JP2004099414A - Method of manufacturing silicon carbide single crystal - Google Patents

Method of manufacturing silicon carbide single crystal Download PDF

Info

Publication number
JP2004099414A
JP2004099414A JP2002267505A JP2002267505A JP2004099414A JP 2004099414 A JP2004099414 A JP 2004099414A JP 2002267505 A JP2002267505 A JP 2002267505A JP 2002267505 A JP2002267505 A JP 2002267505A JP 2004099414 A JP2004099414 A JP 2004099414A
Authority
JP
Japan
Prior art keywords
silicon carbide
single crystal
carbon
seed crystal
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002267505A
Other languages
Japanese (ja)
Inventor
Masuzo Yamada
山田 益三
Kazuo Arai
荒井 和雄
Shinichi Nishizawa
西澤 伸一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2002267505A priority Critical patent/JP2004099414A/en
Publication of JP2004099414A publication Critical patent/JP2004099414A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cost-effective method of manufacturing a silicon carbide single crystal by which the growth rate of the single crystal can be increased and a high purity silicon carbide single crystal can be obtained. <P>SOLUTION: The silicon carbide single crystal is grown on a seed crystal of silicon carbide by depositing silicon dioxide fine particles each being coated with carbon on the surface of the seed crystal of silicon carbide and then reducing the silicon dioxide fine particles by the carbon. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、炭化珪素単結晶の製造方法に関し、詳しくは炭化珪素種結晶上に炭素で被覆された二酸化珪素超微粒子を供給して二酸化珪素を炭素により還元することにより炭化珪素単結晶を製造する方法に関する。
【0002】
【従来の技術】
炭化珪素単結晶は、耐環境用デバイス、パワーデバイスなどの半導体デバイス用の材料として有用な物質である。
この炭化珪素は、常圧での液相が存在せず、シリコン単結晶の引き上げ法のような液相からの結晶化が困難であり、従来はSiC、SiC、Siなどの気相からの結晶化である昇華法による製造が一般的であった。
【0003】
昇華法には、無水珪酸と炭素源を高温加熱し、発生した蒸気内の反応により炭化珪素単結晶を製造するアチソン法や、黒鉛坩堝内で炭化珪素粉末を昇華させ、黒鉛坩堝内で炭化珪素単結晶を再結晶化するレーリー法、改良レーリー法等がある。
だが、アチソン法は、得られる単結晶の大きさが小さい上、半導体デバイス用としては純度が低く、レーリー法や改良レーリー法は、炭化珪素の化学量論的組成のガスが存在しないことから、反応が複雑になるという問題がある。
【0004】
また、気相からの結晶成長は、原子や分子が種結晶表面に供給されて結晶が1層毎に成長するため、いずれの方法も単結晶の成長速度が1mm/時間程度と、シリコン単結晶のような引き上げ法による成長速度の100mm/時間程度に比べて著しく遅く、収率も悪いという問題点がある。さらに、従来の方法では、マイクロパイプなどの数ミクロン径の中空欠陥が発生しやすく、また、β型結晶体が得られにくい。
【0005】
このような問題点を解決するために、本発明者らは先に、「不活性ガス雰囲気中に加熱状態で保持された炭化珪素種結晶表面に向けて、二酸化珪素超微粒子および炭素超微粒子を供給して付着させ、炭化珪素種結晶表面において二酸化珪素を炭素により還元することにより、炭化珪素単結晶を炭化珪素種結晶上に成長させてなる炭化珪素単結晶の製造方法」を提案した(特許文献1参照)
