JP2008222489A - Method for manufacturing slurry to be used for source material for manufacturing silicon carbide, method for manufacturing secondary particle and method for manufacturing single crystal silicon carbide - Google Patents

Method for manufacturing slurry to be used for source material for manufacturing silicon carbide, method for manufacturing secondary particle and method for manufacturing single crystal silicon carbide Download PDF

Info

Publication number
JP2008222489A
JP2008222489A JP2007062877A JP2007062877A JP2008222489A JP 2008222489 A JP2008222489 A JP 2008222489A JP 2007062877 A JP2007062877 A JP 2007062877A JP 2007062877 A JP2007062877 A JP 2007062877A JP 2008222489 A JP2008222489 A JP 2008222489A
Authority
JP
Japan
Prior art keywords
silicon carbide
manufacturing
single crystal
crystal silicon
silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007062877A
Other languages
Japanese (ja)
Inventor
Yoshihiro Nojima
義弘 野島
Masanori Ikari
真憲 碇
Takao Abe
孝夫 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2007062877A priority Critical patent/JP2008222489A/en
Publication of JP2008222489A publication Critical patent/JP2008222489A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a slurry containing primary particles of carbon and silica and suitable for the manufacture of a single crystal silicon carbide, and to provide a method for manufacturing spherical secondary particles and a method for manufacturing a single crystal silicon carbide. <P>SOLUTION: The method for manufacturing a carbon-silica-containing slurry includes a mixing step of adding carbon and silica to a dispersion medium to obtain a mixture and a dispersing step of treating the obtained mixture with a jet mill. The method for manufacturing carbon-silica-containing spherical secondary particles includes, in succession to the steps, an atomizing step of atomizing and drying the obtained slurry. The method for manufacturing a single crystal silicon carbide includes, consecutively, a crystal growing step of supplying the secondary particles, through source material supply pipes 36, 36'onto the surface of a seed crystal 34 in a crucible 32 kept in a high temperature environment. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、炭化珪素製造用原料に用いるカーボンとシリカの一次粒子を含むスラリの製造方法、該スラリを用いる球状二次粒子の製造方法、及び、該二次粒子を用いる単結晶炭化珪素の製造方法に関する。   The present invention relates to a method for producing a slurry containing primary particles of carbon and silica used as a raw material for producing silicon carbide, a method for producing spherical secondary particles using the slurry, and production of single crystal silicon carbide using the secondary particles. Regarding the method.

従来単結晶炭化珪素の製造法には、黒鉛坩堝内で炭化珪素粉末を昇華させ、黒鉛坩堝内壁に単結晶炭化珪素を再結晶化させるレーリー法や、このレーリー法を基に原料配置や温度分布を最適化し、再結晶化させる部分に炭化珪素種結晶を配置してエピタキシャル成長させる改良レーリー法、ガスソースをキャリアガスによって加熱された炭化珪素種結晶上に輸送し結晶表面で化学反応させながらエピタキシャル成長させるCVD法などがある。   Conventional methods for producing single crystal silicon carbide include the Rayleigh method in which silicon carbide powder is sublimated in a graphite crucible and single crystal silicon carbide is recrystallized on the inner wall of the graphite crucible, and the raw material arrangement and temperature distribution based on this Rayleigh method. Improved Rayleigh method in which silicon carbide seed crystal is arranged at the part to be recrystallized and epitaxially grown, and gas source is transported onto silicon carbide seed crystal heated by carrier gas and epitaxially grown while chemically reacting on the crystal surface There is a CVD method.

また最近、加熱状態で保持されている炭化珪素種結晶表面に向けて二酸化珪素超微粒子及び炭素超微粒子を不活性キャリアガスを用いて供給して付着させ、炭化珪素種結晶において二酸化珪素を炭素により還元することで炭化珪素単結晶を炭化珪素種結晶上に成長させる方法が開示された(特許文献1参照)。この製造方法ではマイクロパイプ等の欠陥を抑制した高品質な単結晶炭化珪素を高速で得ることができるとされているが、特許文献1に開示された単結晶炭化珪素の製造方法によれば、単結晶炭化珪素製造に使用する原料である二酸化珪素超微粒子と炭素超微粒子のそれぞれの種類、粒径、粒子形状等は特に限定されていない。そのため、もしこれらの原料をそのまま不活性キャリアガスで炭化珪素種結晶上に輸送しようと試みても途中の配管内で閉塞してしまう傾向がある。   Also, recently, silicon dioxide ultrafine particles and carbon ultrafine particles are supplied and attached to the surface of the silicon carbide seed crystal held in a heated state using an inert carrier gas, and silicon dioxide is deposited on the silicon carbide seed crystal by carbon. A method of growing a silicon carbide single crystal on a silicon carbide seed crystal by reduction has been disclosed (see Patent Document 1). In this manufacturing method, it is said that high-quality single crystal silicon carbide in which defects such as micropipes are suppressed can be obtained at high speed, but according to the method for manufacturing single crystal silicon carbide disclosed in Patent Document 1, There are no particular limitations on the type, particle size, particle shape, etc. of each of the silicon dioxide ultrafine particles and carbon ultrafine particles, which are raw materials used in the production of single crystal silicon carbide. For this reason, even if an attempt is made to transport these raw materials as they are onto the silicon carbide seed crystal with an inert carrier gas, there is a tendency to block the pipe in the middle.

しかしながら高純度カーボンであるアセチレンブラックは難溶性であり水に分散させるのは困難である。また、アセチレンブラックとシリカの各一次粒子を混合した粉末を水及び分散剤を含む溶媒に添加していくと、固形分濃度が5重量%程度になると粘度が上昇し、流動性を失ってしまう。また長時間放置しておくと溶媒の蒸発や分散質の凝集などによりスラリの粘性が増加していく経時変化が起こる。流動性が低くなるとスプレードライ工程による二次粒子の造粒が困難となる。また低濃度ではスプレードライ工程により得られる球状二次粒子の歩留まりが非常に悪くなってしまう。このため高濃度かつ低粘性で分散安定性のよいスラリの製造方法が必要とされる。   However, acetylene black, which is a high purity carbon, is hardly soluble and difficult to disperse in water. Further, when a powder in which primary particles of acetylene black and silica are mixed is added to a solvent containing water and a dispersant, the viscosity increases and the fluidity is lost when the solid content concentration is about 5% by weight. . If left for a long time, the viscosity of the slurry increases with time due to evaporation of the solvent and aggregation of the dispersoid. If the fluidity becomes low, it becomes difficult to granulate secondary particles by the spray drying process. At a low concentration, the yield of spherical secondary particles obtained by the spray drying process becomes very poor. For this reason, a method for producing a slurry having a high concentration, low viscosity, and good dispersion stability is required.

