部 加熱して昇温する際に該炭化珪素種結晶表面の分解及び/又はエッチングを防止 する分解防止工程、並びに、該坩堝内を単結晶成長温度にまで更に昇温しこの単 結晶成長温度を維持して該炭化珪素種結晶表面に炭化珪素製造用原料の供給を 継続して単結晶炭化珪素を成長させる成長工程、を含むことを特徴とする単結晶炭 化珪素の製造方法、 (1) Arrangement step in which a susceptor to which a silicon carbide seed crystal is fixed and a raw material supply pipe for supplying a raw material for producing single crystal silicon carbide from the outside are disposed in the crucible, the crucible is heated externally to raise the temperature A decomposition preventing step for preventing decomposition and / or etching of the surface of the silicon carbide seed crystal, and further raising the temperature in the crucible to a single crystal growth temperature to maintain the single crystal growth temperature, A method for producing single-crystal silicon carbide, comprising a growth step of growing single-crystal silicon carbide by continuously supplying a raw material for producing silicon carbide on a crystal surface,
(2)分解防止工程において、該炭化珪素種結晶表面に炭化珪素製造用原料を供 給する(1)に記載の単結晶炭化珪素の製造方法、 (2) The method for producing single-crystal silicon carbide according to (1), wherein, in the decomposition prevention step, a raw material for producing silicon carbide is supplied to the surface of the silicon carbide seed crystal,
(3)該分解防止工程が、該坩堝の表面温度が該炭化珪素種結晶表面の分解及び /又はエッチングが開始する温度に到達する以前から、該炭化珪素種結晶上に該 単結晶炭化珪素製造用原料の連続供給を開始する原料予備供給工程である、(1) に記載の単結晶炭化珪素の製造方法、 (3) The single crystal silicon carbide is produced on the silicon carbide seed crystal before the decomposition prevention step before the surface temperature of the crucible reaches a temperature at which the surface of the silicon carbide seed crystal is decomposed and / or etched. A method for producing single-crystal silicon carbide according to (1), which is a raw material preliminary supply step for starting continuous supply of raw materials for use;
(4)該坩堝の表面温度が 1 , 900°Cから 2, 100°Cである時点から原料予備供給ェ 程を開始する、(2)又は(3)に記載の単結晶炭化珪素の製造方法、 (4) The method for producing single-crystal silicon carbide according to (2) or (3), wherein the raw material pre-feeding process is started when the surface temperature of the crucible is 1,900 ° C to 2,100 ° C ,
(5)該坩堝の表面温度が 1 , 970°C力、ら 2, 100°Cである時点から原料予備供給ェ 程を開始する、(2)〜(4)いずれか 1つに記載の単結晶炭化珪素の製造方法、 (5) The raw material pre-feeding process is started from the time when the surface temperature of the crucible is 1,970 ° C. force, 2,100 ° C. Method for producing crystalline silicon carbide,
(6)分解防止工程において供給する炭化珪素製造用原料が、成長工程において 供給する炭化珪素製造用原料と同種である(2)〜(5) V、ずれか 1つに記載の単結晶 炭化珪素の製造方法、
(7)分解防止工程及び成長工程において供給する炭化珪素製造用原料が、シリカ 粒子及びカーボン粒子であり、シリカ/カーボンの重量比が 1. 5〜5でぁる(2)〜(6 )いずれか 1つに記載の単結晶炭化珪素の製造方法、 (6) The silicon carbide manufacturing raw material supplied in the decomposition prevention step is the same type as the silicon carbide manufacturing raw material supplied in the growth step (2) to (5) V, single crystal silicon carbide according to any one of Manufacturing method, (7) The raw materials for silicon carbide production supplied in the decomposition prevention process and the growth process are silica particles and carbon particles, and the weight ratio of silica / carbon is 1.5-5 (2)-(6) Or a method for producing single-crystal silicon carbide according to any one of the above,
(8) (1)〜(7)いずれ力、 1つに記載の方法により製造された単結晶炭化珪素。 発明の効果 (8) Single crystal silicon carbide manufactured by the method according to any one of (1) to (7). The invention's effect
[0010] 本発明の単結晶炭化珪素製造方法により、転位や多結晶、マイクロパイプ等の欠 陥の少ない、結晶性の良好な高品質の単結晶炭化珪素を提供することができた。 図面の簡単な説明 [0010] By the method for producing single crystal silicon carbide of the present invention, high-quality single crystal silicon carbide having good crystallinity with few defects such as dislocations, polycrystals, and micropipes could be provided. Brief Description of Drawings
[0011] [図 1]単結晶炭化珪素を製造するために用いる製造装置の一例を示す概念図である FIG. 1 is a conceptual diagram showing an example of a production apparatus used for producing single crystal silicon carbide.
〇 Yes
符号の説明 Explanation of symbols
[0012] 1 チャンバ [0012] 1 chamber
2 円筒坩堝 2 Cylindrical crucible
3 高周波誘導加熱コイル 3 High frequency induction heating coil
4 種結晶 4 seed crystals
5 サセプタ 5 Susceptor
6 原料供給管 6 Raw material supply pipe
7、 7' 原料貯蔵槽 7, 7 'Raw material storage tank
8、 8 ' 調節弁 8, 8 'control valve
9 成長層 9 Growth layer
A 不活性キャリアガス A inert carrier gas
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
[0013] 本発明の炭化珪素単結晶の製造方法は、炭化珪素種結晶が固定されたサセプタ 及び外部から単結晶炭化珪素製造用原料を供給するための原料供給管を坩堝の 中に配置する配置工程、該坩堝を外部加熱して昇温する際に該炭化珪素種結晶表 面の分解及び/又はエッチングを防止する分解防止工程、並びに、該坩堝内を単 結晶成長温度にまで更に昇温しこの単結晶成長温度を維持して該炭化珪素種結晶
表面に炭化珪素製造用原料の供給を継続して単結晶炭化珪素を成長させる成長ェ 程、を含むことを特徴とする。 [0013] A method for producing a silicon carbide single crystal of the present invention is an arrangement in which a susceptor to which a silicon carbide seed crystal is fixed and a raw material supply pipe for supplying a raw material for producing single crystal silicon carbide from the outside are arranged in a crucible. A step of preventing the decomposition and / or etching of the silicon carbide seed crystal surface when the crucible is heated by external heating, and the temperature inside the crucible is further raised to a single crystal growth temperature. Maintaining this single crystal growth temperature, the silicon carbide seed crystal And a growth step of growing single crystal silicon carbide by continuously supplying a raw material for producing silicon carbide on the surface.