【0006】
【特許文献1】特開2001−26697号公報
【0007】
【発明が解決しようとする課題】
本発明は、かかる発明を更に発展・飛翔させ、結晶の成長速度を更に高めることができると共に炭素の堆積がほとんどなく高純度の炭化珪素単結晶を得ることができ、コスト的に有利な炭化珪素単結晶の製造方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明者らは、前記特許文献1に記載の発明の更なる改良を進めた結果、炭化珪素種結晶表面に、二酸化珪素超微粒子および炭素超微粒子のそれぞれを供給する方法に代えて、予めその表面が炭素で被覆された二酸化珪素微粒子を供給する方法を選定した場合には、前記発明に比べ、結晶の成長速度を更に高めることができると共に炭素の堆積の抑制された高純度の炭化珪素単結晶を得ることができ、コスト的に有利に炭化珪素単結晶を製造し得ることを知見し、本発明に到達するに至った。
すなわち、本発明によれば、以下の発明が提供される。
(1)炭化珪素種結晶表面に、炭素で被覆された二酸化珪素微粒子を付着させ、ついで二酸化珪素超微粒子を該炭素により還元することにより、炭化珪素単結晶を炭化珪素種結晶上に成長させることを特徴とする炭化珪素単結晶の製造方法。
(2)炭素で被覆された二酸化珪素超微粒子が、二酸化珪素超微粒子の存在下、炭化水素ガスの熱分解による調製されたものであることを特徴とする上記(1)に記載の単珪素単結晶の製造方法。
(3)炭化珪素種結晶が、不活性ガス雰囲気中で加熱状態で保持されていることを特徴とする上記(1)又は(2)に記載の炭化珪素単結晶の製造方法。
(4)炭化珪素種結晶の表面温度が1600〜2400℃であることを特徴とする上記(1)乃至(3)何れかに記載の炭化珪素単結晶の製造方法。
【発明の実施の形態】
【0009】
本発明者らが先に提案した特許文献1においては、加熱されて高温となった炭化珪素種結晶表面上で、供給された二酸化珪素超微粒子が溶融しながら各別に供給された炭素超微粒子と融合し還元反応することにより炭化珪素結晶微粒子が生成し、生成した炭化珪素結晶微粒子は、超微粒子の融解流動現象によって種結晶表面に融合して単結晶としてエピタキシャルに成長するため、単結晶の成長速度が速く、また、マイクロパイプ発生しにくいといった利点を有するものであった。
【0010】
しかし、その後の本発明者らの検討によれば、二酸化珪素超微粒子と炭素超微粒子を原料とする還元反応においては、次のような複雑な問題点があることが判明した。
すなわち、この方法は下記の2段階反応によって還元反応が進行しSiCが得られるものであるが、(1)式で生じるSiOは気体分子であるため、原料であるSiO粒子と炭素超粒子の隙間から漏出し、次段の(2)式で示される還元反応への寄与率が低下し、SiCの収率すなわち単結晶の成長速度が低下し、また成長する単結晶のSi/C比が1.0からずれる場合が生じる。更にまた、(2)式における還元反応に関与するSiOの量も少なくなり、このことに起因して相対的にその分だけ炭素消費量が少なくなるため、単結晶の成長部分に過剰の炭素が堆積し、高純度の単結晶を得るには堆積した炭素の除去を必要とする。
【化1】
SiO + C = SiO + CO  (1)
SiO +2C= SiC+CO  (2)
【0011】
本発明者らは、かかる問題点を解消するために、更に鋭意検討を加えた結果、上記(1)式及び(2)式の還元反応において生じる弊害は、主に、SiO2微粒子と炭素微粒子とが緊密な密着状態を維持できない点にあることを突き止め、更なる研究を行ったところ、両者を緊密な接触状態に保持すること具体的にはSiO2超微粒子の表面を炭素からなる皮膜で包むことが有効であるとの予想外な知見を得た。本発明はかかる意外な知見に基づいてなされたものである。
【0012】
以下、本発明を更に詳細に説明する。
本発明で使用される、その表面が炭素で被覆された二酸化珪素超微粒子(炭素被覆二酸化珪素超微粒子ともいう)は、炭化水素が分解し、あるいはその再結合した炭素原子あるいは六員環を形成したアロマティックラジカルに全面的に覆われた構造を有する。
この炭素被覆二酸化珪素超微粒子は、たとえば、二酸化珪素超微粒子の存在下で炭化水素を熱分解する方法などの方法で調製することができる。
【0013】
この熱分解方法による炭素被覆二酸化珪素超微粒子の調整方法を詳述する。
二酸化珪素超微粒子として例えばフュームドシリカを用いる場合には、1000〜1200℃の酸水素炎に四塩化珪素を吹き込んで次式の反応によりニ酸化珪素超微粒子を生成する。
【化2】
SiCl +2H + O = SiO + 4HCl (火炎加水分解法)
この反応の後に二酸化珪素超微粒子が未だ500〜800℃の温度にある段階で二酸化珪素超微粒子が浮遊する空間に炭化水素C mHn の蒸気を注入するとC mHn分子は二酸化珪素超微粒子を核として熱分解し、発生するC原子は二酸化珪素超微粒子の表面に堆積する。
この方法により炭素で被覆された二酸化珪素超微粒子を得ることができる。
【0014】
