WO2007148486A1 - SINGLE-CRYSTAL SiC, PROCESS FOR PRODUCING THE SAME, AND APPARATUS FOR PRODUCING SINGLE-CRYSTAL SiC - Google Patents

SINGLE-CRYSTAL SiC, PROCESS FOR PRODUCING THE SAME, AND APPARATUS FOR PRODUCING SINGLE-CRYSTAL SiC Download PDF

Info

Publication number
WO2007148486A1
WO2007148486A1 PCT/JP2007/059911 JP2007059911W WO2007148486A1 WO 2007148486 A1 WO2007148486 A1 WO 2007148486A1 JP 2007059911 W JP2007059911 W JP 2007059911W WO 2007148486 A1 WO2007148486 A1 WO 2007148486A1
Authority
WO
WIPO (PCT)
Prior art keywords
sic
single crystal
crystal sic
susceptor
producing
Prior art date
Application number
PCT/JP2007/059911
Other languages
French (fr)
Japanese (ja)
Inventor
Masanori Ikari
Toru Kaneniwa
Takao Abe
Original Assignee
Shin-Etsu Chemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin-Etsu Chemical Co., Ltd. filed Critical Shin-Etsu Chemical Co., Ltd.
Publication of WO2007148486A1 publication Critical patent/WO2007148486A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • C30B23/06Heating of the deposition chamber, the substrate or the materials to be evaporated
    • C30B23/063Heating of the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/10Heating of the reaction chamber or the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/12Substrate holders or susceptors
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides

Definitions

  • the present invention relates to single crystal SiC used as a semiconductor device material or LED material, a manufacturing method thereof, and a single crystal SiC manufacturing apparatus.
  • Single crystal SiC is useful as a material for harsh environment devices and power devices because of its large crystal bond energy, large dielectric breakdown electric field, and high thermal conductivity.
  • its lattice constant is close to that of GaN, so it is also useful as a substrate material for GaN LED.
  • this single crystal SiC is manufactured by using the Rayleigh method in which SiC powder is sublimated in a graphite crucible, and the single crystal SiC is recrystallized on the inner wall of the graphite crucible.
  • An improved Rayleigh method in which the SiC seed single crystal is placed in the part to be recrystallized by optimizing the temperature distribution and epitaxially recrystallized, and the gas source is transported onto the heated SiC seed single crystal by the carrier gas and crystallized.
  • each of these single crystal SiC manufacturing methods is considered to have problems.
  • the Rayleigh method single crystal SiC with good crystallinity can be produced, but crystals grow on the basis of spontaneous nucleation, so shape control and crystal surface control are difficult, and large-diameter wafers are difficult to control. There is a problem that can not be obtained.
  • Patent Document 1 The manufacturing method disclosed in Patent Document 1 is an SiC manufacturing method for abrasives in that solid silicon dioxide ultrafine particles and solid carbon ultrafine particles are used as raw materials for single crystal SiC manufacturing. It is similar to the famous Atchison method.
  • the Atchison method is a method in which single crystal siC is produced with volume shrinkage by heating caustic anhydride and a carbon source to 2,000 ° C or higher and reducing caustic anhydride with carbon.
  • the Atchison method is complex in reaction, and SiC polycrystals of various polymorphs, sizes, and orientations are produced.
  • Patent Document 1 supplies a raw material for producing a single crystal SiC composed of ultrafine particles of diacidic silicon and ultrafine particles of carbon onto a heated and maintained SiC seed single crystal.
  • a raw material for producing a single crystal SiC composed of ultrafine particles of diacidic silicon and ultrafine particles of carbon onto a heated and maintained SiC seed single crystal.
  • the SiC seed single crystal and the reaction growth layer are separated from each other by the carbon monoxide gas.
  • the cause is that the crystal alignment information on the surface of the SiC seed single crystal is not transmitted to the reaction growth layer.
  • Patent Document 1 Japanese Patent No. 3505597 Disclosure of the invention
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a high-quality long, large-diameter single-crystal SiC in which defects such as micropipes are suppressed, and a method for producing the same. To provide a law. Furthermore, the present invention provides a single crystal that can be suitably used in the production method.
  • the object is to provide a SiC manufacturing equipment.
  • a method for producing single crystal SiC in which a SiC seed single crystal wafer is fixed to a susceptor, and a single crystal SiC raw material is continuously supplied from the outside onto the SiC seed single crystal wafer. Including the step of growing crystalline SiC, the average temperature gradient in the axial direction of the susceptor is 0.5 ° CZ mm or more and 9 ° CZmm or less for the susceptor, the SiC seed single crystal, and the single crystal SiC whose thickness increases with growth.
  • a method for producing single-crystal SiC characterized in that
  • the present invention it is possible to provide a low-cost single crystal SiC having a high growth rate, a manufacturing method thereof, and a single crystal SiC manufacturing apparatus.
  • the single crystal SiC obtained by the present invention has reduced generation of micropipes, and is high quality. Quality. Furthermore, according to the present invention, it is possible to provide single crystal SiC having a large large diameter.
  • FIG. 1 is an example of an apparatus for producing the single crystal SiC of the present invention.
  • the method for producing a single crystal SiC according to the present invention includes a step of fixing a SiC seed single crystal wafer to a susceptor, and continuously supplying a raw material for manufacturing the single crystal SiC from the outside onto the SiC seed single crystal wafer.
  • the average temperature gradient is 0.5 ° CZmm or more and 9 ° CZmm or less. Force 0.5 ° CZmm or more 3
  • the average temperature gradient is set so that the SiC single crystal growth layer has a high temperature and the susceptor side has a low temperature.
  • the produced single crystal SiC can be grown epitaxially. This is the result of the bonding of the SiC seed single crystal surface. This is probably because crystal orientation information is transmitted to the growth layer of the SiC single crystal.
  • the temperature of the grown single crystal SiC surface is higher than that of the SiC seed single crystal surface.
  • the carbon monoxide gas which is a reaction product, quickly moves to the surface of the growth single crystal SiC by thermal diffusion and is released into the crucible. That is, the generated carbon monoxide gas does not stay inside the grown single crystal SiC, and the SiC seed single crystal and the reaction growth layer are not separated by the carbon oxide gas. As a result, it is thought that the crystal alignment information on the surface of the SiC seed single crystal is well transmitted to the reaction growth layer.
  • the temperature gradient is greater than 9 ° CZmm, the supersaturation degree of the SiC seed single crystal surface increases, and polymorphic nuclei unrelated to the crystal arrangement information on the SiC seed single crystal surface are generated, and a single crystal cannot be obtained.
  • the temperature gradient is less than 0.5 ° CZmm, the growth rate decreases and conversely etching may occur.
  • the average temperature gradient can be measured as follows.
  • the temperature gradient is measured on the susceptor side (low temperature side) and the growth layer side (high temperature side), and this temperature difference is the value obtained by dividing the temperature difference by the distance to the temperature sensor force growth layer surface installed at the heat exchanger of the susceptor. is there.
  • a temperature sensor is installed in the part of the susceptor where heat exchange is applied, and the temperature is measured to obtain the temperature on the low temperature side.
  • the correlation between the temperature of the SiC seed single crystal surface and the temperature of the outer surface of the sealed crucible is measured in advance, and the temperature of the outer surface of the sealed crucible is actually measured with a radiation thermometer, and the calculated temperature is measured as the growth layer.
  • the average temperature gradient can also be calculated from these temperatures and the temperature sensor from the distance to the susceptor surface, the thickness of the seed single crystal, and the growth rate of the SiC single crystal.
  • any method can be used to bring the average temperature gradient into the above range, but it is preferable to control the temperature gradient because the susceptor has a controllable thermal function.