特許第3505597号公報Japanese Patent No. 3505597

本発明が解決しようとする課題は、単結晶炭化珪素製造用の原料となるカーボンおよびシリカの一次粒子からなる高濃度かつ低粘性スラリの製造方法及びそのスラリから製造される高純度で流動性の高い球形二次粒子の製造方法を提供することにある。また、本発明が解決しようとする更に他の課題は、マイクロパイプ等の結晶欠陥のない単結晶炭化珪素の製造方法を提供することである。   The problem to be solved by the present invention is to produce a high-concentration and low-viscosity slurry composed of primary particles of carbon and silica, which are raw materials for producing single-crystal silicon carbide, and high purity and fluidity produced from the slurry. The object is to provide a method for producing high spherical secondary particles. Yet another object of the present invention is to provide a method for producing single crystal silicon carbide free from crystal defects such as micropipes.

上記課題は、以下の技術的手段(1)、(3)及び(4)により解決された。以下に好ましい実施態様(2)と共に列記する。
(1)カーボン及びシリカを分散媒に添加して混合物とする混合工程、及び、得られた混合物を湿式ジェットミル処理する分散工程を含むことを特徴とするカーボン・シリカ含有スラリの製造方法、
(2)上記混合工程及び上記分散工程を複数回行う(1)記載のスラリの製造方法、
(3)(1)又は(2)に記載の分散工程に引き続いて、得られたスラリを噴霧乾燥する噴霧工程を含むカーボン・シリカ含有略球状二次粒子の製造方法、
(4)(3)に記載の噴霧工程に引き続いて、加熱手段を備えた坩堝内に炭化珪素種結晶を固定したサセプタ、及び、外部から前記種結晶表面上に前記二次粒子を供給するための原料供給管を配置する配置工程、並びに、高温雰囲気とした坩堝内に原料供給管を通して前記二次粒子を前記種結晶表面上に供給する結晶成長工程を含む単結晶炭化珪素の製造方法。
The above problems have been solved by the following technical means (1), (3) and (4). Listed below together with the preferred embodiment (2).
(1) A method for producing a slurry containing carbon and silica, comprising: a mixing step of adding carbon and silica to a dispersion medium to form a mixture; and a dispersion step of subjecting the obtained mixture to a wet jet mill treatment,
(2) The method for producing a slurry according to (1), wherein the mixing step and the dispersing step are performed a plurality of times.
(3) A method for producing carbon-silica-containing substantially spherical secondary particles comprising a spraying step of spray-drying the resulting slurry following the dispersing step described in (1) or (2),
(4) Subsequent to the spraying step described in (3), a susceptor in which a silicon carbide seed crystal is fixed in a crucible equipped with heating means, and the secondary particles are supplied from the outside onto the seed crystal surface. And a crystal growth step of supplying the secondary particles onto the seed crystal surface through the raw material supply tube in a crucible having a high temperature atmosphere.

本発明により高濃度かつ低粘性で分散安定性の良いスラリが得られ、このスラリを噴霧乾燥することにより略球状の二次粒子を安定して再現性よく、且つ歩留まりよく製造できた。また得られた球状二次粒子を原料に用いることにより歩留まり良く高品質な単結晶炭化珪素を製造する製造方法を提供することができた。   According to the present invention, a slurry having a high concentration and low viscosity and good dispersion stability was obtained. By spray-drying this slurry, substantially spherical secondary particles could be stably produced with good reproducibility and yield. Further, by using the obtained spherical secondary particles as a raw material, it was possible to provide a production method for producing high-quality single crystal silicon carbide with a high yield.

以下に本発明を詳細に説明する。
本発明の第一の側面は、カーボン及びシリカを分散媒に添加して混合物とする混合工程、及び、得られた混合物を湿式ジェットミル処理する分散工程を含むことを特徴とするカーボン・シリカ含有スラリの製造方法に係る。
本発明に使用するカーボン及びシリカとしては、目的に応じた種類を適宜選択可能であり、共に一次粒子の平均粒径が100nm以下の微粒子が好ましく、5〜20nmの超微粒子が特に好ましい。また、カーボン及びシリカの純度は共に極力高純度なものが好ましい。
The present invention is described in detail below.
The first aspect of the present invention includes a mixing step of adding carbon and silica to a dispersion medium to form a mixture, and a dispersion step of subjecting the resulting mixture to a wet jet mill treatment. The present invention relates to a slurry manufacturing method.
The carbon and silica used in the present invention can be appropriately selected depending on the purpose, and both are preferably fine particles having an average primary particle size of 100 nm or less, and particularly preferably ultrafine particles of 5 to 20 nm. The purity of carbon and silica is preferably as high as possible.

製造される単結晶炭化珪素の不純物濃度を低くするため原料であるカーボンやシリカの純度は極力高純度なものが好ましく、シリカとしては例えば火炎加水分解法で得られる高純度シリカ(いぶしシリカ、fumed silica)が好ましく、また、カーボンとしてはアセチレンブラックが好ましい。   In order to reduce the impurity concentration of the produced single crystal silicon carbide, the purity of carbon or silica as a raw material is preferably as high as possible. As the silica, for example, high purity silica obtained by a flame hydrolysis method (smell silica, fumed silica) is preferable, and acetylene black is preferable as the carbon.

スラリの製造には、まず、カーボン及びシリカを分散媒に添加して混合物とする(混合工程)。ここで、分散媒は1種単独でも2種以上の併用でもよく、また適宜分散剤を含んでいてもよい。
一次粒子を含むカーボン及びシリカを分散媒に添加して混合物とした後、この混合物を湿式ジェットミル処理してカーボン及びシリカの一次粒子を含むスラリとする。ここで、スラリとは、液体である分散媒中に固体であるカーボン及びシリカが懸濁した液をいう。
なお、分散媒は常温で液体のものが使用でき、揮発性液体であることが好ましく、カーボン及びシリカを溶解する液体でなくても懸濁することができればよく、水や有機溶媒を使用することができ、水単独又は水と水と相溶する有機溶媒(例えば、メチルアルコール、エチルアルコール、アセトン)との併用が好ましい。また、一次粒子の分散性や濡れ性を向上させるため分散剤(界面活性剤など)等の各種添加物を混合工程及び/又は分散工程で併用することができる。
In producing the slurry, first, carbon and silica are added to a dispersion medium to form a mixture (mixing step). Here, the dispersion medium may be used alone or in combination of two or more, and may contain a dispersant as appropriate.
Carbon and silica containing primary particles are added to a dispersion medium to form a mixture, and this mixture is then wet jet milled to form a slurry containing primary particles of carbon and silica. Here, the slurry refers to a liquid in which solid carbon and silica are suspended in a liquid dispersion medium.
The dispersion medium can be liquid at room temperature, preferably a volatile liquid, and can be suspended even if it is not a liquid that dissolves carbon and silica, and water or an organic solvent should be used. It is preferable to use water alone or in combination with water and an organic solvent compatible with water (for example, methyl alcohol, ethyl alcohol, acetone). Moreover, in order to improve the dispersibility and wettability of primary particles, various additives, such as a dispersing agent (surfactant etc.), can be used together in a mixing process and / or a dispersion | distribution process.

