JP2011168431A - Device for producing single crystal - Google Patents

Device for producing single crystal Download PDF

Info

Publication number
JP2011168431A
JP2011168431A JP2010033069A JP2010033069A JP2011168431A JP 2011168431 A JP2011168431 A JP 2011168431A JP 2010033069 A JP2010033069 A JP 2010033069A JP 2010033069 A JP2010033069 A JP 2010033069A JP 2011168431 A JP2011168431 A JP 2011168431A
Authority
JP
Japan
Prior art keywords
heat insulating
insulating material
crucible
single crystal
core tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010033069A
Other languages
Japanese (ja)
Other versions
JP5143159B2 (en
Inventor
Tomoaki Kosho
智明 古庄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010033069A priority Critical patent/JP5143159B2/en
Publication of JP2011168431A publication Critical patent/JP2011168431A/en
Application granted granted Critical
Publication of JP5143159B2 publication Critical patent/JP5143159B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a device for producing a single crystal, for example, for producing a SiC single crystal by a sublimation method, the device capable of suppressing degradation of a heat insulating material during growing a single crystal, increasing reproducibility of the temperature distribution in a crucible and suppressing increase in the production cost. <P>SOLUTION: The device for producing a single crystal includes a conductive crucible 10 and a conductive core pipe 11 disposed close to the outer circumference of the crucible 10 and covering a side and an upper part of the crucible 10. When the crucible 10 is heated by using an induction heating method, the core pipe 11 is disposed in such a manner that the lower end of the pipe is positioned lower than the bottom of the crucible 10. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、炭化珪素(SiC)等の単結晶の製造方法および製造装置に関するものである。   The present invention relates to a method and apparatus for producing a single crystal such as silicon carbide (SiC).

炭化珪素(SiC)半導体は、熱的・化学的に優れた特性を有し、且つ、禁制帯幅が珪素(Si)半導体に比べ大きく電気的にも優れた特性を有する半導体材料として知られている。特に4H型のSiCは、電子移動度や飽和電子速度が大きなことから、パワーデバイス向けの半導体材料としての実用化が望まれている。   A silicon carbide (SiC) semiconductor is known as a semiconductor material having excellent thermal and chemical characteristics, and having a forbidden band width larger than that of a silicon (Si) semiconductor, and also excellent in electrical characteristics. Yes. In particular, 4H-type SiC has a high electron mobility and saturated electron velocity, so that practical application as a semiconductor material for power devices is desired.

半導体としての単結晶を得る方法として、改良レイリー法(昇華法)が広く用いられている。現在、直径100mmまでのSiC基板が市販されているが、結晶欠陥密度が高いため、半導体の用途として用いるにはさらに結晶欠陥密度を下げる必要がある。また半導体装置の量産性を考えると、SiC単結晶の大口径化、長尺化が必要不可欠である。   As a method for obtaining a single crystal as a semiconductor, an improved Rayleigh method (sublimation method) is widely used. Currently, SiC substrates with a diameter of up to 100 mm are commercially available, but since the crystal defect density is high, it is necessary to further reduce the crystal defect density for use as a semiconductor application. Also, considering the mass productivity of semiconductor devices, it is essential to increase the diameter and length of SiC single crystals.

昇華法によるSiC単結晶の製造は、SiC単結晶である種結晶(種基板)とSiC原料とを坩堝内に対向配置し、坩堝内を真空引き(排気)してアルゴン(Ar)等の不活性ガスで空気置換した後、坩堝を加熱して高温(約2400℃)にし、SiC原料を昇華させることによって行われる。このとき種結晶を原料より低温に保持することにより、原料が昇華したガス(原料ガス)が温度勾配に従って拡散し、種結晶の表面に到達してSiC単結晶のインゴットが成長する。   The production of SiC single crystal by the sublimation method involves placing a seed crystal (seed substrate), which is an SiC single crystal, and an SiC raw material facing each other in a crucible, and evacuating (evacuating) the inside of the crucible so After air substitution with the active gas, the crucible is heated to a high temperature (about 2400 ° C.), and the SiC raw material is sublimated. At this time, by holding the seed crystal at a temperature lower than that of the raw material, the gas (raw material gas) sublimated from the raw material diffuses according to the temperature gradient, reaches the surface of the seed crystal, and an SiC single crystal ingot grows.

このときの坩堝の加熱方式としては、高周波による誘導加熱法が一般的である。誘導加熱法は、高周波により導電体中に発生する誘導電流によって、導電体が発熱することを利用したものである。このため坩堝の材質は、導電性を有し、且つ高温で耐え得ることが必要とされる。よって坩堝の材料としては、一般的にグラファイトが用いられている。   As a method for heating the crucible at this time, an induction heating method using a high frequency is generally used. The induction heating method utilizes the fact that a conductor generates heat due to an induction current generated in the conductor by a high frequency. For this reason, the material of the crucible is required to have conductivity and be able to withstand at high temperatures. Therefore, graphite is generally used as the crucible material.

坩堝の形状としては、高周波誘導加熱による表皮効果に起因する温度不均一を無くすため、また加工を容易にするために円筒状のものが用いられる。さらに坩堝からの熱輻射を抑制して効率よく坩堝の加熱を行うために、坩堝の周囲は断熱材で覆われる(例えば、特許文献1)。この断熱材は、非導電性で、且つ約2400℃の高温で耐え得ることが必要とされ、一般的にグラファイト製の断熱材が用いられる。   As the shape of the crucible, a cylindrical one is used in order to eliminate temperature non-uniformity due to the skin effect due to high frequency induction heating and to facilitate processing. Furthermore, in order to efficiently heat the crucible while suppressing thermal radiation from the crucible, the periphery of the crucible is covered with a heat insulating material (for example, Patent Document 1). This heat insulating material is required to be non-conductive and to withstand a high temperature of about 2400 ° C., and generally a heat insulating material made of graphite is used.

得られる単結晶の質は、種結晶の質の他、成長時の原料と種結晶との温度差や、坩堝の径方向の温度勾配に大きく依存する。よって質の高い単結晶を得るためには、結晶成長時の坩堝の温度分布を精密に制御する必要がある。また質の高い単結晶を繰り返し安定して得るためには、温度分布の再現性を高くすることが必要である。SiC単結晶の成長では、2500℃付近の高温における温度分布を再現しなければならず、非常に高度な技術を要する。   The quality of the obtained single crystal greatly depends on the temperature difference between the raw material and the seed crystal during growth and the temperature gradient in the radial direction of the crucible, in addition to the quality of the seed crystal. Therefore, in order to obtain a high quality single crystal, it is necessary to precisely control the temperature distribution of the crucible during crystal growth. In addition, in order to obtain a high quality single crystal repeatedly and stably, it is necessary to increase the reproducibility of the temperature distribution. In the growth of a SiC single crystal, a temperature distribution at a high temperature around 2500 ° C. must be reproduced, and a very advanced technique is required.