  • the temperature on the high temperature side is fixed at the manufacturing temperature of the single crystal SiC, and the temperature gradient adjustment can be performed by adjusting the temperature on the low temperature side (the side where the heat exchange of the susceptor is applied). Examples can be shown.
  • the temperature gradient can be adjusted by adjusting the contact area and heat exchange capacity of the susceptor and heat exchanger and controlling the temperature on the low temperature side.
  • the heat exchanger is stopped and a heat insulating material is inserted between the susceptor and the heat exchanger to control the temperature gradient. It is also possible to use it for other purposes without control.
  • the raw material for producing the single crystal SiC is silica and carbon.
  • the type, particle size, particle shape and the like of the silica particles used in the present invention are not particularly limited, and for example, high purity silica obtained by flame hydrolysis can be suitably used.
  • the type, particle size, particle shape and the like of the carbon particles used in the present invention are not particularly limited, and for example, commercially available high purity carbon black can be suitably used.
  • the ratio of the continuous supply amount of the silica particles and the carbon particles is not particularly limited, and a desired composition ratio can be appropriately selected. Two or more kinds of the silica particles and the carbon particles may be mixed and used. In addition, the silica particles and carbon particles may be pretreated or a small amount of other components may be added as necessary.
  • the supply of the silica particles and the carbon particles onto the SiC seed single crystal wafer is not particularly limited as long as it is a continuous supply method without interruption, and a known method is also used. Can do. Specifically, the one that can transport the powder continuously like a commercially available powder feeder can be exemplified.
  • the raw materials for producing the single crystal SiC are supplied in a mixed state on the SiC seed single crystal wafer.
  • the raw materials for producing the single crystal SiC may be mixed or supplied separately and mixed on the SiC seed single crystal wafer.
  • the above single crystal SiC manufacturing raw material may be mixed as a solid source, or the doping component may be mixed as a gas source in the atmosphere inside the single crystal SiC manufacturing apparatus. You may do it.
  • the type, size, and shape of the SiC seed single crystal wafer used in the present invention are not particularly limited, and can be appropriately selected depending on the type, size, and shape of the target single crystal SiC.
  • a SiC single crystal obtained by the modified Raley method, or a SiC seed single crystal pretreated if necessary A crystal wafer can be suitably used.
  • the configuration of the single crystal SiC manufacturing apparatus used for obtaining single crystal SiC is not particularly limited.
  • the size, heating method, material, raw material supply method, atmosphere adjustment method, temperature control method, etc. depend on the size, shape and type of the target single crystal SiC, the type and amount of the raw material for manufacturing single crystal SiC, etc. It can be selected as appropriate.
  • the atmosphere of the apparatus preferably has a sealed structure that is preferably substituted with argon or nitrogen in order to prevent oxygen contamination.
  • the single crystal SiC production temperature is not particularly limited, and can be set as appropriate according to the size, shape, and type of the target single crystal SiC, and the type and amount of the raw material for producing single crystal SiC.
  • the preferred production temperature is in the range of 1,600-2,400 ° C., for example the temperature outside the closed crucible.
  • the production apparatus used in the present invention is preferably an apparatus capable of controlling the temperature in the temperature range.
  • any heating method with no particular limitation can be used as the heating method, and high frequency induction heating and electric resistance heating can be exemplified.
  • the material of the susceptor holding the SiC seed single crystal wafer is preferably made of graphite in consideration of the operating temperature range, and a cooling mechanism for generating a heat flow in the axial direction of the susceptor is provided. It is preferable.
  • the cooling method is not particularly limited, but is preferably designed so that a preferable temperature gradient can be selected according to the size, shape, and type of the target single crystal SiC.
  • the SiC single crystal manufacturing apparatus includes a chamber provided with a crucible, means for heating the crucible, a susceptor for fixing a SiC seed single crystal wafer in the crucible, and a SiC seed single connection. It is particularly preferred that the apparatus is for producing single-crystal SiC, characterized in that it has a means for supplying raw materials for producing single-crystal SiC to the crystal, and the susceptor has a controllable thermal function.
  • FIG. 1 shows an example of an apparatus for producing the single crystal SiC of the present invention.
  • a high frequency induction heating furnace is used.
  • a carbon-made sealed crucible 2 (diameter 100 mm, height 150 mm) is placed in a water-cooled sealed chamber 1, and a high-frequency induction heating coil 3 is placed outside the water-cooled sealed chamber 1. It is arranged.
  • a susceptor 5 for holding the SiC seed single crystal wafer 4 is inserted through the lower portion of the sealed crucible. This susceptor extends to the lower side of the hermetic crucible, and can be rotated about the central axis of the susceptor by a rotation mechanism (not shown).
  • a controllable heat function is given to the lower end (not shown) of the susceptor, and a heat flow can be generated in the susceptor axial direction 10. Further, the heat flow rate can be adjusted.
  • the normal direction of the surface holding the SiC seed single crystal wafer at the upper end of the susceptor can be freely set from approximately parallel to the vertical direction of the susceptor to a maximum 45 ° inclination.
  • a supply pipe 6 for supplying raw material particles for producing single crystal SiC is inserted through the upper portion of the sealed crucible. Further, the supply pipe is arranged outside the high-frequency induction heating furnace, and a plurality of raw material storage tanks 7 and 7 'whose supply amount can be adjusted independently, and an inert carrier gas supply source (Fig. Connect to each other! / Speak.
  • the inert carrier gas include nitrogen gas, helium gas, and argon gas. Nitrogen gas and argon gas are preferable, and argon gas can be more preferably used.
  • the high-frequency induction heating furnace can be pressure-controlled by a vacuum exhaust system and a pressure control system (not shown), and includes an inert gas mechanism (not shown).
  • the supply pipe is arranged on the top and the susceptor is arranged on the bottom.
  • the supply pipe can be arranged upside down as long as the operation of the present invention does not change. It is also possible to arrange them diagonally or horizontally.
  • Single crystal SiC was manufactured under the following conditions using the high frequency induction heating furnace.
  • a SiC seed single crystal wafer was fixed to the upper end of the susceptor.
  • the SiC seed single crystal wafers used here are both approximately 10 mm square amorphous single crystal SiC manufactured by the Rayleigh method and single-crystal SiC with a diameter of 2 cm manufactured by the modified Rayleigh method.
  • each of the just surface, the inclined surface, the C surface, and the Si surface was prepared and used as a seed single crystal.
  • the inside of the high frequency induction heating furnace was evacuated, the inside of the high frequency induction heating furnace was replaced with an inert gas (high purity argon or high purity nitrogen).
  • an inert gas high purity argon or high purity nitrogen.
  • the carbon-made closed crucible was heated by the high-frequency induction heating coil and adjusted so that the surface temperature force i of the SiC seed single crystal wafer was in the range of 600 to 2,390 ° C.
  • the susceptor on which the SiC seed single crystal wafer was fixed was rotated at a rotation speed of 0 to 20 rpm.
  • the inert carrier gas high purity argon or high purity nitrogen
  • the raw material for producing single crystal SiC passes through the inside of the supply pipe.
  • it was continuously supplied onto the surface of the SiC seed single crystal wafer disposed in the lower part of the closed crucible, and single crystal SiC was produced for about 2 hours.
  • single crystal SiC having a thickness of about lmm was obtained.
  • the heat exchange mechanism at the lower end of the susceptor is adjusted, and the average temperature gradient in the susceptor axial direction is 0.2 ° CZmm, 0.5 ° C / mm, 3 ° C / mm, 9 ° C / mm, 10 ° CZmm Under these conditions, single-crystal SiC was manufactured.