本発明のスラリ製造方法において、シリカ/カーボン比は、1.5〜5(重量比)が代表的であり、炭化珪素の製造条件に応じた所望の配合比とすることができる。   In the slurry production method of the present invention, the silica / carbon ratio is typically 1.5 to 5 (weight ratio), and a desired blending ratio according to the production conditions of silicon carbide can be obtained.

上記混合物を湿式ジェットミルにより分散する。ジェットミル処理工程によりカーボン及びシリカの凝集粒子の混合、分散、及び解砕がなされる。このジェットミル処理により凝集物のない一次粒子まで分散された低粘性のスラリを製造することができる。
湿式ジェットミルは、ジルコニアビーズなどのメディア(粉砕媒体)を用いず、任意の方法で前記混合物を高速流とし、耐圧容器内に密閉状態で配置されたノズルから圧送するものである。耐圧容器内でスラリの対向流同士及び/又はスラリと容器壁との衝突、並びに高速流によって生じる乱流、剪断流、及びキャビテーション効果を有効に活用し、スラリ中の被処理物を、混合、分散、及び解砕するタイプのものが好適に用いられる。こうした湿式ジェットミルによる混合、分散、及び解砕の効果をより効果的に発揮させる上で好ましい処理圧力は、約100MPa以上であり、より好ましくは200MPa以上であり、特に好ましくは200〜300MPa(「200MPa以上300MPa以下」を意味する。本発明において同様とする。)である。
The above mixture is dispersed by a wet jet mill. The agglomerated particles of carbon and silica are mixed, dispersed, and crushed by the jet mill treatment process. By this jet mill treatment, it is possible to produce a low-viscosity slurry in which primary particles without aggregates are dispersed.
In the wet jet mill, a medium (grinding medium) such as zirconia beads is not used, but the mixture is made a high-speed flow by an arbitrary method, and is pumped from a nozzle arranged in a sealed state in a pressure vessel. In the pressure vessel, effectively utilize the turbulent flow, shear flow, and cavitation effect caused by the opposing flow of the slurry and / or the collision between the slurry and the vessel wall, and the high-speed flow, and mix the workpieces in the slurry. A type that disperses and disintegrates is preferably used. In order to more effectively exhibit the effects of mixing, dispersion, and crushing by such a wet jet mill, a preferable processing pressure is about 100 MPa or more, more preferably 200 MPa or more, and particularly preferably 200 to 300 MPa (“ It means “200 MPa or more and 300 MPa or less”. The same shall apply in the present invention).

本発明では、湿式ジェットミルを使用した分散を行うために、乾式分散プロセスのように高圧の大型装置を必要としない。また、メディア等の粉砕媒体を使用しない分散であるためにメディアに由来する不純物の混入を防止することができる。湿式ジェットミル処理により、シリカもカーボンも共に一次粒子径近くまで解砕されたスラリが得られる。このようにして得られたスラリは、粘度が低く、またチクソトロピー性も低いために安定な分散物であり、後続の噴霧乾燥に適している。また、噴霧乾燥をしても得られる略球形粒子中では、シリカもカーボンも共に一次粒子径近くまで分散された状態を維持することができる。
本発明の製造方法で得られるスラリは、例えば、カーボン及びシリカの合計固形分濃度が約10重量%の水分散物において室温で粘度が30〜60mPa・sとすることができる。
In the present invention, in order to perform dispersion using a wet jet mill, a high-pressure large-sized apparatus is not required unlike the dry dispersion process. Further, since the dispersion does not use a pulverizing medium such as a medium, it is possible to prevent impurities derived from the medium from being mixed. By the wet jet mill treatment, a slurry in which both silica and carbon are crushed to near the primary particle diameter can be obtained. The slurry thus obtained is a stable dispersion because of its low viscosity and low thixotropy, and is suitable for subsequent spray drying. Moreover, in the substantially spherical particles obtained by spray drying, both silica and carbon can be maintained in a state where they are dispersed to near the primary particle diameter.
The slurry obtained by the production method of the present invention can have a viscosity of 30 to 60 mPa · s at room temperature in an aqueous dispersion having a total solid concentration of carbon and silica of about 10% by weight.

上記混合工程及び上記分散工程を複数回行うスラリの製造方法も好ましい。
第1の湿式ジェットミル処理工程後、粘性の低下したスラリにカーボン及びシリカの各一次粒子をさらに加え、第2の湿式ジェットミル処理工程を実施することによりスラリ中の固形分濃度を増やすことができる。このようにして湿式ジェットミル処理工程及びカーボン及びシリカの添加を必要な回数繰り返すことにより所望の特性を有するスラリが得られる。本発明においては、カーボン及びシリカの一次粒子の添加及び湿式ジェットミル処理工程を複数回行うことが好ましく、好ましくは2回ないし3回繰り返すことが好ましく、10重量%以上の所望の固形分濃度と低粘性を有するスラリを得ることができる。
A slurry production method in which the mixing step and the dispersing step are performed a plurality of times is also preferable.
After the first wet jet mill treatment step, carbon and silica primary particles are further added to the slurry with reduced viscosity, and the second wet jet mill treatment step is performed to increase the solid content concentration in the slurry. it can. In this way, a slurry having desired characteristics can be obtained by repeating the wet jet mill treatment step and the addition of carbon and silica as many times as necessary. In the present invention, the addition of primary particles of carbon and silica and the wet jet mill treatment step are preferably performed a plurality of times, preferably 2 to 3 times, preferably 10% by weight or more of the desired solid content concentration A slurry having a low viscosity can be obtained.

本発明の第二の側面は、カーボン・シリカ含有略球形二次粒子の製造方法に係り、上記の分散工程に引き続いて、得られたスラリを噴霧乾燥する噴霧工程を含むことを特徴とする。
噴霧乾燥法(スプレードライ法)は噴霧乾燥に基づく造粒方法であり公知である。シリカ及びカーボンの一次粒子及び分散媒からなる上記記載の製造方法により製造されたスラリを、アトマイザによって噴霧して乾燥室の熱風中で瞬時に乾燥させ造粒して略球形の二次粒子として回収することができる。乾燥時間は短時間であり数秒以下である。
スラリを液滴として噴霧するためのアトマイザ(噴霧装置)としては、ノズルと回転円板(ディスク)が代表的である。ノズルには加圧ノズルも含まれるが、噴射端にスラリが詰まったり、磨耗が起こる懸念があるために、本発明では回転円板がより好ましく使用できる。
高速回転させた回転円板を使用して、粒子直径が1〜90μmの範囲内に二次粒子の90重量%以上が含まれる略球形のシリカ及びカーボンを含む二次粒子を製造することができる。
なお、「略球形」とは、真球や回転楕円体を含み、長軸と短軸との比率が0.5〜2である粒子をいい、粒子表面に凹部があるものを含む。
A second aspect of the present invention relates to a method for producing carbon-silica-containing substantially spherical secondary particles, and includes a spraying step of spray-drying the resulting slurry following the above-described dispersion step.
The spray drying method (spray drying method) is a granulation method based on spray drying and is known. The slurry produced by the production method described above comprising the primary particles of silica and carbon and the dispersion medium is sprayed by an atomizer, dried instantaneously in hot air in a drying chamber, granulated, and recovered as substantially spherical secondary particles. can do. The drying time is short and is a few seconds or less.
As an atomizer (spraying device) for spraying slurry as droplets, a nozzle and a rotating disk (disk) are typical. The nozzle includes a pressurizing nozzle, but in the present invention, a rotating disk can be more preferably used because there is a concern that the injection end is clogged with slurry or wear occurs.
By using a rotating disk rotated at a high speed, secondary particles containing substantially spherical silica and carbon in which 90% by weight or more of the secondary particles are contained in a range of 1 to 90 μm in particle diameter can be produced. .
In addition, “substantially spherical” refers to particles that include true spheres and spheroids, and the ratio of the major axis to the minor axis is 0.5 to 2, and includes those having a concave portion on the particle surface.