温度分布の再現性を高くするためには、坩堝の周囲の断熱材による熱の遮断状態を一定に保つことが重要である。現在市販されているグラファイト断熱材としては、フェルト状断熱材と、フェルト状断熱材を成型加工した成型断熱材とがある。   In order to increase the reproducibility of the temperature distribution, it is important to keep the heat shielded state by the heat insulating material around the crucible constant. Currently available graphite insulation materials include felt-like insulation materials and molded insulation materials obtained by molding felt-like insulation materials.

また単結晶の歪みを抑制して高品質な単結晶を得るためには、坩堝内において種結晶の表面から成長する単結晶を多結晶と接触することなく独立して成長させる必要がある。そのためには坩堝内の径方向の温度勾配を高い精度で制御する必要がある。またそれを達成しやすくする技術として、原料ガスを種結晶に導くテーパー状のコーンガイドを用いる技術が知られている(例えば、特許文献2)。   In addition, in order to obtain a high-quality single crystal by suppressing distortion of the single crystal, it is necessary to independently grow the single crystal grown from the surface of the seed crystal in the crucible without contacting the polycrystal. For this purpose, it is necessary to control the temperature gradient in the radial direction in the crucible with high accuracy. Further, as a technique for easily achieving this, a technique using a tapered cone guide that guides a source gas to a seed crystal is known (for example, Patent Document 2).

特開2008−110907号公報JP 2008-110907 A 特開2007−204309号公報JP 2007-204309 A

例えば、特許文献1では、坩堝の表面全体にフェルト状断熱材を密着させている。昇華法では坩堝の底部が最も高温になり、その部分の断熱材が最も速く劣化する傾向にある。例えば1回の成長の途中で断熱材が劣化すると、単結晶の成長の過程で坩堝内の温度分布の変化が生じ、質が均一な単結晶が得られない。特に単結晶の大口径化、長尺化が進むと成長に時間が長く掛かるため、この問題は顕著になる。よって断熱材の劣化を防止することは、今後の重要な課題である。   For example, in patent document 1, the felt-like heat insulating material is stuck to the whole surface of the crucible. In the sublimation method, the bottom of the crucible becomes the highest temperature, and the heat insulating material in that portion tends to deteriorate most quickly. For example, if the heat insulating material deteriorates during one growth, the temperature distribution in the crucible changes during the growth of the single crystal, and a single crystal with uniform quality cannot be obtained. In particular, when a single crystal is increased in diameter and lengthened, it takes a long time to grow, and this problem becomes remarkable. Therefore, preventing deterioration of the heat insulating material is an important issue in the future.

一方、坩堝内の温度分布の再現性を高める手法としては、単結晶を何度か成長させる毎に断熱材を交換する方法が考えられる。形状・寸法の安定性の観点からは、成型断熱材を用いること有利であるが、成型断熱材はフェルト状断熱材に比べて高価であるため、それを頻繁に交換すると製造コストの上昇を招く。フェルト状断熱材を使用する場合であっても、フェルト状断熱材が極度に温度上昇すると成長の途中で断熱材が劣化して温度が一定に保てない、または、次の成長に再利用できない問題があった。   On the other hand, as a method for improving the reproducibility of the temperature distribution in the crucible, a method of replacing the heat insulating material every time the single crystal is grown several times can be considered. From the viewpoint of stability of shape and dimensions, it is advantageous to use molded insulation, but molded insulation is more expensive than felt-like insulation, so if you replace it frequently, the manufacturing cost will increase. . Even if felt-like insulation is used, if the temperature of the felt-like insulation rises extremely, the insulation will deteriorate during the growth and the temperature cannot be kept constant, or it cannot be reused for the next growth. There was a problem.

本発明は以上のような課題を解決するためになされたものであり、単結晶の製造において、単結晶の成長途中での断熱材の劣化を抑制することを第1の目的とし、坩堝内の温度分布の再現性を高めることを第2の目的とし、さらに製造コストの上昇を抑えることを第3の目的とする。   The present invention has been made in order to solve the above-described problems. In the production of a single crystal, the first object is to suppress the deterioration of the heat insulating material during the growth of the single crystal. A second object is to improve the reproducibility of the temperature distribution, and a third object is to suppress an increase in manufacturing cost.

本実施の形態に係る単結晶の製造装置は、導電性の坩堝と、誘導加熱により前記坩堝を加熱する加熱手段と、前記坩堝の外周に近接して配設され、当該坩堝の外周を覆う導電性の炉芯管とを備え、前記加熱手段により前記坩堝を加熱する際、前記炉芯管の下端が前記坩堝の底よりも低い位置となるものである。   An apparatus for producing a single crystal according to the present embodiment includes a conductive crucible, a heating unit that heats the crucible by induction heating, and a conductive material that is disposed in the vicinity of the outer periphery of the crucible and covers the outer periphery of the crucible. When the crucible is heated by the heating means, the lower end of the furnace core tube is positioned lower than the bottom of the crucible.

本発明に係る単結晶の製造装置によれば、坩堝の底の外縁部における電流集中が抑制されるため、その部分の温度が過度に上昇することが防止される。それにより坩堝の周囲に設けられる断熱材が単結晶の成長途中で劣化することが抑制され、坩堝内の温度分布の再現性を高めることにより、高品質な単結晶を安定して得ることができる。   According to the single crystal manufacturing apparatus of the present invention, current concentration at the outer edge portion of the bottom of the crucible is suppressed, so that the temperature of the portion is prevented from excessively rising. As a result, the heat insulating material provided around the crucible is prevented from deteriorating during the growth of the single crystal, and by improving the reproducibility of the temperature distribution in the crucible, a high-quality single crystal can be stably obtained. .

実施の形態1に係る単結晶の製造装置の構成を示す図である。1 is a diagram showing a configuration of a single crystal manufacturing apparatus according to Embodiment 1. FIG. 実施の形態1に係る単結晶の製造装置における坩堝の断面図である。3 is a cross-sectional view of a crucible in a single crystal manufacturing apparatus according to Embodiment 1. FIG. 実施の形態1に係る単結晶の製造装置の変更例を示す図である。3 is a diagram showing a modification of the single crystal manufacturing apparatus according to Embodiment 1. FIG. 実施の形態3に係る単結晶の製造装置の構成を示す図である。6 is a diagram showing a configuration of a single crystal manufacturing apparatus according to Embodiment 3. FIG. 実施の形態4に係る単結晶の製造装置における載置台の構成図である。6 is a configuration diagram of a mounting table in a single crystal manufacturing apparatus according to Embodiment 4. FIG. 実施の形態4の載置台に用いられるグラファイト板の上面図である。6 is a top view of a graphite plate used for a mounting table in a fourth embodiment. FIG.