Abstract

This invention provides a single-crystal SiC for use as a semiconductor device material or an LED material, and a process for producing the same, and an apparatus for producing a single-crystal SiC. In the single-crystal SiC, defects such as micropipes have been suppressed, and the single-crystal SiC has a high quality, is continuous, and has a large diameter. The process for producing a single-crystal SiC comprises the step of fixing an SiC seed single-crystal wafer onto a susceptor, and the step of externally continuously supplying a raw material for single-crystal SiC production onto the SiC seed single-crystal wafer and growing single-crystal SiC. The process is characterized in that the average temperature gradient of the susceptor, SiC seed single-crystal, and single-crystal SiC having a thickness increased with the growth thereof in the vertical direction (longitudinal direction) of the susceptor is not less than 0.5ºC/mm and not more than 9ºC/mm.

Description

明 細 書  Specification
単結晶 SiC及びその製造方法並びに単結晶 SiCの製造装置  Single crystal SiC, method for manufacturing the same, and apparatus for manufacturing single crystal SiC
技術分野  Technical field
[0001] 本発明は、半導体デバイス用材料や LED用材料として利用される単結晶 SiC及び その製造方法並びに単結晶 SiCの製造装置に関する。  TECHNICAL FIELD [0001] The present invention relates to single crystal SiC used as a semiconductor device material or LED material, a manufacturing method thereof, and a single crystal SiC manufacturing apparatus.
背景技術  Background art
[0002] 単結晶 SiCは結晶の結合エネルギーが大きぐ絶縁破壊電界が大きぐまた、熱伝 導率も大きいため、耐苛酷環境用デバイスやパワーデバイス用の材料として有用で ある。また、その格子定数が GaNの格子定数と近いため、 GaN— LED用の基板材 料としても有用である。  [0002] Single crystal SiC is useful as a material for harsh environment devices and power devices because of its large crystal bond energy, large dielectric breakdown electric field, and high thermal conductivity. In addition, its lattice constant is close to that of GaN, so it is also useful as a substrate material for GaN LED.
[0003] 従来この単結晶 SiCの製造には、黒鉛坩堝内で SiC粉末を昇華させ、黒鉛坩堝内 壁に単結晶 SiCを再結晶化させるレーリー法や、このレーリー法をベースに原料配 置や温度分布を最適化し、再結晶化させる部分に SiC種単結晶を配置してェピタキ シャルに再結晶成長させる改良レーリー法、ガスソースをキャリアガスによって、加熱 された SiC種単結晶上に輸送し結晶表面でィ匕学反応させながらェピタキシャル成長 させる CVD法、黒鉛坩堝内で SiC粉末と SiC種単結晶を近接させた状態で SiC粉末 を SiC種単結晶上にェピタキシャルに再結晶成長させる昇華近接法などがある。  [0003] Conventionally, this single crystal SiC is manufactured by using the Rayleigh method in which SiC powder is sublimated in a graphite crucible, and the single crystal SiC is recrystallized on the inner wall of the graphite crucible. An improved Rayleigh method in which the SiC seed single crystal is placed in the part to be recrystallized by optimizing the temperature distribution and epitaxially recrystallized, and the gas source is transported onto the heated SiC seed single crystal by the carrier gas and crystallized. Epitaxial growth with chemical reaction on the surface CVD method, sublimation proximity where SiC powder is epitaxially recrystallized on SiC seed single crystal in a state where SiC powder and SiC seed single crystal are in close proximity in a graphite crucible There are laws.
[0004] ところで現状では、これらの各単結晶 SiC製造方法にはいずれも問題があるとされ ている。レーリー法では、結晶性の良好な単結晶 SiCが製造できるものの、自然発生 的な核形成をもとに結晶が成長するため、形状制御や結晶面制御が困難であり、且 っ大口径ウェハが得られな ヽと 、う問題がある。 [0004] By the way, at present, each of these single crystal SiC manufacturing methods is considered to have problems. In the Rayleigh method, single crystal SiC with good crystallinity can be produced, but crystals grow on the basis of spontaneous nucleation, so shape control and crystal surface control are difficult, and large-diameter wafers are difficult to control. There is a problem that can not be obtained.
改良レーリー法では、数 100 mZh程度の高速で大口径の単結晶 SiCインゴット を得ることができるものの、結晶が螺旋状にェピタキシャル成長するため、結晶内に 多数のマイクロパイプといわれる結晶を貫通する微小な孔が発生するという問題があ る。 CVD法では、高純度で低欠陥密度の良質な単結晶 SiCが製造できるものの、結 晶を希薄なガスソースを用いてェピタキシャル成長させるため、成長速度が数 10 μ mZh程度と遅ぐ長尺の単結晶 SiCインゴットを得られないという問題がある。 昇華近接法では、比較的簡単な構成で高純度の SiCェピタキシャル成長が実現で きるが、構成上の制約から、長尺の単結晶 SiCインゴットを得ることは不可能という問 題がある。 With the improved Rayleigh method, a large-diameter single crystal SiC ingot of about several hundred mZh can be obtained, but since the crystal grows in a spiral shape, the crystal penetrates many crystals called micropipes. There is a problem that minute holes are generated. Although the CVD method can produce high-quality single crystal SiC with high purity and low defect density, it grows epitaxially using a dilute gas source, so the growth rate is slow at around several tens of μmZh. There is a problem that single crystal SiC ingots cannot be obtained. With the sublimation proximity method, high-purity SiC epitaxial growth can be achieved with a relatively simple structure, but due to structural limitations, there is a problem that it is impossible to obtain a long single-crystal SiC ingot.
[0005] 最近、加熱保持された SiC種単結晶上に、二酸化ケイ素超微粒子と炭素超微粒子 とを不活性キャリアガスで供給し、 SiC種単結晶上で二酸ィ匕ケィ素を炭素で還元する ことで単結晶 SiCを SiC種単結晶上にェピタキシャルに高速成長させる方法が発明 された (特許文献 1参照)。この方法では、マイクロパイプ等の欠陥を抑制した高品質 な単結晶 SiCを高速で得ることができると記載されている。  [0005] Recently, ultrafine silicon dioxide particles and ultrafine carbon particles are supplied onto a SiC seed single crystal that has been heated and held with inert carrier gas, and the diacid oxide is reduced with carbon on the SiC seed single crystal. As a result, a method of epitaxially growing single crystal SiC on SiC seed single crystal has been invented (see Patent Document 1). This method describes that high-quality single-crystal SiC that suppresses defects such as micropipes can be obtained at high speed.
[0006] 特許文献 1に開示された製造方法は、単結晶 SiC製造用原料として、固体の二酸 化ケィ素超微粒子と固体の炭素超微粒子とを用いる点で、研磨材用 SiC製造法とし て有名なアチソン法に似ている。アチソン法は無水ケィ酸と炭素源とを 2, 000°C以 上に加熱して、無水ケィ酸を炭素で還元することで、体積収縮を伴いながら単結晶 s iCを製造する方法である。アチソン法は、反応が複雑なため、さまざまな多形、サイズ 、向きの SiC多結晶体が製造される。これに対し、特許文献 1に開示された製造方法 は、二酸ィ匕ケィ素超微粒子と炭素超微粒子とからなる単結晶 SiC製造用原料を、加 熱保持された SiC種単結晶上に供給することで、体積収縮を伴!、ながら製造される 単結晶 SiCの向きや多形を制御し、 SiC種単結晶上に SiC単結晶がェピタキシャル に配列されることを期待して 、るものである。  [0006] The manufacturing method disclosed in Patent Document 1 is an SiC manufacturing method for abrasives in that solid silicon dioxide ultrafine particles and solid carbon ultrafine particles are used as raw materials for single crystal SiC manufacturing. It is similar to the famous Atchison method. The Atchison method is a method in which single crystal siC is produced with volume shrinkage by heating caustic anhydride and a carbon source to 2,000 ° C or higher and reducing caustic anhydride with carbon. The Atchison method is complex in reaction, and SiC polycrystals of various polymorphs, sizes, and orientations are produced. In contrast, the manufacturing method disclosed in Patent Document 1 supplies a raw material for producing a single crystal SiC composed of ultrafine particles of diacidic silicon and ultrafine particles of carbon onto a heated and maintained SiC seed single crystal. By controlling the orientation and polymorphism of the single crystal SiC produced while volume shrinking, it is expected that the SiC single crystal will be arranged in an epitaxy on the SiC seed single crystal. It is.