本発明の第三の側面は、上記の噴霧工程に引き続いて、加熱手段を備えた坩堝内に炭化珪素種結晶を固定したサセプタ、及び、外部から前記種結晶表面上に前記二次粒子を供給するための原料供給管を配置する配置工程、並びに、高温雰囲気とした坩堝内に原料供給管を通して前記二次粒子を前記種結晶表面上に供給する結晶成長工程を含む単結晶炭化珪素の製造方法に係る。   In the third aspect of the present invention, following the spraying step, a susceptor in which a silicon carbide seed crystal is fixed in a crucible equipped with heating means, and the secondary particles are supplied from the outside onto the seed crystal surface. A method for producing single crystal silicon carbide, comprising: a disposing step of disposing a raw material supply tube to perform the operation; and a crystal growth step of supplying the secondary particles onto the seed crystal surface through the raw material supply tube in a crucible having a high temperature atmosphere Concerning.

本発明の単結晶炭化珪素の製造方法に使用する単結晶炭化珪素製造装置の構成は、特に限定されない。すなわち種結晶サイズ、坩堝加熱方法、坩堝材質、原料供給方法、雰囲気調整方法、成長圧力、温度制御方法などは、目的とする単結晶炭化珪素のサイズや形状、種類、単結晶炭化珪素製造用原料の種類や量等に応じて適宜選択できる。   The structure of the single-crystal silicon carbide manufacturing apparatus used for the manufacturing method of the single-crystal silicon carbide of this invention is not specifically limited. That is, seed crystal size, crucible heating method, crucible material, raw material supply method, atmosphere adjustment method, growth pressure, temperature control method, etc. are the target single crystal silicon carbide size, shape, type, raw material for single crystal silicon carbide production It can be appropriately selected according to the type, amount, etc.

単結晶炭化珪素製造温度は特に限定されず、目的とする単結晶炭化珪素のサイズや形状、種類等に応じて適宜設定でき、好ましい製造温度は1,600〜2,400℃の範囲であり、この温度は例えば坩堝外部の温度として測定できる。   The single crystal silicon carbide production temperature is not particularly limited, and can be appropriately set according to the size, shape, type, etc. of the target single crystal silicon carbide, and the preferred production temperature is in the range of 1,600 to 2,400 ° C., This temperature can be measured, for example, as the temperature outside the crucible.

本発明で使用する坩堝の形状は、外形については特に限定されず、目的とする単結晶炭化珪素のサイズや形状に合わせて適宜選択できる。尚、当該坩堝の材質は使用温度範囲を考慮してグラファイト製であることが好ましい。   The shape of the crucible used in the present invention is not particularly limited as to the outer shape, and can be appropriately selected according to the size and shape of the target single crystal silicon carbide. The material of the crucible is preferably made of graphite in consideration of the operating temperature range.

炭化珪素種結晶を保持するサセプタの形状は特に限定されず、目的とする単結晶炭化珪素サイズや形状に合わせて適宜選択できる。但し当該サセプタの材質は使用温度範囲を考慮してグラファイト製であることが好ましい。   The shape of the susceptor holding the silicon carbide seed crystal is not particularly limited, and can be appropriately selected according to the target single crystal silicon carbide size and shape. However, the material of the susceptor is preferably made of graphite in consideration of the operating temperature range.

単結晶炭化珪素製造用原料を供給する原料供給管の形状は特に限定されず、目的とする単結晶炭化珪素のサイズや形状に合わせて適宜選択できる。但し当該供給管の材質は使用温度範囲を考慮してグラファイト製であることが好ましい。
原料供給管は炭化珪素種結晶を固定したサセプタに坩堝中で対向させてもよく、直角または斜めに配置してもよい。
The shape of the raw material supply pipe for supplying the raw material for producing single crystal silicon carbide is not particularly limited, and can be appropriately selected according to the size and shape of the target single crystal silicon carbide. However, the material of the supply pipe is preferably made of graphite in consideration of the operating temperature range.
The raw material supply pipe may be opposed to the susceptor to which the silicon carbide seed crystal is fixed in the crucible, or may be disposed at a right angle or obliquely.

上記の製造方法により得られた二次粒子を単結晶炭化珪素製造用原料として用いて単結晶炭化珪素を製造するために用いる単結晶炭化珪素製造装置の構成は特に限定されない。すなわち坩堝サイズや加熱方法、材質、原料供給方法、雰囲気調整方法、温度制御方法などは目的とする単結晶炭化珪素のサイズや形状、種類、単結晶炭化珪素製造用原料の種類や量等に応じて適宜選択できる。   The configuration of the single crystal silicon carbide manufacturing apparatus used for manufacturing single crystal silicon carbide using the secondary particles obtained by the above manufacturing method as a raw material for manufacturing single crystal silicon carbide is not particularly limited. In other words, the crucible size, heating method, material, raw material supply method, atmosphere adjustment method, temperature control method, etc. depend on the size and shape and type of the target single crystal silicon carbide, the type and amount of the raw material for producing single crystal silicon carbide, etc. Can be selected as appropriate.