<実施の形態1>
図1は、実施の形態1に係る単結晶の製造装置の構成を示す図である。ここではその代表例として、SiC単結晶の製造装置を示す。図1の如く、当該製造装置は、坩堝10と、当該坩堝10を覆う炉芯管11とを備える。坩堝10および炉芯管11は、断熱性の載置台20上に載置されるが、坩堝10の底と載置台20との間には、非導電性のフェルト状断熱材22と黒鉛シート21(付着防止シート)とを介在させている。炉芯管11の側面および上面は、非導電性のフェルト状断熱材23,24によって覆われている。図示は省略するが、当該製造装置は、坩堝10を誘導加熱法によって加熱する加熱手段を備えている。
<Embodiment 1>
FIG. 1 is a diagram showing a configuration of a single crystal manufacturing apparatus according to Embodiment 1. Here, a SiC single crystal manufacturing apparatus is shown as a representative example. As shown in FIG. 1, the manufacturing apparatus includes a crucible 10 and a furnace core tube 11 that covers the crucible 10. The crucible 10 and the furnace core tube 11 are placed on a heat-insulating placing table 20, but a non-conductive felt-like heat insulating material 22 and a graphite sheet 21 are placed between the bottom of the crucible 10 and the placing table 20. (Adhesion prevention sheet) is interposed. The side surface and the upper surface of the furnace core tube 11 are covered with non-conductive felt-like heat insulating materials 23 and 24. Although illustration is omitted, the manufacturing apparatus includes a heating means for heating the crucible 10 by induction heating.

以下、坩堝10の底面に設けられたフェルト状断熱材22を「底部断熱材」、炉芯管11の側面に設けられたフェルト状断熱材23を「側部断熱材」、炉芯管11の上面に設けられたフェルト状断熱材24を「上部断熱材」と称する。これら底部断熱材22、側部断熱材23、上部断熱材24は、それぞれグラファイト製のフェルト状断熱材が複数枚重なって成る積層構造を有している。   Hereinafter, the felt-like heat insulating material 22 provided on the bottom surface of the crucible 10 is referred to as “bottom heat insulating material”, the felt-like heat insulating material 23 provided on the side surface of the furnace core tube 11 is referred to as “side heat insulating material”, The felt-like heat insulating material 24 provided on the upper surface is referred to as “upper heat insulating material”. Each of the bottom heat insulating material 22, the side heat insulating material 23, and the top heat insulating material 24 has a laminated structure in which a plurality of graphite felt heat insulating materials overlap each other.

坩堝10は、誘導加熱法によって加熱できるように、導電性を有する必要がある。本実施の形態では坩堝10はグラファイト製のものを用いている。図2は、坩堝10の構造の一例を示す断面図である。坩堝10は、SiCの原料102を収納するための原料収納容器101と、種結晶104が取り付けるための台座103aを有する蓋103とを備える。原料収納容器101の内側面には、原料102が昇華したガスを台座103aへと導くためのテーパー状ガイド105が設けられている。   The crucible 10 needs to have conductivity so that it can be heated by induction heating. In the present embodiment, the crucible 10 is made of graphite. FIG. 2 is a cross-sectional view showing an example of the structure of the crucible 10. The crucible 10 includes a raw material storage container 101 for storing a SiC raw material 102 and a lid 103 having a pedestal 103a to which a seed crystal 104 is attached. On the inner surface of the raw material storage container 101, a tapered guide 105 for guiding the gas sublimated from the raw material 102 to the pedestal 103a is provided.

炉芯管11も導電性を有するものであり、本実施の形態ではグラファイト製のものを用いている。炉芯管11は、坩堝10の側面に近接し、当該坩堝10の側方および上方を覆う形状を有している。炉芯管11の上面には、中央部に放熱用開口部11aが設けられる。また図1に示すように、本実施の形態では、炉芯管11の下端は、坩堝10底よりも低い位置にまで延びている。坩堝10の周囲が炉芯管11で覆われていると、炉芯管11の輻射によって断熱効果が向上するため、坩堝10を効率よく加熱することができる。坩堝10と炉芯管11とは接触してもよいが、取り扱いの便宜のため、坩堝10の外径と炉芯管11の内径とに寸法の差(例えば0.4mm程度)を設けるとよい。   The furnace core tube 11 also has conductivity, and in this embodiment, a graphite tube is used. The furnace core tube 11 is close to the side surface of the crucible 10 and has a shape that covers the side and upper side of the crucible 10. On the upper surface of the furnace core tube 11, a heat radiation opening 11 a is provided at the center. As shown in FIG. 1, in the present embodiment, the lower end of the furnace core tube 11 extends to a position lower than the bottom of the crucible 10. When the periphery of the crucible 10 is covered with the furnace core tube 11, the heat insulation effect is improved by the radiation of the furnace core tube 11, so that the crucible 10 can be efficiently heated. The crucible 10 and the furnace core tube 11 may be in contact with each other. However, for convenience of handling, a difference in dimensions (for example, about 0.4 mm) may be provided between the outer diameter of the crucible 10 and the inner diameter of the furnace core tube 11. .

ここで、昇華法による単結晶の成長においては、坩堝の底部を上部よりも高温に加熱する必要があるため、坩堝の底部に大きな誘導電流を生じさせる必要がある。本発明者は、シミュレーションにより、炉芯管を用いずに坩堝のみを誘導加熱を行った際、坩堝の底の外縁部に電流集中が生じ、その部分に局所的な温度上昇が生じる確認した。また実際に単結晶の成長を行ったとき、坩堝の外縁部のグラファイトが昇華し、その部分の角が落ちて丸くなったことからも、その部分で温度が上がり過ぎていることが推察できた。   Here, in the growth of a single crystal by the sublimation method, since it is necessary to heat the bottom of the crucible to a temperature higher than the top, it is necessary to generate a large induced current at the bottom of the crucible. The present inventor has confirmed by simulation that when only the crucible is induction-heated without using the furnace core tube, current concentration occurs in the outer edge of the bottom of the crucible, and local temperature rise occurs in that portion. In addition, when the single crystal was actually grown, the graphite at the outer edge of the crucible sublimated, and the corners of that part dropped and rounded, so it was inferred that the temperature was too high at that part. .

本発明者は、図1のように坩堝10を炉芯管11で覆い、且つ、炉芯管11の下端を坩堝10底よりも低い位置にまで延ばすことで、坩堝10の底の外縁部での電界集中を抑制できることを見出した。これにより、坩堝10の底の外縁部の温度が過度に上昇するのを防止できる。それにより坩堝10の底に接する底部断熱材22の劣化を抑制することができる。なお、発明者は炉芯管11の下端が坩堝10の底と同じ高さの場合についても調査したが、その場合はこの効果は殆ど得られなかった。   The inventor covers the crucible 10 with the furnace core tube 11 as shown in FIG. 1 and extends the lower end of the furnace core tube 11 to a position lower than the bottom of the crucible 10, so that the outer edge of the bottom of the crucible 10 It was found that the electric field concentration can be suppressed. Thereby, it can prevent that the temperature of the outer edge part of the bottom of the crucible 10 rises too much. Thereby, deterioration of the bottom heat insulating material 22 in contact with the bottom of the crucible 10 can be suppressed. The inventor also investigated the case where the lower end of the furnace core tube 11 was the same height as the bottom of the crucible 10, but in this case, this effect was hardly obtained.