[0007] ところが実際には、特許文献 1に開示された製造方法において、単結晶 SiCの結晶 成長を制御することは難しい。固体の二酸化ケイ素超微粒子 lmolと固体の炭素超 微粒子 3molとが固相反応すると、式(1)の反応により、 lmolの SiCが製造される他 に、 2molの一酸ィ匕炭素ガスが発生する。この一酸化炭素ガスは反応の進行する Si C種単結晶上で発生すると推定される。  However, in practice, in the manufacturing method disclosed in Patent Document 1, it is difficult to control the crystal growth of single-crystal SiC. When solid-phase reaction between 1 mol of solid silicon dioxide ultrafine particles and 3 mol of solid carbon ultrafine particles produces 1 mol of SiC monoxide gas in addition to lmol of SiC by the reaction of formula (1). . This carbon monoxide gas is presumed to be generated on the Si C seed single crystal where the reaction proceeds.
SiO + 3C → SiC + 2CO† · · · (1)  SiO + 3C → SiC + 2CO † (1)
2  2
従って、速やかに SiC種単結晶上から除去しないと、 SiC種単結晶と反応成長層と 力 この一酸ィ匕炭素ガスにより分断されることとなる。その結果、 SiC種単結晶表面の 結晶配列情報が反応成長層に伝わらなくなることが原因であると考えられる。  Therefore, unless it is removed from the SiC seed single crystal promptly, the SiC seed single crystal and the reaction growth layer are separated from each other by the carbon monoxide gas. As a result, it is thought that the cause is that the crystal alignment information on the surface of the SiC seed single crystal is not transmitted to the reaction growth layer.
[0008] 特許文献 1 :特許第 3505597号明細書 発明の開示 [0008] Patent Document 1: Japanese Patent No. 3505597 Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0009] 本発明は上記の課題を解決するためになされたものであり、本発明の目的は、マイ クロパイプ等の欠陥を抑制した高品質な長尺、大口径の単結晶 SiC及びその製造方 法を提供することにある。更に本発明は、前記製造方法に好適に使用できる単結晶 [0009] The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a high-quality long, large-diameter single-crystal SiC in which defects such as micropipes are suppressed, and a method for producing the same. To provide a law. Furthermore, the present invention provides a single crystal that can be suitably used in the production method.
SiCの製造装置を提供することを目的とする。 The object is to provide a SiC manufacturing equipment.
課題を解決するための手段  Means for solving the problem
[0010] 上記の課題は以下のく 1 >、 < 4 >及び < 5 >に記載の手段によって解決された。  [0010] The above problems have been solved by the means described in <1>, <4>, and <5> below.
好ま 、実施態様であるく 2 >及びく 3 >と共に以下に記載する。  Preferred embodiments are described below together with 2> and 3>.
< 1 > 単結晶 SiCを製造する方法であって、 SiC種単結晶ウェハをサセプタに固定 する工程、及び、外部より単結晶 SiC製造用原料を SiC種単結晶ウェハ上に連続供 給して単結晶 SiCを成長させる工程を含み、前記サセプタ、 SiC種単結晶並びに成 長と共に厚みを増した単結晶 SiCの、サセプタの軸方向の平均温度勾配を 0. 5°CZ mm以上 9°CZmm以下とすることを特徴とする単結晶 SiCの製造方法、  <1> A method for producing single crystal SiC, in which a SiC seed single crystal wafer is fixed to a susceptor, and a single crystal SiC raw material is continuously supplied from the outside onto the SiC seed single crystal wafer. Including the step of growing crystalline SiC, the average temperature gradient in the axial direction of the susceptor is 0.5 ° CZ mm or more and 9 ° CZmm or less for the susceptor, the SiC seed single crystal, and the single crystal SiC whose thickness increases with growth. A method for producing single-crystal SiC, characterized in that
< 2> 前記単結晶 SiC製造用原料がシリカ及びカーボンであるく 1 >に記載の単 結晶 SiCの製造方法、  <2> The method for producing single crystal SiC according to 1>, wherein the raw material for producing single crystal SiC is silica and carbon,
< 3 > 前記平均温度勾配が 0. 5°CZmm以上 3°CZmm以下である < 1 >又は < 2 >に記載の単結晶 SiCの製造方法、  <3> The method for producing single-crystal SiC according to <1> or <2>, wherein the average temperature gradient is 0.5 ° CZmm or more and 3 ° CZmm or less,
<4> < 1 >〜< 3 >いずれか 1つ記載の方法により製造された単結晶 SiC、 < 5 > 坩堝を設けたチャンバ及び坩堝を加熱する手段、坩堝内に SiC種単結晶ゥ ェハを固定するサセプタ、及び、 SiC種単結晶に単結晶 SiC製造用原料を供給する 手段を有し、前記サセプタが制御可能な熱交 能を有して 、ることを特徴とする単 結晶 SiCの製造装置。  <4> <1> to <3> Single crystal SiC produced by the method according to any one of the above, <5> a chamber provided with a crucible, means for heating the crucible, and a SiC seed single crystal wafer in the crucible A susceptor for fixing a single crystal, and means for supplying a raw material for producing single crystal SiC to a SiC seed single crystal, wherein the susceptor has a controllable thermal function. Manufacturing equipment.
発明の効果  The invention's effect
[0011] 本発明によれば、成長速度が大きぐ低コストな単結晶 SiC及びその製造方法並び に単結晶 SiCの製造装置を提供することができる。  According to the present invention, it is possible to provide a low-cost single crystal SiC having a high growth rate, a manufacturing method thereof, and a single crystal SiC manufacturing apparatus.
本発明により得られた単結晶 SiCはマイクロパイプの発生が低減されており、高品 質である。さらに、本発明によれば、大口径の良好な単結晶 SiCを提供することがで きる。 The single crystal SiC obtained by the present invention has reduced generation of micropipes, and is high quality. Quality. Furthermore, according to the present invention, it is possible to provide single crystal SiC having a large large diameter.
図面の簡単な説明  Brief Description of Drawings
[0012] [図 1]本発明の単結晶 SiCを製造するための装置の一例である。  FIG. 1 is an example of an apparatus for producing the single crystal SiC of the present invention.
符号の説明  Explanation of symbols
[0013] 1 密閉チャンバ [0013] 1 sealed chamber
2 密閉坩堝  2 Sealed crucible
3 高周波誘導加熱コイル  3 High frequency induction heating coil
4 種単結晶ウェハ  4 types of single crystal wafer
5 サセプタ  5 Susceptor
6 供給管  6 Supply pipe
7、 7' 原料貯蔵槽  7, 7 'Raw material storage tank
8、 8' 調節弁  8, 8 'control valve
9 成長層  9 Growth layer
10 サセプタ鉛直方向  10 Vertical direction of susceptor
A 不活性キャリアガス  A inert carrier gas
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0014] 本発明の単結晶 SiCの製造方法は、 SiC種単結晶ウェハをサセプタに固定するェ 程、外部より単結晶 SiC製造用原料を SiC種単結晶ウェハ上に連続供給して単結晶[0014] The method for producing a single crystal SiC according to the present invention includes a step of fixing a SiC seed single crystal wafer to a susceptor, and continuously supplying a raw material for manufacturing the single crystal SiC from the outside onto the SiC seed single crystal wafer.
SiCを成長させる工程を含み、前記サセプタ、 SiC種単結晶並びに成長と共に厚み を増した単結晶 SiCの、サセプタの軸方向の平均温度勾配を 0. 5°CZmm以上 9°CIncluding the step of growing SiC, the average temperature gradient in the axial direction of the susceptor of the susceptor, the SiC seed single crystal, and the single crystal SiC whose thickness increases with growth is 0.5 ° CZmm or more 9 ° C
Zmm以下とすることを特徴とする。 It is characterized by being Zmm or less.
平均温度勾配は 0. 5°CZmm以上 9°CZmm以下である力 0. 5°CZmm以上 3 The average temperature gradient is 0.5 ° CZmm or more and 9 ° CZmm or less. Force 0.5 ° CZmm or more 3
°CZmm以下であることが好まし 、。 It is preferable that it is below CZmm.
平均温度勾配は、 SiC単結晶の成長層が高温となり、サセプタ側が低温となるよう に平均温度勾配を設定する。  The average temperature gradient is set so that the SiC single crystal growth layer has a high temperature and the susceptor side has a low temperature.
[0015] 平均温度勾配を 0. 5°CZmm以上 9°CZmm以下とすることにより、製造される単 結晶 SiCをェピタキシャルに成長させることができる。これは、 SiC種単結晶表面の結 晶配列情報が SiC単結晶の成長層に伝わるためと考えられる。 [0015] By making the average temperature gradient 0.5 ° CZmm or more and 9 ° CZmm or less, the produced single crystal SiC can be grown epitaxially. This is the result of the bonding of the SiC seed single crystal surface. This is probably because crystal orientation information is transmitted to the growth layer of the SiC single crystal.