上記の単結晶炭化珪素製造用原料を用いて単結晶炭化珪素を製造する方法においては、炭化珪素種結晶が固定されたサセプタと、外部から単結晶炭化珪素製造用原料を供給するための原料供給管とは、坩堝の中で対向、直角または斜めに配置されていることが好ましい。より詳しくは、サセプタ下端の炭化珪素種結晶を保持する表面の法線方向は、該サセプタの鉛直方向と略平行から最大45°傾斜まで自由に設定することができる。
さらに上記のようなサセプタと原料供給管の配置状態で前記坩堝を加熱して坩堝内を高温雰囲気としながら前記単結晶炭化珪素製造用原料(二次粒子)を原料供給管を通して炭化珪素種結晶表面上に連続供給して単結晶炭化珪素を成長させる。
In the above method for producing single crystal silicon carbide using the raw material for producing single crystal silicon carbide, a susceptor to which a silicon carbide seed crystal is fixed and a raw material supply for supplying the raw material for producing single crystal silicon carbide from the outside. It is preferable that the tube is disposed oppositely, perpendicularly or obliquely in the crucible. More specifically, the normal direction of the surface holding the silicon carbide seed crystal at the lower end of the susceptor can be freely set from approximately parallel to the vertical direction of the susceptor to a maximum 45 ° inclination.
Furthermore, the surface of the silicon carbide seed crystal is passed through the raw material supply pipe while the crucible is heated with the susceptor and the raw material supply pipe arranged as described above, and the inside of the crucible is in a high temperature atmosphere. A single crystal silicon carbide is grown by continuously supplying the same.

上記単結晶炭化珪素製造時に連続供給される単結晶炭化珪素製造用原料であるカーボン粒子とシリカ粒子の配合比及び供給量は特に限定されないが、シリカ/カーボン比は1.5〜5(重量比)が代表的であり、製造条件に応じた所望の配合比及び供給量が適宜選択できる。
また上記単結晶炭化珪素製造用原料は、必要に応じ他の成分を微量添加してもよい。
上記単結晶炭化珪素製造用原料の炭化珪素種結晶上への供給は、好ましくは途切れることなく連続して供給される方法が好ましく、例えば市販のパウダーフィーダのように連続して粉体を輸送できるものが挙げられる。また上記単結晶炭化珪素製造用原料が上記輸送手段から原料供給管までの間を輸送される際に目詰まりを起こさないようにするために、上記単結晶炭化珪素製造用原料粉は略球形に加工されたものだけを使うことが好ましい。
ここで、前記の製造方法により得られた二次粒子は流動性に優れるので、配管内で閉塞を起こすことなく良好に輸送可能な単結晶炭化珪素製造原料として使用することができる。
The mixing ratio and supply amount of carbon particles and silica particles, which are raw materials for producing single crystal silicon carbide continuously supplied during the production of single crystal silicon carbide, are not particularly limited, but the silica / carbon ratio is 1.5 to 5 (weight ratio). ) Is typical, and a desired blending ratio and supply amount according to the production conditions can be appropriately selected.
The raw material for producing single crystal silicon carbide may contain a small amount of other components as required.
The above-mentioned raw material for producing single-crystal silicon carbide is preferably supplied continuously without interruption, and the powder can be transported continuously like a commercially available powder feeder, for example. Things. In order to prevent clogging when the raw material for producing single crystal silicon carbide is transported from the transportation means to the raw material supply pipe, the raw material powder for producing single crystal silicon carbide has a substantially spherical shape. It is preferable to use only the processed one.
Here, since the secondary particles obtained by the above production method are excellent in fluidity, they can be used as a single crystal silicon carbide production raw material that can be transported well without causing clogging in the piping.

また単結晶炭化珪素製造用原料は、キャリアガスと共に供給されることが好ましく、前記キャリアガスとしてはアルゴンガス及びヘリウムガス等不活性キャリアガスが好ましく例示できる。これらの中でもキャリアガスとしてアルゴンガスを使用することが好ましい。   The raw material for producing single crystal silicon carbide is preferably supplied together with a carrier gas, and examples of the carrier gas include inert carrier gases such as argon gas and helium gas. Among these, it is preferable to use argon gas as a carrier gas.

また単結晶炭化珪素中にドーピングを行う場合は、上記単結晶炭化珪素製造用原料に固体ソースとして混合しても良いし、単結晶炭化珪素製造装置内の雰囲気中にガスソースとして該ドーピング成分を混合してもよい。具体的にはN2、Al(CH33、B26等の不純物をドーピングして荷電子制御することができる。 When doping into single crystal silicon carbide, the single crystal silicon carbide manufacturing raw material may be mixed as a solid source, or the doping component may be used as a gas source in the atmosphere in the single crystal silicon carbide manufacturing apparatus. You may mix. Specifically, valence electrons can be controlled by doping impurities such as N 2 , Al (CH 3 ) 3 , and B 2 H 6 .

本発明で使用する炭化珪素種結晶は、炭化珪素単結晶であることが好ましく、ウェハの形状であることが好ましい。炭化珪素種結晶ウェハの種類、サイズ、形状は特に限定されず、目的とする単結晶炭化珪素の種類、サイズ、形状によって適宜選択できる。例えば改良レーリー法によって得られた炭化珪素単結晶を必要に応じて前処理した炭化珪素種結晶ウェハが好適に利用できる。種結晶としてジャスト基板、オフ角基板共に用いることができ、ジャスト面のSi面基板や数度オフ角を有する(0001)Si面基板が例示できる。   The silicon carbide seed crystal used in the present invention is preferably a silicon carbide single crystal, and preferably has a wafer shape. The type, size, and shape of the silicon carbide seed crystal wafer are not particularly limited, and can be appropriately selected depending on the type, size, and shape of the target single crystal silicon carbide. For example, a silicon carbide seed crystal wafer in which a silicon carbide single crystal obtained by an improved Rayleigh method is pretreated as necessary can be suitably used. As a seed crystal, both a just substrate and an off-angle substrate can be used, and a just-surface Si surface substrate and a (0001) Si surface substrate having an off-angle of several degrees can be exemplified.

単結晶炭化珪素製造温度は特に限定されず、目的とする単結晶炭化珪素のサイズや形状、種類等に応じて適宜設定でき、好ましい製造温度は1,600〜2,400℃の範囲であり、この温度は例えば坩堝外側の温度として測定できる。   The single crystal silicon carbide production temperature is not particularly limited, and can be appropriately set according to the size, shape, type, etc. of the target single crystal silicon carbide, and the preferred production temperature is in the range of 1,600 to 2,400 ° C., This temperature can be measured, for example, as the temperature outside the crucible.

本発明の方法により製造された単結晶炭化珪素は、マイクロパイプ(MP)のほとんどない、欠陥密度の低い高品質なものとすることができる。   The single crystal silicon carbide produced by the method of the present invention can be of high quality with few micropipes (MP) and low defect density.