炉芯管11の厚さは、誘導加熱における誘導電流の浸透深さよりも小さく、望ましくは3分の1以下とする。また炉芯管11の固有抵抗は、坩堝10の固有抵抗よりも高い方がよく、より好ましくは1200μΩcm〜1300μΩcmの範囲である。このように炉芯管11を薄く、また固有抵抗を高くすると、炉芯管11に発生する誘導電流の大きさが抑えられるので、炉芯管11温度が過度に上昇することが防止される。従って、炉芯管11側面の側部断熱材23、炉芯管11の上の上部断熱材24、並びに炉芯管11が載置された載置台20の劣化を防止できる効果が得られる。なお、誘導電流の大きさや浸透深さは、加熱手段の発振器の周波数に依存するため、炉芯管11の厚さおよび固有抵抗は、その周波数に応じて適宜調整するとよい。   The thickness of the furnace core tube 11 is smaller than the penetration depth of the induction current in the induction heating, and is preferably 1/3 or less. The specific resistance of the furnace core tube 11 should be higher than the specific resistance of the crucible 10, and more preferably in the range of 1200 μΩcm to 1300 μΩcm. Thus, if the furnace core tube 11 is made thin and the specific resistance is increased, the magnitude of the induced current generated in the furnace core tube 11 is suppressed, so that the temperature of the furnace core tube 11 is prevented from excessively rising. Therefore, the effect which can prevent deterioration of the side heat insulating material 23 on the side surface of the furnace core tube 11, the upper heat insulating material 24 on the furnace core tube 11, and the mounting table 20 on which the furnace core tube 11 is mounted is obtained. In addition, since the magnitude | size and penetration depth of an induced current depend on the frequency of the oscillator of a heating means, it is good to adjust the thickness and specific resistance of the furnace core tube 11 suitably according to the frequency.

本実施の形態では、載置台20として非導電性のグラファイト製の成型断熱材を用いている。載置台20は、最上部に位置し坩堝10と略同じ径の第1段部201と、その下に位置し第1段部201より径が大きい第2段部202と、さらにその下に位置し第2段部202よりも径が大きい第3段部203とから成る3段構造となっている。また、載置台20には、坩堝10の温度測定に使用される貫通孔20aが設けられている。坩堝10の誘導加熱を行う際は、図1のように、坩堝10は第1段部201の上面に載置され、第2段部202の上面に炉芯管11が載置される。これにより、炉芯管11の下端を坩堝10底よりも低い位置にした状態での誘導加熱が可能になる。   In the present embodiment, a non-conductive graphite molded heat insulating material is used as the mounting table 20. The mounting table 20 is located at the top and has a first step 201 having the same diameter as the crucible 10, a second step 202 having a diameter larger than that of the first step 201, and a position below the first step 201. The third step portion 203 has a third step portion 203 having a diameter larger than that of the second step portion 202. Further, the mounting table 20 is provided with a through hole 20 a used for measuring the temperature of the crucible 10. When performing induction heating of the crucible 10, as shown in FIG. 1, the crucible 10 is placed on the upper surface of the first step portion 201, and the furnace core tube 11 is placed on the upper surface of the second step portion 202. Thereby, induction heating is possible in a state where the lower end of the furnace core tube 11 is positioned lower than the bottom of the crucible 10.

炉芯管11の下端を坩堝10底よりも低い位置にした状態で誘導加熱を行えば坩堝10の底の外縁部の温度上昇を抑制できるが、昇華法ではやはり坩堝10の底部を最も高温にする必要があるため、坩堝10の底に接する底部断熱材22の劣化は、側部断熱材23や上部断熱材24に比べると速い。そのため上部断熱材24は、比較的高い頻度で交換する必要がある。そのため本実施の形態では、底部断熱材22として安価なフェルト断熱材を採用しており、コストの上昇を抑えている。   If induction heating is performed with the lower end of the furnace core tube 11 positioned lower than the bottom of the crucible 10, the temperature rise at the outer edge of the bottom of the crucible 10 can be suppressed. However, in the sublimation method, the bottom of the crucible 10 is still at the highest temperature. Therefore, the deterioration of the bottom heat insulating material 22 in contact with the bottom of the crucible 10 is faster than the side heat insulating material 23 and the upper heat insulating material 24. Therefore, it is necessary to replace the upper heat insulating material 24 with a relatively high frequency. Therefore, in this embodiment, an inexpensive felt heat insulating material is employed as the bottom heat insulating material 22 to suppress an increase in cost.

上記のようにフェルト断熱材は形状・寸法が不安定であるが、底部断熱材22の下方に形状・寸法が安定した成型断熱材の載置台20を配置することによって、温度分布の再現性が低下するのを抑えている。   As described above, the shape and size of the felt heat insulating material are unstable. However, the temperature distribution can be reproducible by placing the mounting table 20 of the molded heat insulating material having a stable shape and size below the bottom heat insulating material 22. It suppresses the decline.

また本実施の形態では、底部断熱材22と載置台20との間に、黒鉛シート21(付着防止シート)を介在させている。坩堝10を加熱するときにフェルト断熱材の底部断熱材22と成型断熱材の載置台20とが接していると、その熱の影響で底部断熱材22が載置台20に付着するため、底部断熱材22の交換の際に載置台20の表面のコーティングが剥がれて載置台20の劣化が進むという問題が生じるが、両者の間に黒鉛シート21が介在することによりそれを防止できる。本実施の形態では黒鉛シートを用いたが、坩堝10の加熱時の熱に対する耐性があり、載置台20と底部断熱材22との付着を防止できる素材であれば、他のものを用いてもよい。   In the present embodiment, a graphite sheet 21 (adhesion prevention sheet) is interposed between the bottom heat insulating material 22 and the mounting table 20. When the crucible 10 is heated, if the bottom heat insulating material 22 of the felt heat insulating material and the mounting table 20 of the molded heat insulating material are in contact with each other, the bottom heat insulating material 22 adheres to the mounting table 20 due to the influence of the heat. Although the coating of the surface of the mounting table 20 is peeled off when the material 22 is replaced, deterioration of the mounting table 20 occurs, but this can be prevented by interposing the graphite sheet 21 therebetween. Although a graphite sheet is used in the present embodiment, other materials can be used as long as they are resistant to heat during heating of the crucible 10 and can prevent adhesion between the mounting table 20 and the bottom heat insulating material 22. Good.

なお、黒鉛シート21および底部断熱材22には、載置台20の温度測定用貫通孔20aに対応する位置に開口が設けられている。   Note that the graphite sheet 21 and the bottom heat insulating material 22 are provided with openings at positions corresponding to the temperature measurement through holes 20 a of the mounting table 20.

一方、側部断熱材23(フェルト状断熱材)は、坩堝10の側面のみならず、載置台20の第1段部20および第2段部202の側方にも巻きつけられる。つまり側部断熱材23の下端の位置(第3段部203の上面付近)は、炉芯管11の下端の位置(第2段部202の上面)よりもさらに低くなる。この構造により、炉芯管11の下端と第2段部202の上面の間から熱が漏れるのを側部断熱材23が防止することができる。   On the other hand, the side heat insulating material 23 (felt-like heat insulating material) is wound not only on the side surface of the crucible 10 but also on the side of the first step portion 20 and the second step portion 202 of the mounting table 20. That is, the position of the lower end of the side heat insulating material 23 (near the upper surface of the third step portion 203) is further lower than the position of the lower end of the furnace core tube 11 (the upper surface of the second step portion 202). With this structure, the side heat insulating material 23 can prevent heat from leaking from between the lower end of the furnace core tube 11 and the upper surface of the second step portion 202.