さらに詳述すれば、平均温度勾配をサセプタ側で低ぐ成長層側で高くするので、 More specifically, since the average temperature gradient is increased on the growth layer side, which is lower on the susceptor side,
SiC種単結晶表面よりも、成長単結晶 SiC表面の温度が高い。このように温度勾配を 設定することにより、反応生成物である一酸ィ匕炭素ガスが、熱拡散により速やかに成 長単結晶 SiC表面に移動し、坩堝内に放出される。即ち、成長単結晶 SiC内部に、 生成した一酸ィ匕炭素ガスが滞留せず、 SiC種単結晶と反応成長層とがー酸化炭素 ガスによって分断されることがない。その結果、 SiC種単結晶表面の結晶配列情報が 反応成長層に良好に伝わるためであると考えられる。 The temperature of the grown single crystal SiC surface is higher than that of the SiC seed single crystal surface. By setting the temperature gradient in this way, the carbon monoxide gas, which is a reaction product, quickly moves to the surface of the growth single crystal SiC by thermal diffusion and is released into the crucible. That is, the generated carbon monoxide gas does not stay inside the grown single crystal SiC, and the SiC seed single crystal and the reaction growth layer are not separated by the carbon oxide gas. As a result, it is thought that the crystal alignment information on the surface of the SiC seed single crystal is well transmitted to the reaction growth layer.
但し、温度勾配が 9°CZmmより大きくなると、 SiC種単結晶表面の過飽和度が大き くなり、 SiC種単結晶表面の結晶配列情報と無関係な多形核が発生し、単結晶が得 られない。一方、温度勾配が 0. 5°CZmmより小さいと、成長速度が低下し、逆にェ ツチングが発生する場合がある。  However, if the temperature gradient is greater than 9 ° CZmm, the supersaturation degree of the SiC seed single crystal surface increases, and polymorphic nuclei unrelated to the crystal arrangement information on the SiC seed single crystal surface are generated, and a single crystal cannot be obtained. . On the other hand, if the temperature gradient is less than 0.5 ° CZmm, the growth rate decreases and conversely etching may occur.
[0016] 本発明にお 、て、平均温度勾配は、以下のようにして測定することができる。  In the present invention, the average temperature gradient can be measured as follows.
温度勾配は、サセプタ側 (低温側)及び成長層側(高温側)で測定し、この温度差を サセプタの熱交 部に設置された温度センサ力 成長層表面までの距離で割つ た値である。具体的には、サセプタの熱交^^が付与されている部分に温度センサ を設置して温度測定し、低温側の温度とする。また、 SiC種単結晶表面の温度と密閉 坩堝外側表面の温度との相関を予め測定しておき、実際には密閉坩堝外側表面の 温度を放射温度計で測定し、算出された温度を成長層表面の温度とみなし、高温側 の温度とする。これらの温度及び、温度センサカもサセプタ表面まで距離、種単結晶 の厚み並びに SiC単結晶の成長速度から、平均温度勾配を算出することができる。  The temperature gradient is measured on the susceptor side (low temperature side) and the growth layer side (high temperature side), and this temperature difference is the value obtained by dividing the temperature difference by the distance to the temperature sensor force growth layer surface installed at the heat exchanger of the susceptor. is there. Specifically, a temperature sensor is installed in the part of the susceptor where heat exchange is applied, and the temperature is measured to obtain the temperature on the low temperature side. In addition, the correlation between the temperature of the SiC seed single crystal surface and the temperature of the outer surface of the sealed crucible is measured in advance, and the temperature of the outer surface of the sealed crucible is actually measured with a radiation thermometer, and the calculated temperature is measured as the growth layer. It is regarded as the temperature of the surface, and is the temperature on the high temperature side. The average temperature gradient can also be calculated from these temperatures and the temperature sensor from the distance to the susceptor surface, the thickness of the seed single crystal, and the growth rate of the SiC single crystal.
[0017] 平均温度勾配を上記範囲とするためには、何れの方法も使用することができるが、 サセプタが制御可能な熱交 能を有することよって、温度勾配を制御することが好 ましい。  [0017] Any method can be used to bring the average temperature gradient into the above range, but it is preferable to control the temperature gradient because the susceptor has a controllable thermal function.
具体的には、高温側の温度は、単結晶 SiCの製造温度に固定し、温度勾配調整は 、低温側 (サセプタの熱交^^が付与されて 、る側)の温度調整をもって行うことが例 示できる。温度勾配は、サセプタと熱交^^の接触面積や熱交換容量を調整し、低 温側の温度を制御することで調整が可能である。 尚、上記の製造装置を、温度勾配をつけないで使用する場合には、熱交換器を停 止させると共に、サセプタと熱交^^との間に断熱材挿入することで、温度勾配の制 御をせずに他の用途に使用することも可能である。 Specifically, the temperature on the high temperature side is fixed at the manufacturing temperature of the single crystal SiC, and the temperature gradient adjustment can be performed by adjusting the temperature on the low temperature side (the side where the heat exchange of the susceptor is applied). Examples can be shown. The temperature gradient can be adjusted by adjusting the contact area and heat exchange capacity of the susceptor and heat exchanger and controlling the temperature on the low temperature side. When using the above manufacturing equipment without a temperature gradient, the heat exchanger is stopped and a heat insulating material is inserted between the susceptor and the heat exchanger to control the temperature gradient. It is also possible to use it for other purposes without control.
[0018] 前記単結晶 SiC製造用原料はシリカ及びカーボン力 なることが好ま 、。  [0018] Preferably, the raw material for producing the single crystal SiC is silica and carbon.
本発明に使用するシリカ粒子の種類、粒径、粒子形状等は特に限定されず、例え ば火炎加水分解法で得られる高純度シリカなどが好適に利用できる。  The type, particle size, particle shape and the like of the silica particles used in the present invention are not particularly limited, and for example, high purity silica obtained by flame hydrolysis can be suitably used.
本発明に使用するカーボン粒子の種類、粒径、粒子形状等は特に限定されず、例 えば市販の高純度カーボンブラックなどが好適に利用できる。  The type, particle size, particle shape and the like of the carbon particles used in the present invention are not particularly limited, and for example, commercially available high purity carbon black can be suitably used.
[0019] 上記シリカ粒子及びカーボン粒子の連続供給量の比率は特に限定されず、所望の 組成比が適宜選択できる。上記シリカ粒子及びカーボン粒子の 、ずれも 2種以上の ものを混合して使用してもよい。また、上記シリカ粒子及びカーボン粒子は、必要に 応じ、前処理を施したり、他の成分を微量添加してもよい。 [0019] The ratio of the continuous supply amount of the silica particles and the carbon particles is not particularly limited, and a desired composition ratio can be appropriately selected. Two or more kinds of the silica particles and the carbon particles may be mixed and used. In addition, the silica particles and carbon particles may be pretreated or a small amount of other components may be added as necessary.
[0020] 上記シリカ粒子及びカーボン粒子の SiC種単結晶ウェハ上への供給は、途切れる ことなく連続して供給される方法であれば特に限定されず、公知の 、かなる方法も使 用することができる。具体的には市販のパウダフィーダのように連続して粉体を輸送 できるものが例示できる。 [0020] The supply of the silica particles and the carbon particles onto the SiC seed single crystal wafer is not particularly limited as long as it is a continuous supply method without interruption, and a known method is also used. Can do. Specifically, the one that can transport the powder continuously like a commercially available powder feeder can be exemplified.
尚、当該単結晶 SiC製造用原料の供給時には、酸素混入を防止するため、ァルゴ ン置換や窒素置換されたノヽーメチック構造にしておくことが好ましい。  When supplying the raw material for producing the single crystal SiC, it is preferable to have a normetic structure substituted with argon or nitrogen in order to prevent oxygen contamination.