以下に本発明を詳細に説明する。 The present invention is described in detail below.
[0014] 本発明による炭化珪素単結晶の製造方法では、まず、坩堝内に炭化珪素種結晶 が固定されたサセプタ及び原料供給管を配置する。 In the method for producing a silicon carbide single crystal according to the present invention, first, a susceptor having a silicon carbide seed crystal fixed and a raw material supply pipe are arranged in a crucible.
本発明で使用する坩堝の形状は特に限定されず、 目的とする単結晶炭化珪素の サイズや形状に合わせ適宜選択できる。但し、該坩堝を加熱源として用いるのが好ま しぐそのため該坩堝材質は高温加熱源として好適なグラフアイト製であることが好ま しい。 The shape of the crucible used in the present invention is not particularly limited, and can be appropriately selected according to the size and shape of the target single crystal silicon carbide. However, since it is preferable to use the crucible as a heat source, it is preferable that the material of the crucible is made of graphite suitable as a high-temperature heat source.
[0015] 炭化珪素種結晶としては、炭化珪素単結晶が好ましぐ又炭化珪素単結晶をゥェ ハの形状で使用することがより好ましい。炭化珪素種結晶、炭化珪素種単結晶、又 は炭化珪素種単結晶ウェハを保持するサセプタの形状は特に限定されず、円筒状 が例示でき、 目的とする炭化珪素種結晶のサイズや形状に合わせ適宜ウェハ以外 の形状をも選択できる。但し、当該サセプタの材質は使用温度範囲を考慮してグラフ アイト製であることが好ましレ、。 [0015] As the silicon carbide seed crystal, a silicon carbide single crystal is preferred, and a silicon carbide single crystal is more preferably used in the form of a wafer. The shape of the susceptor that holds the silicon carbide seed crystal, the silicon carbide seed single crystal, or the silicon carbide seed single crystal wafer is not particularly limited, and can be exemplified by a cylindrical shape, which matches the size and shape of the target silicon carbide seed crystal. A shape other than the wafer can be selected as appropriate. However, the material of the susceptor is preferably made of Graphite, taking into consideration the operating temperature range.
尚、サセプタ上端又は下端の炭化珪素種単結晶を保持する表面の法線方向は、 該サセプタの鉛直方向と略平行から最大 45° 傾斜まで自由に設定することができる The normal direction of the surface holding the silicon carbide seed single crystal at the upper end or the lower end of the susceptor can be freely set from approximately parallel to the vertical direction of the susceptor to a maximum 45 ° inclination.
[0016] 本発明で使用する炭化珪素種結晶は、炭化珪素単結晶をウェハの形状で使用す ること力 S好ましく、種単結晶ウェハの種類、サイズ、形状は特に限定されず、 目的とす る単結晶炭化珪素の種類、サイズ、形状によって適宜選択できる。例えば改良レーリ 一法によって得られた炭化珪素単結晶を必要に応じて前処理した炭化珪素種単結 晶ウェハが好適に利用できる。種結晶は、ジャスト基板でもよぐまたオフ角基板でも よい。炭化珪素種結晶として、ジャスト面の Si面基板や数度のオフ角を有する(0001 ) Si面基板が例示できる。 [0016] The silicon carbide seed crystal used in the present invention preferably has the ability to use a silicon carbide single crystal in the form of a wafer. S The type, size, and shape of the seed single crystal wafer are not particularly limited, and are intended. It can be appropriately selected depending on the type, size, and shape of the single crystal silicon carbide. For example, a silicon carbide single crystal wafer obtained by pretreating a silicon carbide single crystal obtained by the modified Rayleigh method as necessary can be suitably used. The seed crystal may be a just substrate or an off-angle substrate. Examples of the silicon carbide seed crystal include a just-face Si face substrate and a (0001) Si face substrate having an off angle of several degrees.
[0017] 単結晶炭化珪素製造用原料を連続供給する原料供給管の形状は特に限定されず 、中空の円筒が例示でき、 目的とする単結晶炭化珪素のサイズや形状に合わせ適宜 その具体的形状を選択できる。但し、当該供給管の材質は使用温度範囲を考慮して
グラフアイト製であることが好ましレ、。 [0017] The shape of the raw material supply pipe for continuously supplying the raw material for producing single crystal silicon carbide is not particularly limited, and a hollow cylinder can be exemplified, and its specific shape is appropriately selected according to the size and shape of the target single crystal silicon carbide. Can be selected. However, the material of the supply pipe should take into account the operating temperature range. Preferably it is made of Graphite.
原料供給管は、炭化珪素種単結晶を固定したサセプタに坩堝中で対向させてもよ ぐ直角又は斜めに配置してもよい。 The raw material supply pipe may be arranged at a right angle or obliquely opposite to the susceptor to which the silicon carbide seed single crystal is fixed in the crucible.