但し、載置台20の第3段部203の側面は、側部断熱材23を巻きつけずに露出させる。安定した形状を有する載置台20(成型断熱材)の側部が露出することにより、坩堝10が載置され側部断熱材23で巻かれた載置台20を運搬する際、運搬する者が保持し易くなる。   However, the side surface of the third step portion 203 of the mounting table 20 is exposed without winding the side heat insulating material 23. Since the side part of the mounting table 20 (molded heat insulating material) having a stable shape is exposed, the transporter holds the crucible 10 when the crucible 10 is mounted and the mounting table 20 wound with the side heat insulating material 23 is transported. It becomes easy to do.

なお、図1においては、載置台20の第2段部202の径が炉芯管11の径より大きいため、側部断熱材23のフェルト状断熱材のうち内側の数枚は、第2段部202の側面に巻かれずに、その下端が炉芯管11の下端と揃った高さになっている。しかし図3のように、第2段部202の径を炉芯管11の径と略等しくして、側部断熱材23を構成するフェルト状断熱材の全てが第2段部202の側面にも巻き付けられる構成としてもよい。図3の構成では側部断熱材23を炉芯管11および載置台20に巻きつける作業は容易になるが、図1の構成に比べて、載置台20の第2段部202の径を高い精度で加工する必要が生じる点に留意すべきである。   In FIG. 1, since the diameter of the second step portion 202 of the mounting table 20 is larger than the diameter of the furnace core tube 11, among the felt-like heat insulating materials of the side heat insulating materials 23, the inner several pieces are the second step. The lower end of the portion 202 is aligned with the lower end of the furnace core tube 11 without being wound around the side surface of the portion 202. However, as shown in FIG. 3, the diameter of the second step portion 202 is made substantially equal to the diameter of the furnace core tube 11, and all of the felt-like heat insulating material constituting the side heat insulating material 23 is placed on the side surface of the second step portion 202. It is good also as a structure also wound. In the configuration of FIG. 3, the work of winding the side heat insulating material 23 around the furnace core tube 11 and the mounting table 20 becomes easy, but the diameter of the second step portion 202 of the mounting table 20 is higher than that of the configuration of FIG. 1. It should be noted that it is necessary to process with accuracy.

炉芯管11の上面に設けられる上部断熱材24は、フェルト状断熱材を複数枚重ねた積層構造であり、炉芯管11の放熱用開口部11aに対応する位置が開口されている。上部断熱材24を構成するフェルト状断熱材の枚数や、放熱用開口部11aに対応する開口の大きさを調整することによって、坩堝10の縦方向および径方向の温度勾配を調整することができる。それにより、単結晶の成長速度やインゴットの形状を制御することができる。   The upper heat insulating material 24 provided on the upper surface of the furnace core tube 11 has a laminated structure in which a plurality of felt heat insulating materials are stacked, and a position corresponding to the heat radiation opening 11 a of the furnace core tube 11 is opened. The temperature gradient in the longitudinal direction and the radial direction of the crucible 10 can be adjusted by adjusting the number of felt-like heat insulating materials constituting the upper heat insulating material 24 and the size of the opening corresponding to the heat radiating opening 11a. . Thereby, the growth rate of the single crystal and the shape of the ingot can be controlled.

例えば、上部断熱材24のフェルト断熱材の枚数を多くすると、炉芯管11から上方への放熱が小さくなるため縦方向の温度勾配は小さくなる。またそのとき炉芯管11からの放熱は中心部の放熱用開口部11aで集中的に起こるので、径方向の温度勾配は大きくなる。逆に、上部断熱材24のフェルト断熱材の枚数を少なくすると、炉芯管11の上方への放熱が大きくなるため縦方向の温度勾配は大きくなる。またそのとき炉芯管11の上面では放熱用開口部11a以外の部分からの放熱が大きくなるので、径方向の温度勾配は小さくなる。   For example, if the number of felt heat insulating materials in the upper heat insulating material 24 is increased, the upward heat radiation from the furnace core tube 11 is reduced, so that the vertical temperature gradient is reduced. At that time, heat radiation from the furnace core tube 11 occurs intensively in the heat radiation opening 11a in the center, so that the temperature gradient in the radial direction increases. On the contrary, if the number of felt heat insulating materials of the upper heat insulating material 24 is reduced, the heat radiation to the upper side of the furnace core tube 11 is increased, so that the temperature gradient in the vertical direction is increased. At that time, since the heat radiation from the portion other than the heat radiation opening 11a becomes large on the upper surface of the furnace core tube 11, the temperature gradient in the radial direction becomes small.

ここで、本実施の形態に係る単結晶の製造装置を用いた、SiC単結晶の製造方法の具体例を説明する。   Here, the specific example of the manufacturing method of a SiC single crystal using the manufacturing apparatus of the single crystal which concerns on this Embodiment is demonstrated.

まず坩堝10を用意し、その蓋103の台座103aに種結晶104を取り付け、原料収納容器101の内部にSiCの原料102を充填し、さらに図2のようにテーパー状ガイド105を設置する。その後、黒鉛シート21および底部断熱材22を搭載した載置台20の上に、坩堝10と炉芯管11を設置する。そして炉芯管11の側面にフェルト状断熱材を巻いて側部断熱材23を形成し、炉芯管11の上面をフェルト状断熱材で覆って上部断熱材24を形成する。それにより、図1に示した構成が得られる。   First, the crucible 10 is prepared, the seed crystal 104 is attached to the base 103a of the lid 103, the raw material container 101 is filled with the SiC raw material 102, and the tapered guide 105 is further installed as shown in FIG. Thereafter, the crucible 10 and the furnace core tube 11 are installed on the mounting table 20 on which the graphite sheet 21 and the bottom heat insulating material 22 are mounted. And the felt-shaped heat insulating material is wound around the side surface of the furnace core tube 11 to form the side heat insulating material 23, and the upper surface of the furnace core tube 11 is covered with the felt-shaped heat insulating material to form the upper heat insulating material 24. Thereby, the structure shown in FIG. 1 is obtained.

炉芯管11は厚さ3mmのグラファイトで構成した。黒鉛シート21は厚さ0.4mm程度で柔軟性のあるものを用いた。底部断熱材22は厚さ7mmのフェルト状断熱材を3枚重ねて構成し、側部断熱材23は厚さ7mmのフェルト状断熱材を4枚重ねて構成した。上部断熱材24は厚さ7mmのフェルト状断熱材を14枚重ねて構成したが、その枚数は成長させる結晶に合わせて調整する。   The furnace core tube 11 was made of graphite having a thickness of 3 mm. The graphite sheet 21 was about 0.4 mm thick and flexible. The bottom heat insulating material 22 was composed of three 7 mm thick felt-shaped heat insulating materials, and the side heat insulating material 23 was composed of four 7 mm thick felt heat insulating materials. The upper heat insulating material 24 is composed of 14 felt-like heat insulating materials having a thickness of 7 mm, and the number is adjusted according to the crystal to be grown.