[0021] 上記シリカ粒子及びカーボン粒子の SiC種単結晶ウェハ上への供給条件について は、これら単結晶 SiC製造用原料が SiC種単結晶ウェハ上に混合された状態で供給 されればよぐ予め当該単結晶 SiC製造用原料を混合しておいても、別個に供給して SiC種単結晶ウェハ上で混合しても良い。  [0021] With regard to the supply conditions of the silica particles and the carbon particles onto the SiC seed single crystal wafer, it is sufficient if the raw materials for producing the single crystal SiC are supplied in a mixed state on the SiC seed single crystal wafer. The raw materials for producing the single crystal SiC may be mixed or supplied separately and mixed on the SiC seed single crystal wafer.
また、単結晶 SiC中にドーピングをおこなう場合は、上記単結晶 SiC製造用原料に 固体ソースとして混合しても良いし、単結晶 SiC製造装置内の雰囲気中にガスソース として、該ドーピング成分を混合しても良い。  In addition, when doping into single crystal SiC, the above single crystal SiC manufacturing raw material may be mixed as a solid source, or the doping component may be mixed as a gas source in the atmosphere inside the single crystal SiC manufacturing apparatus. You may do it.
[0022] 本発明で使用する SiC種単結晶ウェハの種類、サイズ、形状は特に限定されず、 目的とする単結晶 SiCの種類、サイズ、形状によって適宜選択できる。例えば改良レ 一リー法によって得られた SiC単結晶や、必要に応じてこれを前処理した SiC種単結 晶ウェハが好適に利用できる。 [0022] The type, size, and shape of the SiC seed single crystal wafer used in the present invention are not particularly limited, and can be appropriately selected depending on the type, size, and shape of the target single crystal SiC. For example, a SiC single crystal obtained by the modified Raley method, or a SiC seed single crystal pretreated if necessary A crystal wafer can be suitably used.
[0023] 本発明において、単結晶 SiCを得るために使用する単結晶 SiC製造装置の構成は 特に限定されない。すなわちサイズや加熱方法、材質、原料供給方法、雰囲気調整 方法、温度制御方法などは、目的とする単結晶 SiCのサイズや形状、種類、単結晶 S iC製造用原料の種類や量等に応じて適宜選択できる。  In the present invention, the configuration of the single crystal SiC manufacturing apparatus used for obtaining single crystal SiC is not particularly limited. In other words, the size, heating method, material, raw material supply method, atmosphere adjustment method, temperature control method, etc. depend on the size, shape and type of the target single crystal SiC, the type and amount of the raw material for manufacturing single crystal SiC, etc. It can be selected as appropriate.
装置の雰囲気は酸素混入を防止するため、アルゴン置換や窒素置換されているこ とが好ましぐ密閉構造であることが好ましい。  The atmosphere of the apparatus preferably has a sealed structure that is preferably substituted with argon or nitrogen in order to prevent oxygen contamination.
また、単結晶 SiC製造温度は特に限定されず、目的とする単結晶 SiCのサイズや形 状、種類、単結晶 SiC製造用原料の種類や量等に応じて適宜設定できる。好ましい 製造温度は、 1, 600〜2, 400°Cの範囲であり、例えば密閉坩堝外側の温度を指す 。本発明に使用する製造装置は、前記温度範囲において、温度制御可能な装置で あることが好ましい。  In addition, the single crystal SiC production temperature is not particularly limited, and can be set as appropriate according to the size, shape, and type of the target single crystal SiC, and the type and amount of the raw material for producing single crystal SiC. The preferred production temperature is in the range of 1,600-2,400 ° C., for example the temperature outside the closed crucible. The production apparatus used in the present invention is preferably an apparatus capable of controlling the temperature in the temperature range.
本発明おいて、加熱方法に特に限定はなぐいかなる加熱方法も使用することがで き、高周波誘導加熱や電気抵抗加熱が例示できる。  In the present invention, any heating method with no particular limitation can be used as the heating method, and high frequency induction heating and electric resistance heating can be exemplified.
[0024] SiC種単結晶ウェハを保持するサセプタの材質は使用温度範囲を考慮してグラフ アイト製であることが好ましぐまた、サセプタの軸方向に熱流を発生させる冷却機構 が付与されていることが好ましい。該冷却方法は特に限定されないが、目的とする単 結晶 SiCのサイズや形状、種類に応じ、それぞれ好ましい温度勾配が選択できるよう に設計されて 、ることが好ま 、。  [0024] The material of the susceptor holding the SiC seed single crystal wafer is preferably made of graphite in consideration of the operating temperature range, and a cooling mechanism for generating a heat flow in the axial direction of the susceptor is provided. It is preferable. The cooling method is not particularly limited, but is preferably designed so that a preferable temperature gradient can be selected according to the size, shape, and type of the target single crystal SiC.
[0025] 本発明にお ヽて、 SiC単結晶の製造装置は、坩堝を設けたチャンバ及び坩堝を加 熱する手段、坩堝内に SiC種単結晶ウェハを固定するサセプタ、及び、 SiC種単結 晶に単結晶 SiC製造用原料を供給する手段を有し、前記サセプタが制御可能な熱 交 能を有していることを特徴とする単結晶 SiCの製造装置であることが特に好ま しい。  In the present invention, the SiC single crystal manufacturing apparatus includes a chamber provided with a crucible, means for heating the crucible, a susceptor for fixing a SiC seed single crystal wafer in the crucible, and a SiC seed single connection. It is particularly preferred that the apparatus is for producing single-crystal SiC, characterized in that it has a means for supplying raw materials for producing single-crystal SiC to the crystal, and the susceptor has a controllable thermal function.
[0026] 図 1は本発明の単結晶 SiCを製造するための装置の一例であり、ここでは高周波誘 導加熱炉を用いている。  FIG. 1 shows an example of an apparatus for producing the single crystal SiC of the present invention. Here, a high frequency induction heating furnace is used.
水冷された密閉チャンバ 1内にカーボン製の密閉坩堝 2 (直径 100mm、高さ 150 mm)が配置され、前記水冷された密閉チャンバの外側に高周波誘導加熱コイル 3を 配置してある。 A carbon-made sealed crucible 2 (diameter 100 mm, height 150 mm) is placed in a water-cooled sealed chamber 1, and a high-frequency induction heating coil 3 is placed outside the water-cooled sealed chamber 1. It is arranged.
前記密閉坩堝内の下部には、 SiC種単結晶ウェハ 4を保持するためのサセプタ 5が 貫通挿入されている。このサセプタは密閉坩堝の下側まで伸びており、図示しない回 転機構により該サセプタの中心軸を回転軸として回転可能である。  A susceptor 5 for holding the SiC seed single crystal wafer 4 is inserted through the lower portion of the sealed crucible. This susceptor extends to the lower side of the hermetic crucible, and can be rotated about the central axis of the susceptor by a rotation mechanism (not shown).
[0027] また、このサセプタの図示されない下端には、制御可能な熱交 能が付与され ており、該サセプタ軸方向 10に熱流を発生することができる。また、前記熱流量の調 整が可能な構成となって 、る。 [0027] Further, a controllable heat function is given to the lower end (not shown) of the susceptor, and a heat flow can be generated in the susceptor axial direction 10. Further, the heat flow rate can be adjusted.
尚、サセプタ上端の SiC種単結晶ウェハを保持する表面の法線方向は、該サセプ タの鉛直方向と略平行から最大 45° 傾斜まで自由に設定することができる。  The normal direction of the surface holding the SiC seed single crystal wafer at the upper end of the susceptor can be freely set from approximately parallel to the vertical direction of the susceptor to a maximum 45 ° inclination.
[0028] 前記密閉坩堝内の上部には、単結晶 SiC製造用原料粒子を供給するための供給 管 6が貫通挿入されている。さらに前記供給管は、前記高周波誘導加熱炉の外側に 配置されていて、独立に供給量が調節可能な複数の原料貯蔵槽 7及び 7'と、流量 調節可能な不活性キャリアガス供給源(図示せず)にそれぞれ連結して!/ヽる。 [0028] A supply pipe 6 for supplying raw material particles for producing single crystal SiC is inserted through the upper portion of the sealed crucible. Further, the supply pipe is arranged outside the high-frequency induction heating furnace, and a plurality of raw material storage tanks 7 and 7 'whose supply amount can be adjusted independently, and an inert carrier gas supply source (Fig. Connect to each other! / Speak.