次に、本発明の実施例について説明する。
単結晶炭化珪素製造原料である高純度カーボン(電気化学(株)製デンカブラック)とシリカ(日本アエロジル(株)製アエロジル380)とをシリカ/カーボン比1.7(重量比)となるよう混合した。
純水にエチルアルコール及び分散剤(楠本化成(株)製HIPLAAD ED5155W)をそれぞれ2重量%加え混合したものを溶媒とし、これに上記混合粉末を5重量%混合してスラリ原料とした。この混合物を湿式ジェットミルにて処理した。処理圧力は220MPaとした。
湿式ジェットミル処理後のスラリに再びシリカとカーボンの混合粉末を5重量%加え、全体として固形分濃度が10重量%の混合物とした。この混合物をさらに湿式ジェットミル処理を行うことにより、粘度が約40mPa・sで固形分濃度が10重量%である高濃度かつ低粘性のスラリを得た。
Next, examples of the present invention will be described.
Mixing high purity carbon (Denka Black manufactured by Electrochemical Co., Ltd.) and silica (Aerosil 380 manufactured by Nippon Aerosil Co., Ltd.), which are raw materials for producing single crystal silicon carbide, so that the silica / carbon ratio is 1.7 (weight ratio). did.
A mixture of 2% by weight of ethyl alcohol and a dispersant (HIPLAAD ED5155W manufactured by Enomoto Kasei Co., Ltd.) and mixed with pure water was used as a solvent, and 5% by weight of the above mixed powder was mixed with it as a slurry raw material. This mixture was processed in a wet jet mill. The processing pressure was 220 MPa.
5 wt% of the mixed powder of silica and carbon was added again to the slurry after the wet jet mill treatment to obtain a mixture having a solid content concentration of 10 wt% as a whole. The mixture was further subjected to a wet jet mill treatment to obtain a high-concentration and low-viscosity slurry having a viscosity of about 40 mPa · s and a solid content concentration of 10% by weight.

該スラリーをスプレードライヤを用いて噴霧乾燥により略球形の粉体状の二次粒子に加工した。噴霧乾燥物の粒径は1μm以上90μm以下の範囲に90重量%以上を占めた。また得られた原料粉末中の金属不純物濃度は1ppm以下であった。
こうして得られた原料粉を内製のパウダーフィーダに充填した。このパウダーフィーダを単結晶炭化珪素製造装置の原料供給管ラインに接続した。
The slurry was processed into substantially spherical powdery secondary particles by spray drying using a spray dryer. The particle size of the spray-dried product accounted for 90% by weight or more in the range of 1 μm to 90 μm. Moreover, the metal impurity concentration in the obtained raw material powder was 1 ppm or less.
The raw material powder thus obtained was filled into an in-house manufactured powder feeder. This powder feeder was connected to the raw material supply pipe line of the single crystal silicon carbide manufacturing apparatus.

図1に単結晶炭化珪素製造装置30の構成図を示す。単結晶炭化珪素製造装置は高周波誘導加熱を採用し、水冷された密封チャンバー31内にカーボン製の円筒坩堝32が配置され、この密封チャンバーの外側に高周波誘導加熱コイル33を配置した構造になっている。前記密封チャンバー上部に炭化珪素種結晶34保持のためのサセプタ35が貫通挿入されている。さらに前記サセプタ35は円筒坩堝32の外側まで伸びており、図示しない回転機構により該サセプタの中心軸を回転軸として回転可能である。
また前記単結晶炭化珪素製造用の原料粉末を供給するパウダーフィーダ37と前記高周波誘導加熱炉の外部配管により接続された原料供給管36’はサセプタ35と反対側の円筒坩堝32の下部から内部に伸びており、サセプタ35と対向配置されている。原料供給管36を通して供給された原料は、炭化珪素種結晶34表面またはその上に成長する単結晶炭化珪素の成長層40表面に供給される。尚、前記パウダーフィーダ37内では調節弁38を介して原料貯蔵槽39から配管36’に供給され、原料粉末は図示しない不活性キャリアガス供給源から供給された不活性キャリアガスAにより原料供給管36を通して円筒坩堝32内に供給される。原料供給量はパウダーフィーダ37内の調節弁38による流量調節機構により制御される。
FIG. 1 shows a configuration diagram of single crystal silicon carbide manufacturing apparatus 30. The single crystal silicon carbide manufacturing apparatus employs high-frequency induction heating, and has a structure in which a carbon-made cylindrical crucible 32 is disposed in a water-cooled sealed chamber 31 and a high-frequency induction heating coil 33 is disposed outside the sealed chamber. Yes. A susceptor 35 for holding the silicon carbide seed crystal 34 is inserted through the upper portion of the sealed chamber. Further, the susceptor 35 extends to the outside of the cylindrical crucible 32, and can be rotated about the central axis of the susceptor by a rotation mechanism (not shown).
Further, a powder feeder 37 for supplying the raw material powder for manufacturing the single crystal silicon carbide and a raw material supply pipe 36 ′ connected by an external pipe of the high-frequency induction heating furnace are connected to the inside from the lower part of the cylindrical crucible 32 opposite to the susceptor 35. It extends and is disposed opposite to the susceptor 35. The raw material supplied through the raw material supply pipe 36 is supplied to the surface of the silicon carbide seed crystal 34 or the surface of the growth layer 40 of single crystal silicon carbide that grows thereon. In the powder feeder 37, a raw material supply pipe is supplied from a raw material storage tank 39 to a pipe 36 'via a control valve 38, and the raw material powder is supplied by an inert carrier gas A supplied from an inert carrier gas supply source (not shown). 36 is supplied into the cylindrical crucible 32. The raw material supply amount is controlled by a flow rate adjustment mechanism by an adjustment valve 38 in the powder feeder 37.

単結晶炭化珪素製造装置30の高周波誘導加熱炉は図示しない真空排気系及び圧力調節系により圧力制御が可能であり、また図示しない不活性ガス置換機構を備えている。尚、図に示す例ではサセプタと原料供給管の位置関係が上下対置関係であるが、本発明の作用が変わらない範囲において、それぞれ横向きの対置関係に配置することも可能であるし、供給管とサセプタを互いに斜めや直角関係に配置することも可能である。前記サセプタの先端部には単結晶炭化珪素ウェハが固定されている。   The high-frequency induction heating furnace of the single crystal silicon carbide manufacturing apparatus 30 can control the pressure by a vacuum exhaust system and a pressure control system (not shown), and includes an inert gas replacement mechanism (not shown). In the example shown in the figure, the positional relationship between the susceptor and the raw material supply pipe is vertically opposed. However, as long as the operation of the present invention does not change, the susceptor and the raw material supply pipe can be arranged in a laterally opposed relation. It is also possible to arrange the susceptors obliquely or at right angles to each other. A single crystal silicon carbide wafer is fixed to the tip of the susceptor.