そして、坩堝10が載置された載置台20を炉の中に設置し、炉内の圧力を10-4Pa台まで真空引き(排気)する。そして炉内にアルゴン等の不活性ガスを充填し、炉内の圧力を800hPaに保つ。炉内の圧力を800hPaを保持したまま、誘導加熱により坩堝10の温度をSiCの成長温度(坩堝10内の底部の温度が2225℃、上部の温度が2100℃)にまで加熱する。加熱手段の発振器の周波数は10kHzとした。この場合、誘導電流の浸透深さは1.7cmと計算できる。 Then, the mounting table 20 on which the crucible 10 is mounted is placed in a furnace, and the pressure in the furnace is evacuated (exhausted) to a level of 10 −4 Pa. The furnace is filled with an inert gas such as argon, and the pressure in the furnace is maintained at 800 hPa. While maintaining the pressure in the furnace at 800 hPa, the temperature of the crucible 10 is heated to the SiC growth temperature (the bottom temperature in the crucible 10 is 2225 ° C. and the top temperature is 2100 ° C.) by induction heating. The frequency of the oscillator of the heating means was 10 kHz. In this case, the penetration depth of the induced current can be calculated as 1.7 cm.

続いて、坩堝10の温度を維持したまま、炉内の圧力をSiCの成長圧力(3.7hPa)まで減圧する。炉内の圧力が成長圧力に達すると種結晶104上でSiC単結晶の成長が開始する。   Subsequently, the pressure in the furnace is reduced to the SiC growth pressure (3.7 hPa) while maintaining the temperature of the crucible 10. When the pressure in the furnace reaches the growth pressure, the growth of the SiC single crystal on the seed crystal 104 starts.

所定の成長時間(約50時間とした)の経過後、炉内にアルゴンを充填して、炉内の圧力を800hPaに上昇させる。そして炉内圧力を800hPaに保持したまま、坩堝10の温度を時間をかけて(約10時間とした)室温まで下げ、成長したSiC単結晶を坩堝10から取り出す。   After a predetermined growth time (about 50 hours) has elapsed, the furnace is filled with argon, and the pressure in the furnace is increased to 800 hPa. Then, while maintaining the furnace pressure at 800 hPa, the temperature of the crucible 10 is lowered to room temperature over time (about 10 hours), and the grown SiC single crystal is taken out from the crucible 10.

本発明者が、直径40mmの種結晶104を用いて上記の条件でSiC単結晶の製造を行った結果、高さ35mm、直径50mmのSiC単結晶が得られた。得られたSiC単結晶の質を、X線回折によるロッキングカーブ測定により評価したところ、半値幅は20秒以下となり、高品質な単結晶が得られたことが確認できた。   As a result of manufacturing the SiC single crystal under the above conditions by using the seed crystal 104 having a diameter of 40 mm, the inventor obtained a SiC single crystal having a height of 35 mm and a diameter of 50 mm. When the quality of the obtained SiC single crystal was evaluated by rocking curve measurement by X-ray diffraction, the full width at half maximum was 20 seconds or less, and it was confirmed that a high-quality single crystal was obtained.

以上のように本実施の形態に係る単結晶の製造装置によれば、炉芯管11の下端を坩堝10の底よりも低い位置にした状態で、坩堝10の誘導加熱が行われるので、坩堝10の底の外縁部における電流集中を抑制でき、その部分の過度な温度上昇を防止できる。よって結晶成長の途中での底部断熱材22の劣化を防止でき、高品質な単結晶を得ることができる。   As described above, according to the single crystal manufacturing apparatus according to the present embodiment, the induction heating of the crucible 10 is performed with the lower end of the furnace core tube 11 positioned lower than the bottom of the crucible 10. It is possible to suppress current concentration at the outer edge portion of the bottom of 10 and to prevent an excessive temperature rise at that portion. Therefore, deterioration of the bottom heat insulating material 22 during the crystal growth can be prevented, and a high quality single crystal can be obtained.

また炉芯管11の固有抵抗を坩堝10の固有抵抗よりも高くし、さらに炉芯管11の厚さを誘導加熱における誘導電流の浸透深さより薄く(望ましくは3分の1以下)することにより、炉芯管11の発熱が抑えられ、側部断熱材23、上部断熱材24、載置台20の劣化を抑制できる。   Further, by making the specific resistance of the furnace core tube 11 higher than the specific resistance of the crucible 10, and further reducing the thickness of the furnace core tube 11 to less than the penetration depth of the induction current in induction heating (preferably less than one third). Heat generation in the furnace core tube 11 is suppressed, and deterioration of the side heat insulating material 23, the upper heat insulating material 24, and the mounting table 20 can be suppressed.

さらに、劣化の速い底部断熱材22として安価なフェルト状断熱材を用いることにより、温度分布の再現性を維持するために底部断熱材22の交換を行うことによるコスト上昇が抑えられる。フェルト状断熱材の底部断熱材22は形状・寸法が不安定であるが、その下に成型断熱材の載置台20を配置することにより、温度分布の再現性を高く維持できる。またフェルト状断熱材の底部断熱材22と成型断熱材の載置台20との間に、黒鉛シート21を介在させたことにより、載置台20と底部断熱材22との付着を防止でき、底部断熱材22の交換が容易になると共に、載置台20の保護にも役立つ。   Furthermore, by using an inexpensive felt-like heat insulating material as the rapidly deteriorated bottom heat insulating material 22, an increase in cost due to replacement of the bottom heat insulating material 22 can be suppressed in order to maintain the reproducibility of the temperature distribution. Although the bottom heat insulating material 22 of the felt heat insulating material is unstable in shape and size, the reproducibility of the temperature distribution can be maintained high by disposing the mounting table 20 of the molded heat insulating material thereunder. Further, by interposing the graphite sheet 21 between the bottom heat insulating material 22 of the felt-like heat insulating material and the mounting table 20 for the molded heat insulating material, adhesion between the mounting table 20 and the bottom heat insulating material 22 can be prevented, and the bottom heat insulating material can be prevented. The replacement of the material 22 is facilitated and also useful for protecting the mounting table 20.

また、載置台20が図1のような3段構造を有するので、炉芯管11の下端が坩堝10の底よりも低い位置とした状態で、坩堝10および炉芯管11を載置台20上に載置することができる。そして側部断熱材23を、炉芯管11が載置される第2段部202にも巻きつけることにより、炉芯管11と第2段部202との間からの熱の漏れを抑制できる。また第3段部203の部分を外部に露出させることにより、運搬時の取り扱いが容易になる。   Moreover, since the mounting table 20 has a three-stage structure as shown in FIG. It can be mounted on. And the heat | fever leakage from between the core tube 11 and the 2nd step part 202 can be suppressed by winding the side part heat insulating material 23 also on the 2nd step part 202 in which the furnace core tube 11 is mounted. . Moreover, the handling at the time of conveyance becomes easy by exposing the part of the 3rd step part 203 outside.