[0018] 上記の配置工程に引き続いて、炭化珪素種結晶表面の分解及び/又はエツチン グを防止する分解防止工程、及び、該坩堝内を単結晶成長温度にまで更に昇温しこ の単結晶成長温度を維持して該炭化珪素種結晶表面に炭化珪素製造用原料の供 給を継続して単結晶炭化珪素を成長させる成長工程を実施する。 [0018] Following the above arrangement step, a decomposition preventing step for preventing the decomposition and / or etching of the silicon carbide seed crystal surface, and further raising the temperature in the crucible to the single crystal growth temperature. A growth step is performed in which the growth temperature is maintained and the supply of the raw material for silicon carbide production is continued on the surface of the silicon carbide seed crystal to grow single crystal silicon carbide.
分解防止工程において、好ましくは、種結晶の分解及び/又はエッチングが開始 する温度以下から炭化珪素種結晶表面に炭化珪素製造用原料を供給する。これを「 予備供給」ともいう。 In the decomposition prevention step, preferably, the raw material for producing silicon carbide is supplied to the surface of the silicon carbide seed crystal from the temperature at which the seed crystal decomposition and / or etching starts. This is also called “preliminary supply”.
[0019] 以下に単結晶炭化珪素製造用原料につ!/、て説明する。 [0019] The raw material for producing single crystal silicon carbide will be described below.
本発明に使用する単結晶炭化珪素製造用原料としては、シリカ粒子及びカーボン 粒子の混合物又はシリカ粒子及びカーボン粒子からなる 2次粒子が好適に利用でき る。尚、これらシリカ粒子及びカーボン粒子の種類、粒径、粒子形状等は特に限定さ れず、例えば火炎加水分解法で得られる高純度シリカ(いぶしシリカ、 fomed silica) や、高純度カーボンブラックなどが好適に利用できる。シリカ粒子もカーボン粒子も共 に 1次粒子径が lOOnm以下の微粒子が好ましぐ 40nm以下の微粒子がより好まし く、 20nm以下の超微粒子が更に好ましぐ 5〜20nmの超微粒子が特に好ましい。 As a raw material for producing single crystal silicon carbide used in the present invention, a mixture of silica particles and carbon particles or secondary particles composed of silica particles and carbon particles can be suitably used. The type, particle size, and particle shape of these silica particles and carbon particles are not particularly limited. For example, high-purity silica (fomed silica) obtained by flame hydrolysis or high-purity carbon black is preferable. Available to: Both silica particles and carbon particles are preferably fine particles with a primary particle size of lOOnm or less. Fine particles of 40 nm or less are more preferred. Ultrafine particles of 20 nm or less are more preferred. Ultrafine particles of 5 to 20 nm are particularly preferred. .
[0020] 上記シリカ粒子及びカーボン粒子の供給量の比率は特に限定されず、所望の組成 比が適宜選択できる力 S、 1. 5〜5 (重量比)の範囲内のシリカ/カーボン比が代表的 である。上記シリカ粒子及びカーボン粒子のいずれも 2種以上のものを混合して使用 してもよい。また上記シリカ粒子及びカーボン粒子は、必要に応じ、前処理を施したり 、他の成分を微量添加してもよい。 [0020] The ratio of the supply amount of the silica particles and the carbon particles is not particularly limited, and is a force S that allows a desired composition ratio to be appropriately selected. It is. Two or more kinds of silica particles and carbon particles may be mixed and used. The silica particles and carbon particles may be pretreated or a small amount of other components may be added as necessary.
[0021] 上記シリカ粒子及びカーボン粒子の炭化珪素種単結晶ウェハ上への供給は、予 備供給の段階も単結晶成長の段階も、好ましくは途切れることなく連続して供給でき る方法であれば特に限定されず、例えば市販のパウダフィーダのように連続して粉体 輸送できる装置の使用が挙げられる。但し、当該単結晶炭化珪素製造用原料の供 給ライン及び単結晶炭化珪素製造装置内部は酸素混入を防止するため、アルゴン
やヘリウムなどの不活性ガスに置換された メチック構造にしておくことが好ましい [0021] The silica particles and the carbon particles may be supplied onto the silicon carbide seed single crystal wafer as long as both the preliminary supply stage and the single crystal growth stage can be continuously supplied without interruption. It is not specifically limited, For example, use of the apparatus which can carry out powder conveyance continuously like a commercially available powder feeder is mentioned. However, the supply line of the raw material for manufacturing single crystal silicon carbide and the inside of the single crystal silicon carbide manufacturing apparatus are free of argon to prevent oxygen contamination. It is preferable to have a methic structure substituted with an inert gas such as helium
[0022] 上記のシリカ粒子及びカーボン粒子から実質的になる炭化珪素製造用原料の炭 化珪素種単結晶ウェハ表面への供給条件につ!/、ては、これら単結晶炭化珪素製造 用原料が炭化珪素種単結晶ウェハ上に混合された状態で供給されればよぐ当該 単結晶炭化珪素製造用原料を予め混合しておいても、別個に供給して炭化珪素種 単結晶ウェハ表面で混合しても良い。成長工程では、炭化珪素製造用原料は成長 する炭化珪素単結晶の表面に供給され単結晶炭化珪素が次第に成長して長くなる また単結晶炭化珪素中にドーピングをおこなう場合は、上記単結晶炭化珪素製造 用原料に固体ソースとして混合しても良いし、単結晶炭化珪素製造装置内の雰囲気 中にガスソースとして、該ドーピング成分を混合しても良い。成長時に、 N A1 (CH ) B H等をドーピングして、荷電子制御をすることができる。 [0022] The supply conditions for the silicon carbide production raw material substantially consisting of the silica particles and the carbon particles to the surface of the silicon carbide single crystal wafer are as follows: Even if the raw materials for producing the single crystal silicon carbide are mixed in advance on the silicon carbide seed single crystal wafer, they are supplied separately and mixed on the surface of the silicon carbide seed single crystal wafer. You may do it. In the growth process, the raw material for producing silicon carbide is supplied to the surface of the growing silicon carbide single crystal, and the single crystal silicon carbide gradually grows and becomes longer. Also, when doping into single crystal silicon carbide, the single crystal silicon carbide described above is used. The raw material for production may be mixed as a solid source, or the doping component may be mixed as a gas source in the atmosphere in the single crystal silicon carbide production apparatus. During growth, valence electrons can be controlled by doping with N A1 (CH 3) B H or the like.