なお、原料として用いる二酸化珪素超微粒子の種類は特に限定されず、例えば、フュームドシリカ、コロイダルシリカ、シリカゲルなどを使用することが出来る。粒子径は特に限定されないが、通常10nm〜100nm好ましくは10nm〜30nmである。
また、粒子形状も特に限定されず、例えば球形、櫛形状などの物が使用できる。
【0015】
上記炭素被覆二酸化珪素超微粒子には、本発明の作用を阻害しない範囲で、前処理を施したり、他の成分を微量添加してもよい。
【0016】
上記炭素被覆二酸化珪素超微粒子の種結晶表面への供給は、種結晶表面に上記超微粒子を効率よく付着させるために、上記超微粒子に適度な速度が与えられることが好ましい。上記超微粒子の種結晶表面への供給方法は特に限定されず、例えば所望の流速を有するキャリアガスと混合して種結晶表面に向けて供給する方法が挙げられる。この際、使用するキャリアガスは、単結晶成長の雰囲気を不活性雰囲気とするためのアルゴンガス、窒素ガスなどの不活性ガスを使用する。
【0017】
さらに、例えば炭化珪素単結晶中にドーピングを行う場合には、上記超微粒子やキャリアガスにドーパントとなる成分を混合してもよい。
【0018】
本発明で使用する炭化珪素種結晶の構成、サイズ、形状は、目的とする炭化珪素単結晶の構成、大きさ、形状などによって選択すればよく、例えばアチソン法や改良レーリー法等によって得られた単結晶に必要に応じ処理を施したものが挙げられる。
【0019】
炭化珪素種結晶の表面温度は、付着した炭素被覆二酸化珪素超微粒子の炭素被膜と二酸化珪素超微粒子が溶融しながら反応して炭化珪素結晶が生成し、融解流動現象によって種結晶表面に融合する温度であれば特に限定されるものではないが、好ましくは1600〜2400℃とするのがよい。
【0020】
本発明の炭化珪素単結晶を得るために使用する炭化珪素単結晶の製造装置の構成(サイズ、加熱方法、原料供給方法、雰囲気調整方法など)は特に限定されず、目的とする炭化珪素単結晶の大きさや形状、原料の種類などに応じて選択する。
【0021】
【実施例】
以下、実施例により本発明を更に詳細に説明する。
【0022】
実施例1
本発明の炭化珪素単結晶を得るための製造装置の一例である図1に示すような製造装置を用いて炭化珪素単結晶の製造を行った。図1の製造装置は、耐熱容器1として直径50mm、高さ100mmのカーボン密閉坩堝を、誘導加熱炉の高周波誘導加熱コイル2内に設置したものであり、カーボン密閉坩堝の内部上部に炭化珪素種結晶を保持するための炭化珪素種結晶保持棒3が取り付けられ、内部下面には直径10mmの貫通孔が設けられて、カーボン密閉坩堝外部から原料の超微粒子を供給するための原料供給管5(外径8mmのカーボン管)が貫通挿入されている。炭化珪素種結晶保持棒3は、図示しない駆動機構により炭化珪素種結晶保持棒3の中心軸を回転軸として回転可能であり、また、カーボン密閉坩堝の上面に図示しない放射温度計が設置されていて、坩堝上面の温度を測定し、それに応じて高周波誘導加熱コイル2の出力を制御することにより、坩堝内の温度を調製する。
【0023】
誘導加熱炉内は、図示しない真空ポンプおよび圧力調整弁により、圧力制御が可能であって、カーボン密閉坩堝内部の反応雰囲気の圧力調製を行うことができる。原料供給管5は、誘導加熱炉外の炭素被覆二酸化珪素超微粒子貯蔵槽6と、さらに流量調節が可能なキャリアガス供給源(図示せず)にそれぞれ連結しており、キャリアガスAと共に炭化珪素二酸化珪素超微粒子をカーボン密閉坩堝内部に供給することができる。キャリアガスと共に供給することにより、炭素皮膜二酸化珪素超微粒子に適度な速度を与え、坩堝内部で固定された炭化珪素種結晶に向かって移動し、炭化珪素種結晶表面に付着させることができる。
【0024】
炭化珪素単結晶の製造(単結晶の成長)は次のように行われる。カーボン密閉坩堝(耐熱容器1)内部上部に炭化珪素種結晶保持棒3に保持して、下記に示す構成の炭化珪素種結晶4を固定し、カーボン密閉坩堝を誘導加熱炉内に設置して、誘導加熱炉内を減圧状態とし、アルゴンガスによりガス置換を行う。次いで高周波誘導加熱コイル2によりカーボン密閉坩堝を加熱し、炭化珪素種結晶表面が1600〜2400℃となるようにする。
【0025】
炭素被覆二酸化珪素超微粒子をキャリアガス(アルゴンガス)とともに、下記製造の条件で坩堝内に供給した。なお、この時、炭素被覆二酸化珪素超微粒子とに加えて図示しない供給装置により炭化防止のためのシリコン粉末を若干量添加した。また、種結晶は上記超微粒子の供給時には炭化珪素種結晶保持棒3ごと水平面内で回転させた。その結果炭化珪素種結晶表面上に厚さ250μmを超える炭化珪素種結晶の成長が見られた。また、この単結晶には炭素の堆積がほとんどないことが確認された。
【0026】
[単結晶の製造条件]
(1)炭化珪素種結晶表面温度 :1600〜2400℃キャリアガス :アルゴンガス、流速10l/min.
(2)カーボン密閉坩堝内雰囲気:アルゴンガス(25KPa以下)
(3)炭素被覆二酸化珪素超微粒子の供給量:1〜3g/min.
(4)炭素被覆二酸化珪素超微粒子の供給時間:10分間
(5)炭化珪素種結晶の構成 :アチソン法により作成した炭化珪素単結晶のC面を下記の結晶軸方向に5度傾けて研磨したもの
【数1】