予め混合された単結晶 SiC製造用原料を使用する場合は一つの原料貯蔵槽を用 い、供給管内部にて混合させる場合には、シリカとカーボン粉をそれぞれ独立に原 料貯蔵槽に充填する。それぞれの貯蔵層からの供給量を調節弁 8及び 8'にて調節 した上で、不活性キャリアガス Aを流量調整しながら流すことで、前記密閉坩堝内部 に単結晶 SiC製造用原料を適当量ずつ連続供給することができる。不活性キャリア ガスとしては窒素ガス、ヘリウムガス、アルゴンガス等が例示できるが、窒素ガス及び アルゴンガスが好ましく、アルゴンガスがより好適に使用できる。  When using premixed raw materials for single crystal SiC production, use one raw material storage tank, and when mixing inside the supply pipe, fill the raw material storage tank with silica and carbon powder independently. . Adjust the supply amount from each storage layer with the control valves 8 and 8 ', and then flow the inert carrier gas A while adjusting the flow rate, so that an appropriate amount of raw material for producing single crystal SiC is put inside the sealed crucible. Can be continuously supplied one by one. Examples of the inert carrier gas include nitrogen gas, helium gas, and argon gas. Nitrogen gas and argon gas are preferable, and argon gas can be more preferably used.
このようにして、 SiC種単結晶ウェハ 4上に成長と共に厚みを増した単結晶 SiC層( 成長層) 9が形成される。  In this way, a single crystal SiC layer (growth layer) 9 having a thickness increased with growth is formed on the SiC seed single crystal wafer 4.
[0029] 高周波誘導加熱炉は、図示しない真空排気系及び圧力調節系により圧力制御が 可能であり、また、図示しない不活性ガス置 構を備えている。 [0029] The high-frequency induction heating furnace can be pressure-controlled by a vacuum exhaust system and a pressure control system (not shown), and includes an inert gas mechanism (not shown).
尚、図 1の実施例では供給管を上に、サセプタを下に配したが、本発明の作用が変 わらない範囲内で、上下逆に配置することも可能であるし、供給管をサセプタに対し 斜めや横向きに配置することも可能である。  In the embodiment shown in FIG. 1, the supply pipe is arranged on the top and the susceptor is arranged on the bottom. However, the supply pipe can be arranged upside down as long as the operation of the present invention does not change. It is also possible to arrange them diagonally or horizontally.
実施例 [0030] 以下本発明の実施例について説明する。 Example [0030] Examples of the present invention will be described below.
前記高周波誘導加熱炉を用いて以下の条件にて単結晶 SiCの製造をおこなった。 前記サセプタ上端に SiC種単結晶ウェハを固定した。ここで使用した SiC種単結晶 ウェハは、レーリー法で製造された略 10mm角の不定形単結晶 SiCと改良レーリー 法で製造された直径 2センチの単結晶 SiCの両方である。また、ジャスト面、傾斜面、 C面、 Si面それぞれを種単結晶として準備して、使用した。  Single crystal SiC was manufactured under the following conditions using the high frequency induction heating furnace. A SiC seed single crystal wafer was fixed to the upper end of the susceptor. The SiC seed single crystal wafers used here are both approximately 10 mm square amorphous single crystal SiC manufactured by the Rayleigh method and single-crystal SiC with a diameter of 2 cm manufactured by the modified Rayleigh method. In addition, each of the just surface, the inclined surface, the C surface, and the Si surface was prepared and used as a seed single crystal.
単結晶 SiC製造用原料であるカーボン (三菱ィ匕学製カーボンブラック MA600)とシ リカ(日本ァエロジル製ァエロジル 380)とをそれぞれ独立に原料貯蔵槽に充填した 。また、各々の供給量比はシリカ Zカーボン = 1. 5〜5. 0 (重量比)に調整した。この 時、必要に応じて SiC粉を別途供給することもできる。  Carbon (Mitsubishi Chemical's carbon black MA600) and silica (Aerosil 380 manufactured by Nippon Aerosil Co., Ltd.), which are raw materials for producing single crystal SiC, were filled in the raw material storage tanks independently. Moreover, each supply amount ratio adjusted to silica Z carbon = 1.5-5.0 (weight ratio). At this time, SiC powder can be supplied separately if necessary.
[0031] 高周波誘導加熱炉内部を真空引きした後、不活性ガス(高純度アルゴン又は高純 度窒素)で該高周波誘導加熱炉内部を置換した。次 、で前記高周波誘導加熱コィ ルにより、前記カーボン製の密閉坩堝を加熱し、前記 SiC種単結晶ウェハ表面温度 力 i, 600〜2, 390°Cの範囲となるように調整した。 [0031] After the inside of the high frequency induction heating furnace was evacuated, the inside of the high frequency induction heating furnace was replaced with an inert gas (high purity argon or high purity nitrogen). Next, the carbon-made closed crucible was heated by the high-frequency induction heating coil and adjusted so that the surface temperature force i of the SiC seed single crystal wafer was in the range of 600 to 2,390 ° C.
次いで SiC種単結晶ウェハが固定された前記サセプタを 0〜20rpmの回転速度で 回転させた。この状態で前記不活性キャリアガス(高純度アルゴン又は高純度窒素) を流速 0. 5〜: LOlZminの範囲に調整して流し、前記単結晶 SiC製造用原料を、前 記供給管内部を通って、前記密閉坩堝内下部に配置された前記 SiC種単結晶ゥェ ハ表面上に連続して供給させ、約 2時間単結晶 SiCの製造をおこなった。これにより 、厚みが約 lmmの単結晶 SiCが得られた。  Next, the susceptor on which the SiC seed single crystal wafer was fixed was rotated at a rotation speed of 0 to 20 rpm. In this state, the inert carrier gas (high purity argon or high purity nitrogen) is flowed at a flow rate of 0.5 to: LOlZmin, and the raw material for producing single crystal SiC passes through the inside of the supply pipe. Then, it was continuously supplied onto the surface of the SiC seed single crystal wafer disposed in the lower part of the closed crucible, and single crystal SiC was produced for about 2 hours. As a result, single crystal SiC having a thickness of about lmm was obtained.
この時、サセプタ下端の熱交換機構を調整し、サセプタ軸方向の平均温度勾配が 0. 2°CZmm、 0. 5°C/mm, 3°C/mm, 9°C/mm, 10°CZmmとなる条件で、各 々単結晶 SiCの製造をおこなった。  At this time, the heat exchange mechanism at the lower end of the susceptor is adjusted, and the average temperature gradient in the susceptor axial direction is 0.2 ° CZmm, 0.5 ° C / mm, 3 ° C / mm, 9 ° C / mm, 10 ° CZmm Under these conditions, single-crystal SiC was manufactured.
[0032] 製造結果を表 1に基づき説明する。サセプタ軸方向の平均温度勾配が 0. 5°C/m m以上の場合は平均成長速度は 50〜500 /ζ πιΖΐιと同等であった。但し、前記平均 温度勾配が 0. 2°CZmmの条件では、成長速度が低下し、ひどい場合には逆にエツ チングされてしまった。また、平均温度勾配が 10°CZmmの条件では、得られた SiC は SiC種単結晶ウェハの略法線方向に柱状に成長した多結晶となっており、 SiC種 単結晶ウェハ上にェピタキシャル成長されていな力つた。また、平均温度勾配が 9°C Zmmの条件ではェピタキシャル成長がされた力 マイクロノイブの発生量が多くな つた。一方、平均温度勾配が 0. 5°CZmm及び 3°CZmmの条件では、製造された 単結晶 SiC中に多結晶の混在がなぐマイクロパイプ等の欠陥の少ない、高品質な 単結晶 SiCを製造することができた。 [0032] Manufacturing results will be described with reference to Table 1. When the average temperature gradient in the susceptor axis direction was 0.5 ° C / mm or more, the average growth rate was equivalent to 50-500 / ζ πιΖΐι. However, under the condition where the average temperature gradient was 0.2 ° CZmm, the growth rate decreased, and in the worst case, etching was performed in reverse. In addition, under the condition that the average temperature gradient is 10 ° CZmm, the obtained SiC is polycrystalline grown in a columnar shape in a direction substantially normal to the SiC seed single crystal wafer. Epitaxial growth on a single crystal wafer was a powerful force. In addition, when the average temperature gradient was 9 ° C Zmm, the amount of force micro-neuve generated by epitaxy growth increased. On the other hand, when the average temperature gradient is 0.5 ° CZmm and 3 ° CZmm, high-quality single-crystal SiC with few defects such as micropipes where polycrystals are mixed in the manufactured single-crystal SiC is manufactured. I was able to.
[表 1] 平均温度勾配 [Table 1] Average temperature gradient
0.2 0.5 3 9 10 し mm j  0.2 0.5 3 9 10 mm mm j
成長速度 -50 ~ 100 50 ~ 500 50 ~ 500 50 ~ 500 50 ~ 500 ( IX m/h)  Growth rate -50 to 100 50 to 500 50 to 500 50 to 500 50 to 500 (IX m / h)
エッチング 透明 透明 透明 柱状 結 g日 fe が発生 単結晶 単結晶 単結晶 多結晶 欠陥 マイクロ/ ィフ マイクロハ °ィフ マイク ィフ°多  Etching Transparent Transparent Transparent Columnar formation Date f occurs Single crystal Single crystal Single crystal Single crystal Defect Micro / Fif Micro-Micro F Micro F