なお、本発明の適用は、SiC単結晶の製造に限定されるものでなく、例えばAlNやGaNなど、約2000℃以上の高温(断熱材の劣化が懸念される温度)で成長を行う単結晶の製造に広く適用可能である。   The application of the present invention is not limited to the production of a SiC single crystal, but a single crystal such as AlN or GaN, which grows at a high temperature of about 2000 ° C. or higher (a temperature at which deterioration of the heat insulating material is a concern). Widely applicable to the manufacture of

<実施の形態2>
上記したように、炉芯管11の上面を覆う上部断熱材24を複数枚のフェルト状断熱材で構成することにより、その枚数により坩堝10内の温度勾配を調整して、単結晶の成長速度やインゴットの形状の制御を行うことができる。本発明者は、上部断熱材24に用いるフェルト状断熱材の枚数が8枚の場合と18枚の場合とで比較した。
<Embodiment 2>
As described above, the upper heat insulating material 24 covering the upper surface of the furnace core tube 11 is composed of a plurality of felt-shaped heat insulating materials, and the temperature gradient in the crucible 10 is adjusted according to the number of the heat insulating materials, thereby growing the single crystal growth rate. And the shape of the ingot can be controlled. The inventor made a comparison between the number of felt-like heat insulating materials used for the upper heat insulating material 24 and the number of 18 heat insulating materials.

フェルト状断熱材の枚数が8枚の場合は、坩堝10内の縦方向の温度勾配(([坩堝の下部温度]−[坩堝の上部温度])/[坩堝の高さ])は、7.83℃/cmとなり、原料102と種結晶104の温度差が大きくなり過ぎた。その結果得られた単結晶は、X線回折によるロッキングカーブ測定での半値幅が60秒前後となり、高い品質とは言えないものであった。   When the number of felt-like heat insulating materials is 8, the vertical temperature gradient in the crucible 10 (([crucible lower temperature] − [crucible upper temperature]) / [crucible height]) is 7. The temperature difference was 83 ° C./cm, and the temperature difference between the raw material 102 and the seed crystal 104 was too large. As a result, the obtained single crystal had a half-value width of about 60 seconds in the rocking curve measurement by X-ray diffraction, and was not high quality.

一方、フェルト状断熱材の枚数が18枚の場合は、坩堝10内の縦方向の温度勾配は6.45℃/cmであった。その結果得られた単結晶は、X線回折によるロッキングカーブ測定での半値幅が20秒以下となり、高い品質のものであった。   On the other hand, when the number of felt-like heat insulating materials was 18, the vertical temperature gradient in the crucible 10 was 6.45 ° C./cm. The resulting single crystal had a high quality with a half-value width of 20 seconds or less in rocking curve measurement by X-ray diffraction.

どちらの場合も、テーパー状ガイド105を備えた坩堝10を用いたが、テーパー状ガイド105の表面に成長した結晶は殆ど見られず、種結晶104の表面からのみ結晶成長し、単結晶部が独立して成長したことが確認できた。   In either case, the crucible 10 provided with the tapered guide 105 was used, but almost no crystals grown on the surface of the tapered guide 105 were seen, and the crystal grew only from the surface of the seed crystal 104, and the single crystal portion was It was confirmed that it grew independently.

なお、坩堝10内の縦方向の温度勾配が小さくなると成長速度が低下するが、坩堝10の底部の温度を高く設定することにより、成長速度を高めることができる。上の例で成長速度が0.7mm/hを得ることができる坩堝10の底部の温度は、上部断熱材24のフェルト状断熱材が8枚の場合は2185℃であったが、18枚のときはそれを2210℃に高める必要があった。その場合、どちらも50時間で高さ35mm程のインゴットが得られた。   Although the growth rate decreases when the temperature gradient in the vertical direction in the crucible 10 decreases, the growth rate can be increased by setting the temperature of the bottom of the crucible 10 high. In the above example, the temperature at the bottom of the crucible 10 at which a growth rate of 0.7 mm / h can be obtained was 2185 ° C. when the number of felt-like heat insulators in the upper heat insulator 24 was 8, but 18 Sometimes it was necessary to raise it to 2210 ° C. In that case, an ingot having a height of about 35 mm was obtained in 50 hours.

<実施の形態3>
図4は、実施の形態3に係る単結晶の製造装置の構成を示す図である。本実施の形態では載置台20を、坩堝10と略同じ径の第1段部201と、それよりも径が大きい第2段部202とから成る2段構成としたものである。また側部断熱材23は、炉芯管11と載置台20の全体に巻かれており、側部断熱材23の下端は載置台20の底と同じ高さになっている。
<Embodiment 3>
FIG. 4 is a diagram showing a configuration of a single crystal manufacturing apparatus according to the third embodiment. In the present embodiment, the mounting table 20 has a two-stage configuration including a first step part 201 having substantially the same diameter as the crucible 10 and a second step part 202 having a larger diameter. The side heat insulating material 23 is wound around the entire furnace core tube 11 and the mounting table 20, and the lower end of the side heat insulating material 23 is at the same height as the bottom of the mounting table 20.

図4の構成では、形状の安定した側部断熱材23の側面が露出されないため、坩堝10を載置台20に載置して側部断熱材23を巻いた状態での運搬が困難になるが、載置台20の形状が単純になるので、載置台20の加工が容易になるという効果が得られる。また図4の構成でも、断熱材の劣化を抑制する効果や断熱性能は、実施の形態1と同様に得られることは明らかである。   In the configuration of FIG. 4, the side surface of the side heat insulating material 23 having a stable shape is not exposed, so that it becomes difficult to carry the crucible 10 on the mounting table 20 and wind the side heat insulating material 23. Since the shape of the mounting table 20 becomes simple, the effect that the processing of the mounting table 20 becomes easy can be obtained. Also in the configuration of FIG. 4, it is obvious that the effect of suppressing deterioration of the heat insulating material and the heat insulating performance can be obtained in the same manner as in the first embodiment.

<実施の形態4>
以上の実施の形態では、坩堝10を載置するための載置台20の素材として、フェルト状断熱材を成型加工した成型断熱材を用いたが、充分な耐熱性と形状・寸法の安定性を具備するものであれば、他の素材を用いてもよい。
<Embodiment 4>
In the above embodiment, as the material for the mounting table 20 for mounting the crucible 10, a molded heat insulating material obtained by molding felt-like heat insulating material is used. However, sufficient heat resistance and shape / dimensional stability are provided. Other materials may be used as long as they are provided.

図5は、実施の形態4に係る載置台20の構成図である。当該載置台20は、グラファイト板204(板状断熱材)とグラファイト製のフェルト状断熱材205とを交互に積み重ね、それらをグラファイト製のボルト206およびナット207を用いて固定したものである。この載置台20も、温度測定用貫通孔20aを有している。図5では実施の形態1と同様の3段構造の載置台20を示しているが、実施の形態3のような2段構造としてもよい。   FIG. 5 is a configuration diagram of the mounting table 20 according to the fourth embodiment. The mounting table 20 is obtained by alternately stacking graphite plates 204 (plate-like heat insulating materials) and graphite-made felt heat insulating materials 205 using graphite bolts 206 and nuts 207. The mounting table 20 also has a temperature measurement through hole 20a. Although FIG. 5 shows a mounting table 20 having a three-stage structure similar to that of the first embodiment, a two-stage structure as in the third embodiment may be used.