[0023] 本発明の単結晶炭化珪素を得るために使用する単結晶炭化珪素製造装置の構成 は特に限定されない。すなわちサイズや加熱方法、材質、原料供給方法、雰囲気調 整方法、温度制御方法などは、 目的とする単結晶炭化珪素のサイズや形状、種類、 単結晶炭化珪素製造用原料の種類や量等に応じて適宜選択できる。例えば、温度 測定と温度制御には PID温度制御技術を使用することができる。 [0023] The configuration of the single-crystal silicon carbide manufacturing apparatus used for obtaining the single-crystal silicon carbide of the present invention is not particularly limited. In other words, the size, heating method, material, raw material supply method, atmosphere adjustment method, temperature control method, etc. depend on the size, shape and type of the target single crystal silicon carbide, and the type and amount of the raw material for manufacturing single crystal silicon carbide. It can be selected as appropriate. For example, PID temperature control technology can be used for temperature measurement and temperature control.
[0024] 単結晶炭化珪素製造温度は特に限定されず、 目的とする単結晶炭化珪素のサイ ズゃ形状、種類等に応じて適宜設定でき、好ましい製造温度は 1 , 600 2, 400°C の範囲であり、この温度は例えば坩堝外側の温度として測定できる。 [0024] The production temperature of single-crystal silicon carbide is not particularly limited, and can be set as appropriate according to the size, type, etc. of the desired single-crystal silicon carbide, and the preferred production temperature is 1,6002,400 ° C. This temperature can be measured, for example, as the temperature outside the crucible.
[0025] 本発明で目的とする単結晶炭化珪素の種類が、もし 1 , 970°Cを超える温度で製造 するものである場合は、単結晶炭化珪素製造用原料の炭化珪素種単結晶ウェハ表 面への供給を 1 , 970°Cから 2, 100°Cの範囲内で開始することが好ましい。この温度 範囲での原料予備供給により炭化珪素種結晶表面の分解又はエッチングを効率よく 防止することができる。この原料予備供給として、単結晶炭化珪素製造用原料の供 給を継続しながら、更に好ましい製造 (成長)温度まで坩堝を加熱して、 目的とする単 結晶炭化珪素を製造することが好ましい。尚、この場合の製造温度とは例えば坩堝
外側の温度を指す。 [0025] If the type of single crystal silicon carbide targeted in the present invention is to be produced at a temperature exceeding 1,970 ° C, a silicon carbide seed single crystal wafer table as a raw material for producing single crystal silicon carbide is provided. It is preferable to start the supply to the surface within the range of 1,970 ° C to 2,100 ° C. Decomposition or etching of the silicon carbide seed crystal surface can be efficiently prevented by preliminary supply of the raw material within this temperature range. As the raw material preliminary supply, it is preferable to manufacture the target single crystal silicon carbide by heating the crucible to a more preferable manufacturing (growth) temperature while continuing to supply the raw material for manufacturing single crystal silicon carbide. The production temperature in this case is, for example, a crucible. Refers to the outside temperature.
[0026] 1 , 970°C力、ら 2, 100°Cの範囲内で炭化珪素種単結晶ウェハ表面の分解又はエツ チングを防止するために供給する単結晶炭化珪素製造用原料の供給量と、その後 更に好ましい製造温度まで坩堝を加熱させて、 目的とする単結晶炭化珪素を製造す る際の炭化珪素製造用原料の供給量とは特に限定されず、本発明で使用する炭化 珪素種単結晶ウェハの種類、サイズ、形状や、 目的とする単結晶炭化珪素のサイズ や形状、種類等に応じて適宜設定できる。例えば 1 , 970°Cから 2, 100°Cの範囲内 で炭化珪素種単結晶ウェハ表面の分解及び/又はエッチングを防止するために供 給する単結晶炭化珪素製造用原料の供給量と、その後更に好ましい製造温度まで 坩堝を加熱させたのちに、 目的とする単結晶炭化珪素を製造する際の単結晶炭化 珪素製造用原料の供給量とを同じに設定してもよいし、異なる供給量に設定してもよ い。 [0026] The supply amount of the raw material for producing single crystal silicon carbide to prevent decomposition or etching of the silicon carbide seed single crystal wafer surface within a range of 1, 970 ° C force, 2,100 ° C, and Thereafter, the amount of the raw material for silicon carbide production when the crucible is heated to a more preferable production temperature to produce the target single crystal silicon carbide is not particularly limited, and the silicon carbide type single material used in the present invention is not limited. It can be set as appropriate according to the type, size and shape of the crystal wafer and the size, shape and type of the target single crystal silicon carbide. For example, within a range of 1,970 ° C to 2,100 ° C, the supply amount of the raw material for producing single crystal silicon carbide to prevent decomposition and / or etching of the silicon carbide seed single crystal wafer surface, and thereafter After the crucible is heated to a more preferable production temperature, the supply amount of the raw material for producing single crystal silicon carbide when producing the target single crystal silicon carbide may be set to the same, or the supply amount may be different. May be set.
実施例 Example
[0027] 以下本発明の実施例について説明する。 [0027] Examples of the present invention will be described below.