Figure 2004099414
【0027】
【発明の効果】
本発明の製造方法によれば、結晶の成長速度を更に高めることができると共に単結晶のSi/C比が1.0に保持された高純度の炭化珪素単結晶を得ることができ、また過剰の炭素堆積が少なくコスト的に有利に炭化珪素単結晶を得ることができる。
【図面の簡単な説明】
【図1】本発明の炭化珪素単結晶を得るための代表的な製造装置の概要図。
【符号の説明】
1 耐熱容器
2 高周波誘導加熱コイル
3 炭化珪素種結晶保持棒
4 炭化珪素種結晶
5 原料供給管
6 炭素被覆二酸化珪素超微粒子貯蔵槽
7 供給量調節弁
A キャリアガス[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a silicon carbide single crystal, and more specifically, to produce a silicon carbide single crystal by supplying silicon dioxide ultrafine particles coated with carbon on a silicon carbide seed crystal and reducing silicon dioxide with carbon. About the method.
[0002]
[Prior art]
A silicon carbide single crystal is a substance useful as a material for semiconductor devices such as environment-resistant devices and power devices.
This silicon carbide does not have a liquid phase at normal pressure, and it is difficult to crystallize from a liquid phase as in a method of pulling a silicon single crystal. Conventionally, the gas phase of Si 2 C, SiC 2 , Si, etc. Production by the sublimation method, which is crystallization from, was common.
[0003]
The sublimation method includes heating the silicic acid and a carbon source at a high temperature, and producing a silicon carbide single crystal by a reaction in the generated steam, or sublimating silicon carbide powder in a graphite crucible, and silicon carbide in a graphite crucible. There are a Rayleigh method for recrystallizing a single crystal and an improved Rayleigh method.
However, the Acheson method has a small single crystal obtained and has low purity for semiconductor devices, and the Rayleigh method and the modified Rayleigh method do not have a gas having a stoichiometric composition of silicon carbide. There is a problem that the reaction becomes complicated.
[0004]
In the crystal growth from the gas phase, atoms and molecules are supplied to the surface of the seed crystal, and the crystal grows in each layer. Therefore, in either method, the growth rate of the single crystal is about 1 mm / hour, However, there is a problem that the growth rate is remarkably lower than the growth rate of about 100 mm / hour by the pulling method and the yield is low. Furthermore, according to the conventional method, a hollow defect having a diameter of several microns such as a micropipe is easily generated, and it is difficult to obtain a β-type crystal.
[0005]
In order to solve such a problem, the present inventors have previously described, "Silicon dioxide ultrafine particles and carbon ultrafine particles are directed toward the surface of a silicon carbide seed crystal held in a heated state in an inert gas atmosphere. A method for producing a silicon carbide single crystal by growing a silicon carbide single crystal on a silicon carbide seed crystal by supplying, attaching and reducing silicon dioxide on the silicon carbide seed crystal surface with carbon. Reference 1)
[0006]
[Patent Document 1] Japanese Patent Application Laid-Open No. 2001-26697
[Problems to be solved by the invention]
The present invention further develops and flies such an invention, can further increase the crystal growth rate, can obtain a high-purity silicon carbide single crystal with almost no carbon deposition, and is advantageous in terms of cost. It is an object to provide a method for producing a single crystal.
[0008]
[Means for Solving the Problems]
The present inventors have further improved the invention described in Patent Document 1, and as a result, instead of a method of supplying each of silicon dioxide ultrafine particles and carbon ultrafine particles to the silicon carbide seed crystal surface, When a method of supplying silicon dioxide fine particles whose surface is coated with carbon is selected, a high-purity silicon carbide single crystal in which the crystal growth rate can be further increased and carbon deposition is suppressed as compared with the above invention. The present inventors have found that a crystal can be obtained, and a silicon carbide single crystal can be produced in a cost-effective manner, and have reached the present invention.
That is, according to the present invention, the following inventions are provided.
(1) attaching silicon dioxide fine particles coated with carbon to the surface of the silicon carbide seed crystal, and reducing silicon dioxide ultrafine particles with the carbon to grow a silicon carbide single crystal on the silicon carbide seed crystal. A method for producing a silicon carbide single crystal, comprising:
(2) The single silicon single particle according to the above (1), wherein the ultrafine silicon dioxide particles coated with carbon are prepared by pyrolysis of a hydrocarbon gas in the presence of the ultrafine silicon dioxide particles. Method for producing crystals.
(3) The method for producing a silicon carbide single crystal according to the above (1) or (2), wherein the silicon carbide seed crystal is kept in a heated state in an inert gas atmosphere.
(4) The method for producing a silicon carbide single crystal according to any one of the above (1) to (3), wherein the surface temperature of the silicon carbide seed crystal is 1600 to 2400 ° C.
BEST MODE FOR CARRYING OUT THE INVENTION
[0009]
In Patent Document 1 proposed earlier by the present inventors, on the surface of a silicon carbide seed crystal heated to a high temperature, the supplied silicon dioxide ultrafine particles are melted while the supplied carbon ultrafine particles are separately supplied. The silicon carbide crystal fine particles are generated by the fusion and reduction reaction, and the generated silicon carbide crystal fine particles are fused to the seed crystal surface by the melt flow phenomenon of the ultrafine particles and epitaxially grow as a single crystal. This has the advantage that the speed is high and micropipes are hardly generated.