Claims

請求の範囲 The scope of the claims
[1] 単結晶 SiCを製造する方法であって、  [1] A method for producing single crystal SiC,
SiC種単結晶ウェハをサセプタに固定する工程、及び、  Fixing the SiC seed single crystal wafer to the susceptor; and
外部より単結晶 SiC製造用原料を SiC種単結晶ウェハ上に連続供給して単結晶 Si cを成長させる工程を含み、  Including the step of continuously supplying raw materials for single crystal SiC production from the outside onto a SiC seed single crystal wafer to grow single crystal SiC,
前記サセプタ、 SiC種単結晶並びに成長と共に厚みを増した単結晶 SiCの、サセ プタの軸方向の平均温度勾配を 0. 5°CZmm以上 9°CZmm以下とすることを特徴 とする  The average temperature gradient in the axial direction of the susceptor of the susceptor, the SiC seed single crystal, and the single crystal SiC that increases in thickness with growth is 0.5 ° CZmm or more and 9 ° CZmm or less.
単結晶 SiCの製造方法。  Single crystal SiC manufacturing method.
[2] 前記単結晶 SiC製造用原料がシリカ及びカーボンである請求項 1に記載の単結晶 SiCの製造方法。 2. The method for producing single crystal SiC according to claim 1, wherein the raw materials for producing single crystal SiC are silica and carbon.
[3] 前記平均温度勾配が 0. 5°CZmm以上 3°CZmm以下である請求項 1又は 2に記 載の単結晶 SiCの製造方法。  [3] The method for producing single-crystal SiC according to claim 1 or 2, wherein the average temperature gradient is not less than 0.5 ° CZmm and not more than 3 ° CZmm.
[4] 請求項 1〜3いずれか 1つ記載の方法により製造された単結晶 SiC。  [4] A single-crystal SiC produced by the method according to any one of claims 1 to 3.
[5] 坩堝を設けたチャンバ及び坩堝を加熱する手段、  [5] a chamber provided with a crucible and means for heating the crucible,
坩堝内に SiC種単結晶ウェハを固定するサセプタ、及び、  A susceptor for fixing a SiC seed single crystal wafer in the crucible; and
SiC種単結晶に単結晶 SiC製造用原料を供給する手段を有し、  It has means to supply raw material for single crystal SiC production to SiC seed single crystal,
前記サセプタが制御可能な熱交 能を有していることを特徴とする  The susceptor has a controllable heat function.
単結晶 SiCの製造装置。  Single crystal SiC manufacturing equipment.
PCT/JP2007/059911 2006-06-23 2007-05-15 SINGLE-CRYSTAL SiC, PROCESS FOR PRODUCING THE SAME, AND APPARATUS FOR PRODUCING SINGLE-CRYSTAL SiC WO2007148486A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006173699A JP2008001569A (en) 2006-06-23 2006-06-23 SINGLE CRYSTAL SiC AND PRODUCTION METHOD THEREFOR, AND APPARATUS FOR PRODUCING SINGLE CRYSTAL SiC
JP2006-173699 2006-06-23

Publications (1)

Publication Number Publication Date
WO2007148486A1 true WO2007148486A1 (en) 2007-12-27

Family

ID=38833229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/059911 WO2007148486A1 (en) 2006-06-23 2007-05-15 SINGLE-CRYSTAL SiC, PROCESS FOR PRODUCING THE SAME, AND APPARATUS FOR PRODUCING SINGLE-CRYSTAL SiC

Country Status (4)

Country Link
JP (1) JP2008001569A (en)
KR (1) KR20090021144A (en)
TW (1) TW200806828A (en)
WO (1) WO2007148486A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8860040B2 (en) 2012-09-11 2014-10-14 Dow Corning Corporation High voltage power semiconductor devices on SiC
US8940614B2 (en) 2013-03-15 2015-01-27 Dow Corning Corporation SiC substrate with SiC epitaxial film
US9018639B2 (en) 2012-10-26 2015-04-28 Dow Corning Corporation Flat SiC semiconductor substrate
US9017804B2 (en) 2013-02-05 2015-04-28 Dow Corning Corporation Method to reduce dislocations in SiC crystal growth
US9279192B2 (en) 2014-07-29 2016-03-08 Dow Corning Corporation Method for manufacturing SiC wafer fit for integration with power device manufacturing technology
US9738991B2 (en) 2013-02-05 2017-08-22 Dow Corning Corporation Method for growing a SiC crystal by vapor deposition onto a seed crystal provided on a supporting shelf which permits thermal expansion
US9797064B2 (en) 2013-02-05 2017-10-24 Dow Corning Corporation Method for growing a SiC crystal by vapor deposition onto a seed crystal provided on a support shelf which permits thermal expansion

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101812723B (en) * 2010-04-20 2012-04-11 上海硅酸盐研究所中试基地 Method and device for growing silicon carbide signal crystals based on physical vapor transport technology

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000264791A (en) * 1999-03-17 2000-09-26 Nippon Pillar Packing Co Ltd METHOD FOR GROWING SINGLE CRYSTAL SiC
JP3505597B2 (en) * 2000-02-23 2004-03-08 日本ピラー工業株式会社 Silicon carbide single crystal

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4716558B2 (en) * 2000-12-12 2011-07-06 株式会社デンソー Silicon carbide substrate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000264791A (en) * 1999-03-17 2000-09-26 Nippon Pillar Packing Co Ltd METHOD FOR GROWING SINGLE CRYSTAL SiC
JP3505597B2 (en) * 2000-02-23 2004-03-08 日本ピラー工業株式会社 Silicon carbide single crystal

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8860040B2 (en) 2012-09-11 2014-10-14 Dow Corning Corporation High voltage power semiconductor devices on SiC
US9337277B2 (en) 2012-09-11 2016-05-10 Dow Corning Corporation High voltage power semiconductor device on SiC
US9018639B2 (en) 2012-10-26 2015-04-28 Dow Corning Corporation Flat SiC semiconductor substrate
US9165779B2 (en) 2012-10-26 2015-10-20 Dow Corning Corporation Flat SiC semiconductor substrate
US9017804B2 (en) 2013-02-05 2015-04-28 Dow Corning Corporation Method to reduce dislocations in SiC crystal growth
US9738991B2 (en) 2013-02-05 2017-08-22 Dow Corning Corporation Method for growing a SiC crystal by vapor deposition onto a seed crystal provided on a supporting shelf which permits thermal expansion
US9797064B2 (en) 2013-02-05 2017-10-24 Dow Corning Corporation Method for growing a SiC crystal by vapor deposition onto a seed crystal provided on a support shelf which permits thermal expansion
US8940614B2 (en) 2013-03-15 2015-01-27 Dow Corning Corporation SiC substrate with SiC epitaxial film
US9279192B2 (en) 2014-07-29 2016-03-08 Dow Corning Corporation Method for manufacturing SiC wafer fit for integration with power device manufacturing technology
US10002760B2 (en) 2014-07-29 2018-06-19 Dow Silicones Corporation Method for manufacturing SiC wafer fit for integration with power device manufacturing technology

Also Published As

Publication number Publication date
KR20090021144A (en) 2009-02-27
JP2008001569A (en) 2008-01-10
TW200806828A (en) 2008-02-01

Similar Documents

Publication Publication Date Title
US6391109B2 (en) Method of making SiC single crystal and apparatus for making SiC single crystal
WO2007148486A1 (en) SINGLE-CRYSTAL SiC, PROCESS FOR PRODUCING THE SAME, AND APPARATUS FOR PRODUCING SINGLE-CRYSTAL SiC
JP6606638B2 (en) Method and apparatus for growing Fe-Ga based alloy single crystal
JP2007308364A (en) Method and apparatus for aluminum nitride monocrystal boule growth
JP2007204309A (en) Single crystal growth device and single crystal growth method
JP2008074662A (en) Apparatus for producing silicon carbide single crystal
WO2000039372A1 (en) Method for growing single crystal of silicon carbide
JP4645496B2 (en) Single crystal manufacturing apparatus and manufacturing method
US6458207B1 (en) Silicon carbide single-crystals
JP2004189549A (en) Method of manufacturing aluminum nitride single crystal
JP2010260747A (en) Method for producing semiconductor crystal
JP5761264B2 (en) Method for manufacturing SiC substrate
WO2008023635A1 (en) SINGLE-CRYSTAL SiC AND PROCESS FOR PRODUCING THE SAME
TWI767309B (en) Manufacturing method for silicon carbide ingot and system for manufacturing silicon carbide ingot
JP4347325B2 (en) Single crystal SiC, method for manufacturing the same, and apparatus for manufacturing single crystal SiC
WO2008018322A1 (en) Single-crystal silicon carbide and process for producing the same
JP2008115045A (en) SINGLE CRYSTAL SiC AND ITS PRODUCING METHOD
JP2009057265A (en) SINGLE CRYSTAL SiC AND METHOD FOR PRODUCTION THEREOF
JP2008308369A (en) SINGLE CRYSTAL SiC, AND METHOD AND APPARATUS FOR PRODUCING THE SAME
JP2011201756A (en) Method for producing single crystal silicon carbide
JP2009073696A (en) SINGLE CRYSTAL SiC AND ITS PRODUCTION METHOD
WO2008018319A1 (en) SINGLE CRYSTAL SiC, ITS FABRICATION METHOD, AND FABRICATION EQUIPMENT FOR SINGLE CRYSTAL SiC
JP2023127894A (en) Silicon carbide single crystal and method for manufacturing the same
TW202336298A (en) Silicon carbide single crystal wafer, silicon carbide single crystal ingot, and method for producing silicon carbide single crystal
JP2010090015A (en) Production apparatus and production method of silicon carbide single crystal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07743346

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1020087023688

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07743346

Country of ref document: EP

Kind code of ref document: A1