図1に示した単結晶炭化珪素製造装置を使用し、炭化珪素種結晶ウェハとして改良レーリー法で製造された2インチ単結晶炭化珪素を使用した。面条件はジャスト面、Si面とした。
続いて高周波誘導加熱炉内部を真空引きした後、不活性ガス(高純度アルゴン)で該高周波誘導加熱炉内部をガス置換した。次いで前記高周波誘導加熱コイルにより、前記カーボン製円筒坩堝の外側の温度が2,100〜2,400℃の範囲となるまで加熱昇温した。その状態で炭化珪素単結晶ウェハが固定された前記サセプタを0〜20rpmの回転速度で回転させた。ここで前記パウダーフィーダに接続された前記不活性キャリアガス(高純度アルゴン)を流し、前記単結晶炭化珪素製造用原料粉末を、前記供給管内部を通じて、前記円筒坩堝内の対向部に配置された前記炭化珪素単結晶ウェハ表面上に供給した。そのまま前記円筒坩堝の外側の温度を一定に保ちながら、前記単結晶炭化珪素を所望のサイズとなるまで前記単結晶炭化珪素製造用原料粉末の連続供給を継続し前記単結晶炭化珪素の製造を行った。
尚、最適の成長温度は雰囲気圧力や単結晶炭化珪素製造用原料混合比、炭化珪素種結晶ウェハの種類等により変化する。
The single crystal silicon carbide manufacturing apparatus shown in FIG. 1 was used, and 2-inch single crystal silicon carbide manufactured by the modified Rayleigh method was used as a silicon carbide seed crystal wafer. The surface conditions were just surface and Si surface.
Subsequently, the inside of the high-frequency induction heating furnace was evacuated, and then the inside of the high-frequency induction heating furnace was replaced with an inert gas (high purity argon). Subsequently, the temperature was raised by the high frequency induction heating coil until the temperature outside the carbon cylindrical crucible was in the range of 2,100 to 2,400 ° C. In this state, the susceptor on which the silicon carbide single crystal wafer was fixed was rotated at a rotation speed of 0 to 20 rpm. Here, the inert carrier gas (high-purity argon) connected to the powder feeder is flowed, and the raw material powder for producing single crystal silicon carbide is arranged in the opposing portion in the cylindrical crucible through the inside of the supply pipe. The silicon carbide single crystal wafer was supplied on the surface. While maintaining the temperature outside the cylindrical crucible as it is, the single crystal silicon carbide is continuously supplied to the single crystal silicon carbide until the desired size is obtained, and the single crystal silicon carbide is produced. It was.
The optimum growth temperature varies depending on the atmospheric pressure, the raw material mixing ratio for producing single crystal silicon carbide, the type of silicon carbide seed crystal wafer, and the like.

(比較例1)
また比較のために、固形分濃度を1重量%と低濃度にしたスラリをスプレードライ法により造粒し、この造粒粉を実施例1と全く同様の条件にて単結晶炭化珪素育成用原料として単結晶炭化珪素の製造を行った。
(比較例2)
他の比較例として、単結晶炭化珪素育成用原料であるカーボン(電気化学工業(株)製デンカブラック)とシリカ(日本アエロジル製アエロジル380)とを混合してから、スプレードライ加工工程を経ないで、そのまま内製のパウダーフィーダに充填し、以後は実施例1と全く同様の条件にて単結晶炭化珪素の製造を行った。
(Comparative Example 1)
For comparison, a slurry having a solid content concentration as low as 1% by weight is granulated by spray drying, and the granulated powder is raw material for growing single crystal silicon carbide under the same conditions as in Example 1. As a result, single crystal silicon carbide was produced.
(Comparative Example 2)
As another comparative example, carbon (Denka Black manufactured by Denki Kagaku Kogyo Co., Ltd.), which is a raw material for growing single crystal silicon carbide, and silica (Aerosil 380 manufactured by Nippon Aerosil Co., Ltd.) are mixed, and then the spray drying process is not performed. Then, an in-house powder feeder was filled as it was, and thereafter, single crystal silicon carbide was produced under the same conditions as in Example 1.

上記実施例1の方法により得られた単結晶炭化珪素は低不純物でマイクロパイプのほとんどない低欠陥密度の高品質単結晶であった。他方、比較例1又は2の方法では良質な単結晶を製造することができなかった。これらの結果を表1にまとめた。   The single crystal silicon carbide obtained by the method of Example 1 was a high quality single crystal with low impurities and almost no micropipes and low defect density. On the other hand, a high-quality single crystal could not be produced by the method of Comparative Example 1 or 2. These results are summarized in Table 1.

Figure 2008222489
Figure 2008222489

単結晶炭化珪素の製造方法に使用するための装置の一例を示す断面図である。It is sectional drawing which shows an example of the apparatus for using for the manufacturing method of a single crystal silicon carbide.

符号の説明Explanation of symbols

30 単結晶炭化珪素製造装置
31 密封チャンバー
32 円筒坩堝
33 高周波誘導加熱コイル
34 炭化珪素種結晶
35 サセプタ
36,36’ 原料供給管
37 パウダーフィーダ
38 調節弁
39 原料貯蔵槽
40 成長層
A 不活性ガスキャリア
30 Single crystal silicon carbide production apparatus 31 Sealed chamber 32 Cylindrical crucible 33 High frequency induction heating coil 34 Silicon carbide seed crystal 35 Susceptor 36, 36 'Raw material supply pipe 37 Powder feeder 38 Control valve 39 Raw material storage tank 40 Growth layer A Inactive gas carrier

Claims (4)

カーボン及びシリカを分散媒に添加して混合物とする混合工程、及び
得られた混合物を湿式ジェットミル処理する分散工程を含むことを特徴とする
カーボン・シリカ含有スラリの製造方法。
A method for producing a slurry containing carbon / silica, comprising: a mixing step of adding carbon and silica to a dispersion medium to form a mixture; and a dispersion step of subjecting the obtained mixture to a wet jet mill treatment.
上記混合工程及び上記分散工程を複数回行う請求項1記載のスラリの製造方法。   The slurry manufacturing method according to claim 1, wherein the mixing step and the dispersing step are performed a plurality of times. 請求項1又は2に記載の分散工程に引き続いて、得られたスラリを噴霧乾燥する噴霧工程を含むカーボン・シリカ含有略球状二次粒子の製造方法。   3. A method for producing carbon-silica-containing substantially spherical secondary particles comprising a spraying step of spray-drying the resulting slurry following the dispersing step according to claim 1 or 2. 請求項3に記載の噴霧工程に引き続いて、
加熱手段を備えた坩堝内に炭化珪素種結晶を固定したサセプタ、及び、外部から前記種結晶表面上に前記二次粒子を供給するための原料供給管を配置する配置工程、並びに、
高温雰囲気とした坩堝内に原料供給管を通して前記二次粒子を前記種結晶表面上に供給する結晶成長工程を含む
単結晶炭化珪素の製造方法。
Subsequent to the spraying process according to claim 3,
A disposing step of disposing a susceptor in which a silicon carbide seed crystal is fixed in a crucible provided with a heating means, and a raw material supply pipe for supplying the secondary particles from the outside onto the surface of the seed crystal; and
A method for producing single crystal silicon carbide, comprising a crystal growth step of supplying the secondary particles onto the surface of the seed crystal through a raw material supply pipe in a crucible having a high temperature atmosphere.
JP2007062877A 2007-03-13 2007-03-13 Method for manufacturing slurry to be used for source material for manufacturing silicon carbide, method for manufacturing secondary particle and method for manufacturing single crystal silicon carbide Pending JP2008222489A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007062877A JP2008222489A (en) 2007-03-13 2007-03-13 Method for manufacturing slurry to be used for source material for manufacturing silicon carbide, method for manufacturing secondary particle and method for manufacturing single crystal silicon carbide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007062877A JP2008222489A (en) 2007-03-13 2007-03-13 Method for manufacturing slurry to be used for source material for manufacturing silicon carbide, method for manufacturing secondary particle and method for manufacturing single crystal silicon carbide