図 1は本発明の単結晶炭化珪素を製造するための装置の一例を示す概念図であ ここでは、高周波誘導加熱炉を一実施態様として用いている。水冷されたチャンバ FIG. 1 is a conceptual diagram showing an example of an apparatus for producing single crystal silicon carbide of the present invention. Here, a high frequency induction heating furnace is used as one embodiment. Water cooled chamber
1内にカーボン製の円筒坩堝 2 (直径 100mm、高さ 150mm)が配置され、前記水冷 されたチャンバ 1の外側には高周波誘導加熱コイル 3を配置してある。前記円筒坩堝 2内の下部には、炭化珪素種単結晶ウェハを保持するためのサセプタ 5が貫通揷入 されている。前記サセプタ 5は円筒坩堝 2の外側まで伸びており、図示しない回転機 構により該サセプタ 5の中心軸を回転軸として回転可能である。 A carbon cylindrical crucible 2 (diameter: 100 mm, height: 150 mm) is disposed in 1, and a high-frequency induction heating coil 3 is disposed outside the water-cooled chamber 1. A susceptor 5 for holding a silicon carbide single crystal wafer is inserted through the lower portion of the cylindrical crucible 2. The susceptor 5 extends to the outside of the cylindrical crucible 2 and can be rotated about the central axis of the susceptor 5 by a rotating mechanism (not shown).
[0028] また前記単結晶炭化珪素製造用原料粒子を供給するための原料供給管 6は、サ セプタと反対側の円筒坩堝の上部を貫通して外側に伸びており、そのまま前記チヤ ンバの外側にのびている。原料供給管 6は、前期高周波誘導加熱炉の外部に配置さ れており、供給量が独立に調節可能な流量調節弁 8、 8 'をそれぞれ備えた複数の原 料貯蔵槽 7、 7'、及び、流量調節可能な不活性キャリアガス Aの供給源(図示せず) に連結して!/、る。原料貯蔵槽 7及び 7'からそれぞれシリカ粒子及びカーボン粒子を
供給し両粒子を一緒にアルゴンガスと共に炭化珪素種結晶表面に供給することがで きる。 [0028] Further, the raw material supply pipe 6 for supplying the raw material particles for producing single crystal silicon carbide passes through the upper part of the cylindrical crucible on the opposite side of the susceptor and extends outward, and is directly outside the chamber. It stretches. The raw material supply pipe 6 is disposed outside the high-frequency induction heating furnace in the previous period, and is provided with a plurality of raw material storage tanks 7, 7 ', each having flow control valves 8, 8' that can independently adjust the supply amount. And connected to a supply source (not shown) of an inert carrier gas A whose flow rate can be adjusted. Silica particles and carbon particles from raw material storage tanks 7 and 7 ', respectively. Both particles can be supplied together with argon gas to the silicon carbide seed crystal surface.
[0029] 予め混合された単結晶炭化珪素製造用原料を使用する場合は一つの原料貯蔵槽 [0029] One raw material storage tank when using a raw material for producing single crystal silicon carbide mixed in advance
7を用い、供給管内部にて混合させる場合には、シリカとカーボン粉をそれぞれ独立 に原料貯蔵槽 7、 7'に充填し、それぞれの貯蔵層からの供給量を調節した上で、不 活性キャリアガス Aと共に流量調整しながら流すことで、前記円筒坩堝内部に単結晶 炭化珪素製造用原料を設定量ずつ連続供給することができる。高周波誘導加熱炉 は、図示しない真空排気系及び圧力調節系により圧力制御が可能であり、また図示 しない不活性ガス置換機構を備えている。なお、供給された不活性キャリアガス Aは 、チャンバ 1に設けられたダクト(図示せず)から排出される。 7 and mixing inside the supply pipe, the silica and carbon powder are filled into the raw material storage tanks 7 and 7 'independently, and the supply from each storage layer is adjusted, and then inert By flowing the carrier gas A while adjusting the flow rate, the raw material for producing single crystal silicon carbide can be continuously supplied into the cylindrical crucible by a set amount. The high-frequency induction heating furnace can be controlled by a vacuum exhaust system and a pressure control system (not shown), and includes an inert gas replacement mechanism (not shown). The supplied inert carrier gas A is discharged from a duct (not shown) provided in the chamber 1.
[0030] 尚、図 1の実施例では原料供給管 6の原料供給方向とサセプタ 5の種結晶載置面 との位置関係が垂直方向に(上下に)対向している力 本発明の作用が変わらない 範囲内で、それぞれ水平方向に対向する関係に配置することも可能である。また、原 料供給管 6の原料供給方向とサセプタ 5の種結晶載置面とを互いに斜めや水平関係 に配置することも可能である。 In the embodiment of FIG. 1, the force in which the positional relationship between the raw material supply direction of the raw material supply pipe 6 and the seed crystal placement surface of the susceptor 5 is opposed in the vertical direction (up and down). It is also possible to arrange them so as to face each other in the horizontal direction within the range that does not change. Further, the raw material supply direction of the raw material supply pipe 6 and the seed crystal mounting surface of the susceptor 5 can be arranged obliquely or horizontally with respect to each other.
[0031] 図 1に示す高周波誘導加熱炉を用いて、以下の条件にて単結晶炭化珪素の製造 をおこなった。円筒坩堝内に貫通挿入されている前記サセプタの端面に炭化珪素種 単結晶ウェハを固定した。ここで使用した炭化珪素種単結晶ウェハは、レーリー法で 製造された単結晶炭化珪素と改良レーリー法で製造された単結晶炭化珪素のいず れかを使用した。またジャスト面、傾斜面、 C面、 Si面それぞれについて面粗度、面 清浄度を所望条件に仕上げたウェハを準備して使用した。 [0031] Using the high-frequency induction heating furnace shown in Fig. 1, single-crystal silicon carbide was produced under the following conditions. A silicon carbide single crystal wafer was fixed to the end face of the susceptor that was inserted through the cylindrical crucible. As the silicon carbide single crystal wafer used here, either single crystal silicon carbide manufactured by the Rayleigh method or single crystal silicon carbide manufactured by the modified Rayleigh method was used. In addition, we prepared and used wafers that were finished to the desired conditions of surface roughness and surface cleanliness for just surfaces, inclined surfaces, C surfaces, and Si surfaces.