[0010]
However, subsequent studies by the present inventors have revealed that the reduction reaction using ultrafine silicon dioxide particles and ultrafine carbon particles as raw materials has the following complicated problems.
That is, in this method, the reduction reaction proceeds by the following two-step reaction to obtain SiC. However, since SiO generated in the formula (1) is a gas molecule, the raw material SiO 2 particles and carbon superparticles are used. Leakage from the gap, the contribution to the reduction reaction represented by the following equation (2) decreases, the yield of SiC, that is, the growth rate of the single crystal, decreases, and the Si / C ratio of the growing single crystal decreases. In some cases, deviation from 1.0 occurs. Furthermore, since the amount of SiO involved in the reduction reaction in the formula (2) is also reduced, and the carbon consumption is relatively reduced by that amount, excess carbon is grown in the single crystal growth portion. Deposition and removal of deposited carbon is required to obtain single crystals of high purity.
Embedded image
SiO 2 + C = SiO + CO (1)
SiO + 2C = SiC + CO (2)
[0011]
The present inventors have conducted further intensive studies in order to solve such problems, and as a result, the adverse effects caused in the reduction reactions of the above formulas (1) and (2) are mainly caused by the SiO2 fine particles and the carbon fine particles. As a result of further investigation, it was found that the both surfaces were not maintained in close contact with each other. Specifically, the surface of the SiO2 ultrafine particles was wrapped with a carbon film. Was unexpectedly found to be effective. The present invention has been made based on such surprising knowledge.
[0012]
Hereinafter, the present invention will be described in more detail.
The silicon dioxide ultrafine particles whose surface is coated with carbon (also referred to as carbon-coated silicon dioxide ultrafine particles) used in the present invention are formed by decomposing hydrocarbons or forming recombined carbon atoms or six-membered rings. It has a structure that is completely covered by the generated aromatic radicals.
The carbon-coated ultrafine silicon dioxide particles can be prepared, for example, by a method of thermally decomposing a hydrocarbon in the presence of the ultrafine silicon dioxide particles.
[0013]
The method of preparing the carbon-coated silicon dioxide ultrafine particles by the thermal decomposition method will be described in detail.
When fumed silica is used as the silicon dioxide ultrafine particles, for example, silicon tetrachloride is blown into an oxyhydrogen flame at 1000 to 1200 ° C. to produce silicon dioxide ultrafine particles by the following reaction.
Embedded image
SiCl 4 + 2H 2 + O 2 = SiO 2 + 4HCl (flame hydrolysis method)
After this reaction, when the vapor of hydrocarbon CmHn is injected into the space where the silicon dioxide ultrafine particles are floating at a stage where the silicon dioxide ultrafine particles are still at a temperature of 500 to 800 ° C., the CmHn molecules generate heat using the silicon dioxide ultrafine particles as nuclei. Decomposed and generated C atoms are deposited on the surface of silicon dioxide ultrafine particles.
By this method, ultrafine silicon dioxide particles coated with carbon can be obtained.
[0014]
The type of silicon dioxide ultrafine particles used as a raw material is not particularly limited, and for example, fumed silica, colloidal silica, silica gel, or the like can be used. Although the particle diameter is not particularly limited, it is usually 10 nm to 100 nm, preferably 10 nm to 30 nm.
In addition, the shape of the particles is not particularly limited, and for example, spherical or comb-like objects can be used.
[0015]
The ultra-fine particles of carbon-coated silicon dioxide may be subjected to a pretreatment or a small amount of other components as long as the action of the present invention is not impaired.
[0016]
The supply of the ultrafine carbon-coated silicon dioxide particles to the surface of the seed crystal is preferably performed at an appropriate rate so that the ultrafine particles are efficiently attached to the surface of the seed crystal. The method for supplying the ultrafine particles to the surface of the seed crystal is not particularly limited. For example, a method of mixing the ultrafine particles with a carrier gas having a desired flow rate and supplying the mixture to the surface of the seed crystal may be used. At this time, as a carrier gas to be used, an inert gas such as an argon gas or a nitrogen gas for changing the atmosphere for single crystal growth to an inert atmosphere is used.
[0017]
Further, for example, when doping is performed in a silicon carbide single crystal, a component serving as a dopant may be mixed with the ultrafine particles or the carrier gas.
[0018]
The configuration, size, and shape of the silicon carbide seed crystal used in the present invention may be selected depending on the configuration, size, shape, and the like of the target silicon carbide single crystal, and are obtained, for example, by the Acheson method or the modified Rayleigh method. A single crystal may be subjected to a treatment as required.
[0019]
The surface temperature of the silicon carbide seed crystal is determined as the temperature at which the carbon coating of the carbon-coated silicon dioxide ultra-fine particles and the silicon dioxide ultra-fine particles react while melting to form silicon carbide crystals, which fuse with the surface of the seed crystal by a melt flow phenomenon. The temperature is not particularly limited as long as it is within the range, but preferably 1600 to 2400 ° C.