Publications (1)

Publication Number Publication Date
JP2008222489A true JP2008222489A (en) 2008-09-25

Family

ID=39841533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007062877A Pending JP2008222489A (en) 2007-03-13 2007-03-13 Method for manufacturing slurry to be used for source material for manufacturing silicon carbide, method for manufacturing secondary particle and method for manufacturing single crystal silicon carbide

Country Status (1)

Country Link
JP (1) JP2008222489A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103180490A (en) * 2010-11-02 2013-06-26 日本碍子株式会社 Crystal production method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0218311A (en) * 1988-06-09 1990-01-22 Stemcor Corp Hexagonal silicon carbide platelet and preform, and its production and use
JPH04144974A (en) * 1990-10-05 1992-05-19 Idemitsu Kosan Co Ltd Flame spraying material and production thereof
JPH0826722A (en) * 1994-07-07 1996-01-30 Sumitomo Chem Co Ltd Inorganic powdery mixture
JPH11171652A (en) * 1997-12-09 1999-06-29 Bridgestone Corp Producing of silicon carbide sintered compact
JP2001196261A (en) * 2000-01-11 2001-07-19 Matsushita Electric Ind Co Ltd Method of manufacturing laminated ceramic capacitor
JP2004099414A (en) * 2002-09-13 2004-04-02 National Institute Of Advanced Industrial & Technology Method of manufacturing silicon carbide single crystal
JP2005135925A (en) * 2002-02-07 2005-05-26 Hitachi Maxell Ltd Electrode material and its manufacturing method, and nonaqueous secondary battery and its manufacturing method
WO2008018320A1 (en) * 2006-08-09 2008-02-14 Shin-Etsu Chemical Co., Ltd. MATERIAL FOR FABRICATING SINGLE CRYSTAL SiC, METHOD FOR FABRICATING THE MATERIAL, METHOD FOR FABRICATING SINGLE CRYSTAL SiC USING THE MATERIAL, AND SINGLE CRYSTAL SiC OBTAINED BY THE METHOD FOR FABRICATING SINGLE CRYSTAL SiC

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0218311A (en) * 1988-06-09 1990-01-22 Stemcor Corp Hexagonal silicon carbide platelet and preform, and its production and use
JPH04144974A (en) * 1990-10-05 1992-05-19 Idemitsu Kosan Co Ltd Flame spraying material and production thereof
JPH0826722A (en) * 1994-07-07 1996-01-30 Sumitomo Chem Co Ltd Inorganic powdery mixture
JPH11171652A (en) * 1997-12-09 1999-06-29 Bridgestone Corp Producing of silicon carbide sintered compact
JP2001196261A (en) * 2000-01-11 2001-07-19 Matsushita Electric Ind Co Ltd Method of manufacturing laminated ceramic capacitor
JP2005135925A (en) * 2002-02-07 2005-05-26 Hitachi Maxell Ltd Electrode material and its manufacturing method, and nonaqueous secondary battery and its manufacturing method
JP2004099414A (en) * 2002-09-13 2004-04-02 National Institute Of Advanced Industrial & Technology Method of manufacturing silicon carbide single crystal
WO2008018320A1 (en) * 2006-08-09 2008-02-14 Shin-Etsu Chemical Co., Ltd. MATERIAL FOR FABRICATING SINGLE CRYSTAL SiC, METHOD FOR FABRICATING THE MATERIAL, METHOD FOR FABRICATING SINGLE CRYSTAL SiC USING THE MATERIAL, AND SINGLE CRYSTAL SiC OBTAINED BY THE METHOD FOR FABRICATING SINGLE CRYSTAL SiC

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103180490A (en) * 2010-11-02 2013-06-26 日本碍子株式会社 Crystal production method
EP2636771A1 (en) * 2010-11-02 2013-09-11 NGK Insulators, Ltd. Crystal production method
EP2636771A4 (en) * 2010-11-02 2014-10-08 Ngk Insulators Ltd Crystal production method
US9663871B2 (en) 2010-11-02 2017-05-30 Ngk Insulators, Ltd. Method for forming a single crystal by spraying the raw material onto a seed substrate

Similar Documents

Publication Publication Date Title
JP5363397B2 (en) Method for producing silicon / silicon carbide composite fine particles
WO2015114956A1 (en) Synthetic amorphous silica powder and process for manufacturing same
JP2006247446A (en) Method and apparatus for manufacturing fine particles
CN108486398A (en) A kind of preparation method of W-Co carbide hard metals
JP2007029859A (en) Production method of fine particles and apparatus
JP2011168412A (en) Method for producing silicon monoxide fine particle and silicon monoxide fine particle
WO2021172077A1 (en) Manufacturing method for carbon nanotube aggregates
Liu et al. Formation mechanisms of Si3N4 microstructures during silicon powder nitridation
TWI723114B (en) Method for producing nonstoichiometric titanium oxide fine particle
CN110981445A (en) Preparation method of oxide ceramic powder for laser 3D printing
JP2008222489A (en) Method for manufacturing slurry to be used for source material for manufacturing silicon carbide, method for manufacturing secondary particle and method for manufacturing single crystal silicon carbide
JP2010168271A (en) Method for producing alumina
JP2009161431A (en) Method of producing fine silica powder
CN100434573C (en) Method for developing aluminum nitride crystal in large size through flow of plasma flame
JP2008037720A (en) SOURCE MATERIAL FOR MANUFACTURING SINGLE CRYSTAL SiC, METHOD FOR MANUFACTURING THE SAME, METHOD FOR MANUFACTURING SINGLE CRYSTAL SiC USING THE SOURCE MATERIAL, AND SINGLE CRYSTAL SiC OBTAINED BY THE METHOD
TWI471266B (en) Method for manufacturing carbide fine particles
JP4416936B2 (en) Method for producing fine silica powder
JP4315576B2 (en) Method for producing ultrafine silica
JP2001097712A (en) Method for producing minute and globular silica
JP2009057221A (en) Single crystal silicon carbide, and method for producing the same
CN104445220B (en) A kind of method preparing nano-silica powder with VTES
CN114713835A (en) Method for preparing micro-nano iron powder by hydrogen reduction of ultrapure iron concentrate
CN105129751A (en) Method for preparing aluminium nitride powder through high-temperature fusion process
US20180327324A1 (en) Structure of micropowder
CN106077696B (en) A kind of preparation method of spherical single crystal tungsten powder used for hot spraying

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090223

A977 Report on retrieval

Effective date: 20100816

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20120208

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120724