[0032] 単結晶炭化珪素製造用原料であるカーボン(三菱化学 (株)製カーボンブラック M A600)とシリカ(日本ァエロジル (株)製ァエロジル 380)とをそれぞれ独立に原料貯 蔵槽に充填した。また各々の供給量比はシリカ/カーボン = 1. 5〜5. 0 (重量比)に 調整した。 [0032] Carbon (Carbon Black M A600 manufactured by Mitsubishi Chemical Corporation) and silica (Aerosil 380 manufactured by Nippon Aerosil Co., Ltd.), which are raw materials for producing single-crystal silicon carbide, were independently filled in the raw material storage tank. Each supply ratio was adjusted to silica / carbon = 1.5 to 5.0 (weight ratio).
高周波誘導加熱炉内部を真空引きした後、不活性ガスで該高周波誘導加熱炉内 部を置換した。不活性ガスとしては、高純度アルゴンが好ましぐ高純度ヘリウムを使 用しても良く、又、 Nをドープするときには高純度窒素も使用できる。
[0033] 次いで前記高周波誘導加熱コイルにより、前記カーボン製の円筒坩堝の外側の温 度が 1 , 900-1 , 970°C (実施例 A)、 1 , 970-2, 100°C (実施例 B)、又は 2, 100 〜2, 140°C (比較例 C)の範囲となるまで加熱昇温した。この時、 目的とする単結晶 炭化珪素が 3Cタイプの場合は、前記円筒坩堝の外側の温度を 1 , 970°C未満とする ことが好ましいが、今回の実施例では 6Hタイプのみを製造したため、 1 , 970°C未満 での単結晶炭化珪素製造にっレ、ては省略した。次レ、でそれぞれの実施例の炭化珪 素種単結晶ウェハが固定された前記サセプタを 0〜20rpmの回転速度で回転させ た。 After evacuating the inside of the high frequency induction heating furnace, the inside of the high frequency induction heating furnace was replaced with an inert gas. As the inert gas, high-purity helium preferred by high-purity argon may be used. When N is doped, high-purity nitrogen can also be used. Next, due to the high-frequency induction heating coil, the temperature outside the carbon cylindrical crucible is 1, 900-1, 970 ° C. (Example A), 1, 970-2, 100 ° C. (Example B) or 2,100-2,140 ° C (Comparative Example C) was heated to a temperature. At this time, when the target single crystal silicon carbide is 3C type, the temperature outside the cylindrical crucible is preferably less than 1, 970 ° C. However, in this example, only the 6H type was manufactured. This was omitted for the production of single crystal silicon carbide at temperatures below 1,970 ° C. In the next step, the susceptor on which the silicon carbide seed single crystal wafer of each example was fixed was rotated at a rotation speed of 0 to 20 rpm.
[0034] この状態で前記不活性キャリアガス(高純度アルゴン又は高純度ヘリウム)を流速 0 . 5〜101/minの範囲に調整して流し、このキャリアガスと共に前記単結晶炭化珪素 製造用原料を、前記供給管内部を通じて、前記円筒坩堝内の対向部に配置された、 それぞれの前記炭化珪素種単結晶ウェハ表面上への供給を開始した。この状態で 、前記実施例 A、 B又は比較例 Cの円筒坩堝の外側の温度が 2, 140-2, 400°Cの 範囲となるまで更に加熱昇温した。所望の温度に達した時点で前記それぞれの実施 例の円筒坩堝の外側の温度を一定に保ちながら、前記実施例 A、 B、又は比較例 C の単結晶炭化珪素を所望のサイズ、厚みとなるまで前記単結晶炭化珪素製造用原 料の連続供給を継続して、前記それぞれの実施例の単結晶炭化珪素を製造した。 尚、所望の温度は雰囲気圧力や単結晶炭化珪素製造用原料混合比、炭化珪素種 単結晶ウェハの種類等により変化するので適宜調節した。 In this state, the inert carrier gas (high-purity argon or high-purity helium) is flowed at a flow rate of 0.5 to 101 / min, and the carrier gas is used together with the raw material for producing single-crystal silicon carbide. Then, the supply to the surface of each of the silicon carbide seed single crystal wafers arranged in the facing portion in the cylindrical crucible through the supply pipe was started. In this state, the temperature was further increased until the temperature outside the cylindrical crucible of Example A, B or Comparative Example C was in the range of 2,140-2,400 ° C. When the desired temperature is reached, the single crystal silicon carbide of Example A, B or Comparative Example C has the desired size and thickness while keeping the temperature outside the cylindrical crucible of each of the above examples constant. The single crystal silicon carbide of each of the above examples was manufactured by continuously supplying the raw material for manufacturing the single crystal silicon carbide. The desired temperature was appropriately adjusted because it varies depending on the atmospheric pressure, the raw material mixture ratio for producing single crystal silicon carbide, the type of silicon carbide single crystal wafer, and the like.
[0035] また、比較例 Dとして前記円筒坩堝の外側の温度が 2, 140-2, 400°Cの範囲とな るまで加熱昇温してからこの温度を一定に保ち、その後炭化珪素種単結晶ウェハが 固定された前記サセプタを 0〜20rpmの回転速度で回転させた状態で前記不活性 キャリアガス(高純度アルゴン又は高純度ヘリウム)を流速 0. 5〜; 101/minの範囲に 調整して流し、前記単結晶炭化珪素製造用原料を、前記原料供給管内部を通じて 前記円筒坩堝内の対向部に配置された前記炭化珪素種単結晶ウェハ表面上に連 続供給して前記単結晶炭化珪素の製造もおこなった。 [0035] Further, as Comparative Example D, the temperature outside the cylindrical crucible was heated up to a temperature in the range of 2, 140-2, 400 ° C, and this temperature was kept constant. The inert carrier gas (high purity argon or high purity helium) is adjusted to a flow rate of 0.5 to 101 / min while the susceptor to which the crystal wafer is fixed is rotated at a rotation speed of 0 to 20 rpm. The single crystal silicon carbide manufacturing raw material is continuously supplied through the raw material supply pipe onto the surface of the silicon carbide seed single crystal wafer disposed at the opposing portion in the cylindrical crucible. Was also manufactured.