[0020]
The configuration (size, heating method, raw material supply method, atmosphere adjustment method, etc.) of the silicon carbide single crystal manufacturing apparatus used to obtain the silicon carbide single crystal of the present invention is not particularly limited, and the desired silicon carbide single crystal Is selected according to the size and shape of the material, the type of raw material, and the like.
[0021]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples.
[0022]
Example 1
A silicon carbide single crystal was manufactured using a manufacturing apparatus as shown in FIG. 1 which is an example of a manufacturing apparatus for obtaining a silicon carbide single crystal of the present invention. The manufacturing apparatus shown in FIG. 1 has a heat-resistant container 1 in which a carbon sealed crucible having a diameter of 50 mm and a height of 100 mm is installed in a high-frequency induction heating coil 2 of an induction heating furnace. A silicon carbide seed crystal holding rod 3 for holding a crystal is attached, a through-hole having a diameter of 10 mm is provided on the inner lower surface, and a raw material supply pipe 5 () for supplying ultrafine particles of a raw material from outside the carbon closed crucible. A carbon tube having an outer diameter of 8 mm) is inserted therethrough. The silicon carbide seed crystal holding rod 3 is rotatable around a central axis of the silicon carbide seed crystal holding rod 3 by a driving mechanism (not shown), and a radiation thermometer (not shown) is provided on the upper surface of the carbon closed crucible. Then, the temperature in the crucible is adjusted by measuring the temperature of the upper surface of the crucible and controlling the output of the high-frequency induction heating coil 2 accordingly.
[0023]
The pressure inside the induction heating furnace can be controlled by a vacuum pump and a pressure regulating valve (not shown), and the pressure of the reaction atmosphere inside the carbon closed crucible can be adjusted. The raw material supply pipe 5 is connected to a carbon-coated silicon dioxide ultra-fine particle storage tank 6 outside the induction heating furnace and to a carrier gas supply source (not shown) whose flow rate can be further adjusted. Ultrafine silicon dioxide particles can be supplied into a carbon crucible. When supplied together with the carrier gas, the carbon-coated silicon dioxide ultrafine particles can be given an appropriate speed, move toward the silicon carbide seed crystal fixed inside the crucible, and adhere to the silicon carbide seed crystal surface.
[0024]
Manufacture of a silicon carbide single crystal (growth of a single crystal) is performed as follows. The silicon carbide seed crystal 4 having the following configuration is fixed by holding the silicon carbide seed crystal holding rod 3 in the upper part of the inside of the carbon closed crucible (heat-resistant vessel 1), and the carbon closed crucible is placed in an induction heating furnace. The pressure inside the induction heating furnace is reduced, and the gas is replaced with argon gas. Next, the carbon closed crucible is heated by the high frequency induction heating coil 2 so that the surface of the silicon carbide seed crystal becomes 1600 to 2400 ° C.
[0025]
Ultra-fine carbon-coated silicon dioxide particles were supplied into a crucible together with a carrier gas (argon gas) under the following manufacturing conditions. At this time, in addition to the carbon-coated ultrafine silicon dioxide particles, a small amount of silicon powder for preventing carbonization was added by a supply device (not shown). The seed crystal was rotated together with the silicon carbide seed crystal holding rod 3 in a horizontal plane when the ultrafine particles were supplied. As a result, a silicon carbide seed crystal having a thickness exceeding 250 μm was grown on the surface of the silicon carbide seed crystal. It was also confirmed that this single crystal had almost no carbon deposition.
[0026]
[Single crystal manufacturing conditions]
(1) Silicon carbide seed crystal surface temperature: 1600 to 2400 ° C. Carrier gas: argon gas, flow rate 10 l / min.
(2) Atmosphere in a closed carbon crucible: argon gas (25 KPa or less)
(3) Supply amount of carbon-coated ultrafine silicon dioxide particles: 1 to 3 g / min.
(4) Supply time of carbon-coated silicon dioxide ultrafine particles: 10 minutes (5) Configuration of silicon carbide seed crystal: The C plane of a silicon carbide single crystal prepared by the Acheson method was polished by inclining at 5 degrees in the following crystal axis direction. Stuff [number 1]
Figure 2004099414
[0027]
【The invention's effect】
According to the production method of the present invention, the crystal growth rate can be further increased, and a high-purity silicon carbide single crystal in which the Si / C ratio of the single crystal is maintained at 1.0 can be obtained. And a silicon carbide single crystal can be advantageously obtained in terms of cost.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a typical manufacturing apparatus for obtaining a silicon carbide single crystal of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Heat resistant container 2 High frequency induction heating coil 3 Silicon carbide seed crystal holding rod 4 Silicon carbide seed crystal 5 Raw material supply pipe 6 Carbon coated silicon dioxide ultrafine particle storage tank 7 Supply amount control valve A Carrier gas