[0036] 上記 4種類の条件での単結晶炭化珪素製造結果をまとめて表 1に示す。実施例、 比較例ともにトータル 3時間の製造をおこない、厚み 1. 2mmの単結晶炭化珪素を製
造すること力 sできた。但し比較例の場合は炭化珪素種単結晶表面荒れが発生し、そ の結果製造単結晶炭化珪素の内部に多数の転位や MP (マイクロパイプ)が発生し ていた。一方の実施例 Bでは表面劣化が見られず、転位や多結晶、マイクロパイプ等 の欠陥の少ない高品質な単結晶炭化珪素を製造できた。尚、実施例 Aの場合は表 面劣化は見られなかったものの、原料供給開始温度が低すぎたため 3C結晶が炭化 珪素種単結晶表面に析出してしまい、高品質な単一 6H単結晶にはならず、多形混 在多結晶となった。 [0036] Table 1 summarizes the results of single-crystal silicon carbide production under the above four conditions. Both the examples and comparative examples were manufactured for a total of 3 hours to produce single crystal silicon carbide with a thickness of 1.2 mm. The power to build was s. However, in the comparative example, the surface roughness of the silicon carbide seed single crystal occurred, and as a result, a number of dislocations and MP (micropipes) were generated in the manufactured single crystal silicon carbide. On the other hand, in Example B, no surface deterioration was observed, and high-quality single crystal silicon carbide with few defects such as dislocations, polycrystals, and micropipes could be produced. In the case of Example A, no surface deterioration was observed, but since the raw material supply start temperature was too low, 3C crystals were deposited on the surface of the silicon carbide seed single crystal, resulting in a high quality single 6H single crystal. Instead, it became polymorphic mixed polycrystalline.
[表 1] [table 1]
Claims
[1] 炭化珪素種結晶が固定されたサセプタ及び外部から単結晶炭化珪素製造用原料 を供給するための原料供給管を坩堝の中に配置する配置工程、 [1] An arrangement step in which a susceptor to which a silicon carbide seed crystal is fixed and a raw material supply pipe for supplying a raw material for producing single crystal silicon carbide from the outside are arranged in a crucible,
該坩堝を外部加熱して昇温する際に該炭化珪素種結晶表面の分解及び/又はェ ツチングを防止する分解防止工程、並びに、 A decomposition preventing step for preventing decomposition and / or etching of the surface of the silicon carbide seed crystal when the temperature of the crucible is externally heated, and
該坩堝内を単結晶成長温度にまで更に昇温しこの単結晶成長温度を維持して該 炭化珪素種結晶表面に炭化珪素製造用原料の供給を継続して単結晶炭化珪素を 成長させる成長工程、を含むことを特徴とする A growth process in which the inside of the crucible is further heated to a single crystal growth temperature, and this single crystal growth temperature is maintained, and the supply of raw materials for silicon carbide production is continued on the surface of the silicon carbide seed crystal to grow single crystal silicon carbide. , Including
単結晶炭化珪素の製造方法。 A method for producing single crystal silicon carbide.
[2] 分解防止工程において、該炭化珪素種結晶表面に炭化珪素製造用原料を供給す る請求項 1に記載の単結晶炭化珪素の製造方法。 [2] The method for producing single-crystal silicon carbide according to [1], wherein a raw material for producing silicon carbide is supplied to the surface of the silicon carbide seed crystal in the decomposition preventing step.
[3] 該分解防止工程が、該坩堝の表面温度が該炭化珪素種結晶表面の分解及び/ 又はエッチングが開始する温度に到達する以前から、該炭化珪素種結晶上に該単 結晶炭化珪素製造用原料の連続供給を開始する原料予備供給工程である、請求項[3] The decomposition preventing step is performed so that the single-crystal silicon carbide is produced on the silicon carbide seed crystal before the surface temperature of the crucible reaches a temperature at which decomposition and / or etching of the surface of the silicon carbide seed crystal starts. It is a raw material preliminary supply process for starting continuous supply of raw materials for use.
1に記載の単結晶炭化珪素の製造方法。 2. The method for producing single-crystal silicon carbide according to 1.
[4] 該坩堝の表面温度が 1, 900°Cから 2, 100°Cである時点から原料予備供給工程を 開始する、請求項 2又は 3に記載の単結晶炭化珪素の製造方法。 [4] The method for producing single-crystal silicon carbide according to claim 2 or 3, wherein the raw material preliminary supply step is started when the surface temperature of the crucible is 1,900 ° C to 2,100 ° C.
[5] 該坩堝の表面温度が 1, 970°Cから 2, 100°Cである時点から原料予備供給工程を 開始する、請求項 2〜4いずれか 1つに記載の単結晶炭化珪素の製造方法。 [5] The production of single-crystal silicon carbide according to any one of claims 2 to 4, wherein the raw material preliminary supply step is started when the surface temperature of the crucible is 1,970 ° C to 2,100 ° C. Method.
[6] 分解防止工程において供給する炭化珪素製造用原料が、成長工程において供給 する炭化珪素製造用原料と同種である請求項 2〜5いずれか 1つに記載の単結晶炭 化珪素の製造方法。 6. The method for producing single-crystal silicon carbide according to any one of claims 2 to 5, wherein the raw material for producing silicon carbide supplied in the decomposition preventing step is the same kind as the raw material for producing silicon carbide supplied in the growth step. .
[7] 分解防止工程及び成長工程において供給する炭化珪素製造用原料が、シリカ粒 子及びカーボン粒子であり、シリカ/カーボンの重量比が 1. 5〜5でぁる請求項2〜 6いずれか 1つに記載の単結晶炭化珪素の製造方法。 [7] The raw material for producing silicon carbide supplied in the decomposition prevention step and the growth step is silica particles and carbon particles, and the weight ratio of silica / carbon is 1.5-5. The manufacturing method of the single-crystal silicon carbide as described in one.
[8] 請求項;!〜 7いずれか 1つに記載の方法により製造された単結晶炭化珪素。
[8] A single crystal silicon carbide produced by the method according to any one of claims;! To 7.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006-218101 | 2006-08-10 | ||
JP2006218101A JP2008037729A (en) | 2006-08-10 | 2006-08-10 | Single crystal silicon carbide and method for manufacturing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2008018322A1 true WO2008018322A1 (en) | 2008-02-14 |
Family
ID=39032856
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2007/064970 WO2008018322A1 (en) | 2006-08-10 | 2007-07-31 | Single-crystal silicon carbide and process for producing the same |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP2008037729A (en) |
KR (1) | KR20090037377A (en) |
TW (1) | TW200817542A (en) |
WO (1) | WO2008018322A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20130002616A (en) * | 2011-06-29 | 2013-01-08 | 에스케이이노베이션 주식회사 | Reactor and method for growing silicon carbide single crystal |
KR20130007109A (en) * | 2011-06-29 | 2013-01-18 | 에스케이이노베이션 주식회사 | Reactor and method for growing silicon carbide single crystal |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001233697A (en) * | 2000-02-23 | 2001-08-28 | Nippon Pillar Packing Co Ltd | Silicon carbide single crystal |
JP2004099414A (en) * | 2002-09-13 | 2004-04-02 | National Institute Of Advanced Industrial & Technology | Method of manufacturing silicon carbide single crystal |
-
2006
- 2006-08-10 JP JP2006218101A patent/JP2008037729A/en active Pending
-
2007
- 2007-05-23 TW TW096118326A patent/TW200817542A/en unknown
- 2007-07-31 WO PCT/JP2007/064970 patent/WO2008018322A1/en active Application Filing
- 2007-07-31 KR KR1020087023661A patent/KR20090037377A/en not_active Application Discontinuation
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001233697A (en) * | 2000-02-23 | 2001-08-28 | Nippon Pillar Packing Co Ltd | Silicon carbide single crystal |
JP2004099414A (en) * | 2002-09-13 | 2004-04-02 | National Institute Of Advanced Industrial & Technology | Method of manufacturing silicon carbide single crystal |
Also Published As
Publication number | Publication date |
---|---|
JP2008037729A (en) | 2008-02-21 |
TW200817542A (en) | 2008-04-16 |
KR20090037377A (en) | 2009-04-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5093974B2 (en) | Single crystal manufacturing apparatus and manufacturing method by vapor phase epitaxy | |
US9053834B2 (en) | Silicon carbide single crystal and manufacturing method of the same | |
JP2007326743A (en) | Method for producing silicon carbide single crystal | |
JP2008001569A (en) | SINGLE CRYSTAL SiC AND PRODUCTION METHOD THEREFOR, AND APPARATUS FOR PRODUCING SINGLE CRYSTAL SiC | |
JP2008110907A (en) | Method for producing silicon carbide single crystal ingot, and silicon carbide single crystal ingot | |
US6458207B1 (en) | Silicon carbide single-crystals | |
JP2619611B2 (en) | Single crystal manufacturing apparatus and manufacturing method | |
JP2018140903A (en) | Method for manufacturing silicon carbide single crystal ingot | |
WO2008018322A1 (en) | Single-crystal silicon carbide and process for producing the same | |
KR20090042202A (en) | Single-crystal sic and process for producing the same | |
JP4670002B2 (en) | Method for producing nitride single crystal | |
JP2008115045A (en) | SINGLE CRYSTAL SiC AND ITS PRODUCING METHOD | |
JP2008308369A (en) | SINGLE CRYSTAL SiC, AND METHOD AND APPARATUS FOR PRODUCING THE SAME | |
JP4347325B2 (en) | Single crystal SiC, method for manufacturing the same, and apparatus for manufacturing single crystal SiC | |
JP2009057265A (en) | SINGLE CRYSTAL SiC AND METHOD FOR PRODUCTION THEREOF | |
JP2009073696A (en) | SINGLE CRYSTAL SiC AND ITS PRODUCTION METHOD | |
WO2020241578A1 (en) | METHOD FOR PRODUCING SiC SINGLE CRYSTAL INGOT | |
JP2011201756A (en) | Method for producing single crystal silicon carbide | |
JP2024149201A (en) | Silicon carbide single crystal and its manufacturing method | |
JP2023127894A (en) | Silicon carbide single crystal and method for manufacturing the same | |
JP2008254945A (en) | SINGLE CRYSTAL SiC AND ITS PRODUCTION METHOD | |
WO2008018319A1 (en) | SINGLE CRYSTAL SiC, ITS FABRICATION METHOD, AND FABRICATION EQUIPMENT FOR SINGLE CRYSTAL SiC | |
JP2009029664A (en) | SINGLE CRYSTAL SiC AND ITS MANUFACTURING METHOD | |
JP2024081427A (en) | Method of manufacturing silicon carbide monocrystal, and silicon carbide monocrystal | |
JP2010241619A (en) | Production method of silicon carbide single crystal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07791655 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020087023661 Country of ref document: KR |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
NENP | Non-entry into the national phase |
Ref country code: RU |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 07791655 Country of ref document: EP Kind code of ref document: A1 |