Claims (4)

炭化珪素種結晶表面に、炭素で被覆された二酸化珪素超微粒子を付着させ、ついで該二酸化珪素超微粒子を該炭素により還元することにより、炭化珪素単結晶を炭化珪素種結晶上に成長させることを特徴とする炭化珪素単結晶の製造方法。By depositing carbon dioxide ultrafine particles coated with carbon on the surface of the silicon carbide seed crystal, and then reducing the silicon dioxide ultrafine particles with the carbon, a silicon carbide single crystal is grown on the silicon carbide seed crystal. A method for producing a silicon carbide single crystal, which is characterized by the following. 炭素で被覆された二酸化珪素超微粒子が、二酸化珪素超微粒子の存在下、炭化水素ガスの熱分解により調製されたものであることを特徴とする請求項1に記載の単珪素単結晶の製造方法。The method for producing a single silicon single crystal according to claim 1, wherein the silicon dioxide ultrafine particles coated with carbon are prepared by pyrolyzing a hydrocarbon gas in the presence of the silicon dioxide ultrafine particles. . 炭化珪素種結晶が、不活性ガス雰囲気中で加熱状態で保持されていることを特徴とする請求項1又は請求項2に記載の炭化珪素単結晶の製造方法。The method for producing a silicon carbide single crystal according to claim 1 or 2, wherein the silicon carbide seed crystal is kept in a heated state in an inert gas atmosphere. 炭化珪素種結晶の表面温度が1600〜2400℃であることを特徴とする請求項1乃至3何れかに記載の炭化珪素単結晶の製造方法。The method for producing a silicon carbide single crystal according to any one of claims 1 to 3, wherein the surface temperature of the silicon carbide seed crystal is 1600 to 2400 ° C.
JP2002267505A 2002-09-13 2002-09-13 Method of manufacturing silicon carbide single crystal Pending JP2004099414A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002267505A JP2004099414A (en) 2002-09-13 2002-09-13 Method of manufacturing silicon carbide single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002267505A JP2004099414A (en) 2002-09-13 2002-09-13 Method of manufacturing silicon carbide single crystal

Publications (1)

Publication Number Publication Date
JP2004099414A true JP2004099414A (en) 2004-04-02

Family

ID=32265977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002267505A Pending JP2004099414A (en) 2002-09-13 2002-09-13 Method of manufacturing silicon carbide single crystal

Country Status (1)

Country Link
JP (1) JP2004099414A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008018320A1 (en) * 2006-08-09 2008-02-14 Shin-Etsu Chemical Co., Ltd. MATERIAL FOR FABRICATING SINGLE CRYSTAL SiC, METHOD FOR FABRICATING THE MATERIAL, METHOD FOR FABRICATING SINGLE CRYSTAL SiC USING THE MATERIAL, AND SINGLE CRYSTAL SiC OBTAINED BY THE METHOD FOR FABRICATING SINGLE CRYSTAL SiC
WO2008018319A1 (en) * 2006-08-09 2008-02-14 Shin-Etsu Chemical Co., Ltd. SINGLE CRYSTAL SiC, ITS FABRICATION METHOD, AND FABRICATION EQUIPMENT FOR SINGLE CRYSTAL SiC
WO2008018322A1 (en) * 2006-08-10 2008-02-14 Shin-Etsu Chemical Co., Ltd. Single-crystal silicon carbide and process for producing the same
JP2008222489A (en) * 2007-03-13 2008-09-25 Shin Etsu Chem Co Ltd Method for manufacturing slurry to be used for source material for manufacturing silicon carbide, method for manufacturing secondary particle and method for manufacturing single crystal silicon carbide
WO2013073534A1 (en) * 2011-11-17 2013-05-23 イビデン株式会社 Method for producing silicon carbide single crystals
CN105525352A (en) * 2016-01-12 2016-04-27 台州市一能科技有限公司 Device and method for high-speed production of silicon carbide crystals by adopting sublimation method
CN105543967A (en) * 2016-02-02 2016-05-04 北京华进创威电子有限公司 Raw material treatment method for growing 4H high-purity silicon carbide monocrystal form by stable PVT (physical vapor transport) process
CN112226815A (en) * 2020-11-16 2021-01-15 哈尔滨科友半导体产业装备与技术研究院有限公司 Pretreatment method of silicon carbide powder for growing silicon carbide single crystal by PVT (physical vapor transport) method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008018320A1 (en) * 2006-08-09 2008-02-14 Shin-Etsu Chemical Co., Ltd. MATERIAL FOR FABRICATING SINGLE CRYSTAL SiC, METHOD FOR FABRICATING THE MATERIAL, METHOD FOR FABRICATING SINGLE CRYSTAL SiC USING THE MATERIAL, AND SINGLE CRYSTAL SiC OBTAINED BY THE METHOD FOR FABRICATING SINGLE CRYSTAL SiC
WO2008018319A1 (en) * 2006-08-09 2008-02-14 Shin-Etsu Chemical Co., Ltd. SINGLE CRYSTAL SiC, ITS FABRICATION METHOD, AND FABRICATION EQUIPMENT FOR SINGLE CRYSTAL SiC
JP2008037715A (en) * 2006-08-09 2008-02-21 Shin Etsu Chem Co Ltd SINGLE CRYSTAL SiC, METHOD FOR MANUFACTURING THE SAME, AND MANUFACTURING DEVICE FOR SINGLE CRYSTAL SiC
JP2008037720A (en) * 2006-08-09 2008-02-21 Shin Etsu Chem Co Ltd SOURCE MATERIAL FOR MANUFACTURING SINGLE CRYSTAL SiC, METHOD FOR MANUFACTURING THE SAME, METHOD FOR MANUFACTURING SINGLE CRYSTAL SiC USING THE SOURCE MATERIAL, AND SINGLE CRYSTAL SiC OBTAINED BY THE METHOD
WO2008018322A1 (en) * 2006-08-10 2008-02-14 Shin-Etsu Chemical Co., Ltd. Single-crystal silicon carbide and process for producing the same
JP2008037729A (en) * 2006-08-10 2008-02-21 Shin Etsu Chem Co Ltd Single crystal silicon carbide and method for manufacturing the same
JP2008222489A (en) * 2007-03-13 2008-09-25 Shin Etsu Chem Co Ltd Method for manufacturing slurry to be used for source material for manufacturing silicon carbide, method for manufacturing secondary particle and method for manufacturing single crystal silicon carbide
WO2013073534A1 (en) * 2011-11-17 2013-05-23 イビデン株式会社 Method for producing silicon carbide single crystals
JPWO2013073534A1 (en) * 2011-11-17 2015-04-02 イビデン株式会社 Method for producing silicon carbide single crystal
CN105525352A (en) * 2016-01-12 2016-04-27 台州市一能科技有限公司 Device and method for high-speed production of silicon carbide crystals by adopting sublimation method
CN105543967A (en) * 2016-02-02 2016-05-04 北京华进创威电子有限公司 Raw material treatment method for growing 4H high-purity silicon carbide monocrystal form by stable PVT (physical vapor transport) process
CN112226815A (en) * 2020-11-16 2021-01-15 哈尔滨科友半导体产业装备与技术研究院有限公司 Pretreatment method of silicon carbide powder for growing silicon carbide single crystal by PVT (physical vapor transport) method

Similar Documents

Publication Publication Date Title
JP5483216B2 (en) SiC single crystal and method for producing the same
WO2010024392A1 (en) Manufacturing method for silicon carbide monocrystals
US20090205565A1 (en) Apparatus for manufacturing single-crystal silicon carbide
JP2004002173A (en) Silicon carbide single crystal and its manufacturing method
JP2007326743A (en) Method for producing silicon carbide single crystal
KR20090021144A (en) Single-crystal sic, process for producing the same, and apparatus for producing single-crystal sic
JPH07172998A (en) Production of single crystal of silicon carbide
JP2004099414A (en) Method of manufacturing silicon carbide single crystal
JP3505597B2 (en) Silicon carbide single crystal
JPH05178698A (en) Apparatus and process for production of silicon carbide bulk single crystal
JP3590464B2 (en) Method for producing 4H type single crystal silicon carbide
WO2003087440A1 (en) Silicon carbide single crystal and method for preparation thereof
KR20090042202A (en) Single-crystal sic and process for producing the same
KR20170086982A (en) Silicon carbide powder, method of fabrication the same and silicon carbide single crystal
JPH06298600A (en) Method of growing sic single crystal
JP3631976B2 (en) Method for growing silicon carbide single crystal
KR101549597B1 (en) The Manufacturing Method of SiC Single Crystal Using the Crucible coated with SiC
JP7420060B2 (en) Single crystal manufacturing equipment
KR102673789B1 (en) Manufacturing methode for siliconcarbide single crystal
WO2008018322A1 (en) Single-crystal silicon carbide and process for producing the same
JP2008273819A (en) Method for manufacturing silicon carbide single crystal and silicon carbide single crystal obtained by the method
KR20170017424A (en) Silicon carbide powder, method of fabrication the same and silicon carbide single crystal
JPH1087306A (en) Pyrolytic boron nitride vessel
WO2013073534A1 (en) Method for producing silicon carbide single crystals
JPH05208897A (en) Production of silicon carbide single crystal substrate

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060620

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061107