フェルト状断熱材205だけでは形状・寸法が安定しないが、それをフェルト状断熱材205で挟持して固定することにより、安定した形状・寸法の載置台20が得られる。そのため少なくとも載置台20の最上部と底部にはグラファイト板204が用いられる。グラファイト板204は、坩堝10や炉芯管11と同様の硬い材質がよいが、誘導加熱により発熱させる必要は無いので、炉芯管11以上に固有抵抗が高いものを用いることが好ましい。   Although the shape and dimensions are not stable only with the felt-like heat insulating material 205, the mounting table 20 having a stable shape and dimensions can be obtained by sandwiching and fixing the felt-like heat insulating material 205. Therefore, graphite plates 204 are used at least on the top and bottom of the mounting table 20. The graphite plate 204 is preferably made of a hard material similar to that of the crucible 10 and the furnace core tube 11, but it is not necessary to generate heat by induction heating. Therefore, it is preferable to use a material having a higher specific resistance than the furnace core tube 11.

図6は、グラファイト板204の構成例を示す上面図である。グラファイト板204には、ボルト206を通すための開口部204aと、温度測定用貫通孔20aに対応する開口部204bとが設けられる。またその外周部には、径方向に切り込まれたスリット204cが形成されている。スリット204cは、坩堝10の誘導加熱の際にグラファイト板204に発生する誘導電流が低減させるように機能する。   FIG. 6 is a top view illustrating a configuration example of the graphite plate 204. The graphite plate 204 is provided with an opening 204a for allowing the bolt 206 to pass therethrough and an opening 204b corresponding to the temperature measurement through hole 20a. A slit 204c cut in the radial direction is formed on the outer peripheral portion. The slit 204c functions so as to reduce the induced current generated in the graphite plate 204 during induction heating of the crucible 10.

グラファイト板204およびフェルト状断熱材205は、成型断熱材に比べて安価なため、それらを用いてグラファイト板204を構成することによって、製造コストの削減が期待できる。   Since the graphite plate 204 and the felt-like heat insulating material 205 are less expensive than the molded heat insulating material, a reduction in manufacturing cost can be expected by configuring the graphite plate 204 using them.

また図5の例では、載置台20をグラファイト板204とフェルト状断熱材205のみから成る積層構造としたが、それらの間に黒鉛シート(付着防止シート)を介在させてもよい。その場合、グラファイト板204とフェルト状断熱材205との付着が防止されるため、載置台20が劣化したときその一部分だけを交換することが可能になり、さらなる製造コストの削減が期待できる。   In the example of FIG. 5, the mounting table 20 has a laminated structure including only the graphite plate 204 and the felt-like heat insulating material 205, but a graphite sheet (adhesion prevention sheet) may be interposed therebetween. In this case, since the adhesion between the graphite plate 204 and the felt-like heat insulating material 205 is prevented, it is possible to replace only a part of the mounting table 20 when it deteriorates, and further reduction in manufacturing cost can be expected.

10 坩堝、11 炉芯管、20 載置台、21 黒鉛シート、22 底部断熱材、23 側部断熱材、24 上部断熱材、101 原料収納容器、102 原料、103 蓋、104 種結晶、105 テーパー状ガイド、204 グラファイト板、205 フェルト状断熱材、206 ボルト、207 ナット。   10 crucible, 11 furnace core tube, 20 mounting table, 21 graphite sheet, 22 bottom heat insulating material, 23 side heat insulating material, 24 top heat insulating material, 101 raw material storage container, 102 raw material, 103 lid, 104 seed crystal, 105 tapered shape Guide, 204 graphite plate, 205 felt insulation, 206 bolts, 207 nuts.

Claims (16)

導電性の坩堝と、
誘導加熱により前記坩堝を加熱する加熱手段と、
前記坩堝の外周に近接して配設され、当該坩堝の外周を覆う導電性の炉芯管とを備え、
前記加熱手段により前記坩堝を加熱する際、前記炉芯管の下端が前記坩堝の底よりも低い位置となる
ことを特徴とする単結晶の製造装置。
A conductive crucible;
Heating means for heating the crucible by induction heating;
A conductive furnace core tube disposed in the vicinity of the outer periphery of the crucible and covering the outer periphery of the crucible;
An apparatus for producing a single crystal, wherein when the crucible is heated by the heating means, the lower end of the furnace core tube is positioned lower than the bottom of the crucible.
前記炉芯管の固有抵抗は、前記坩堝の固有抵抗よりも高い
請求項1記載の単結晶の製造装置。
The single crystal manufacturing apparatus according to claim 1, wherein a specific resistance of the furnace core tube is higher than a specific resistance of the crucible.
前記炉芯管の固有抵抗は、1200μΩcm〜1300μΩcmの範囲内である
請求項2記載の単結晶の製造装置。
The single crystal manufacturing apparatus according to claim 2, wherein a specific resistance of the furnace core tube is in a range of 1200 μΩcm to 1300 μΩcm.
前記炉芯管の厚さは、前記誘導加熱における誘導電流の浸透深さの3分の1以下である
請求項1から請求項3のいずれか1つに記載の単結晶の製造装置。
The apparatus for producing a single crystal according to any one of claims 1 to 3, wherein a thickness of the furnace core tube is equal to or less than one third of a penetration depth of an induction current in the induction heating.
坩堝が載置される断熱性の載置台と、
フェルト状断熱材から成り、前記坩堝の底と前記載置台との間に介在する底部断熱材とをさらに備える
請求項1から請求項4記載のいずれか1つに記載の単結晶の製造装置。
A heat-insulating mounting table on which the crucible is mounted;
The single crystal manufacturing apparatus according to any one of claims 1 to 4, further comprising a bottom heat insulating material made of felt-like heat insulating material and interposed between the bottom of the crucible and the mounting table.
前記載置台と前記底部断熱材との間に介在し、前記坩堝を加熱したときの熱による前記載置台と前記底部断熱材との付着を防止する付着防止シートをさらに備える
請求項5記載の単結晶の製造装置。
The single attachment according to claim 5, further comprising an adhesion preventing sheet interposed between the mounting table and the bottom heat insulating material and preventing adhesion between the mounting table and the bottom heat insulating material due to heat when the crucible is heated. Crystal manufacturing equipment.
前記載置台は、
フェルト状断熱材を成型して成る成型断熱材である
請求項5または請求項6記載の単結晶の製造装置。
The table above is
The single crystal manufacturing apparatus according to claim 5 or 6, wherein the apparatus is a molded heat insulating material formed by molding a felt-shaped heat insulating material.
前記載置台は、
フェルト状断熱材と板状断熱材とを交互に積み重ねて固定したものである
請求項5から請求項7のいずれか1つに記載の単結晶の製造装置。
The table above is
The apparatus for producing a single crystal according to any one of claims 5 to 7, wherein a felt-like heat insulating material and a plate-like heat insulating material are alternately stacked and fixed.
前記載置台は、
前記フェルト状断熱材と板状断熱材との間に介在し、前記坩堝を加熱したときの熱による前記フェルト状断熱材と板状断熱材との付着を防止する付着防止シートをさらに備える
請求項8記載の単結晶の製造装置。
The table above is
An adhesion preventing sheet that is interposed between the felt-like heat insulating material and the plate-like heat insulating material and prevents the adhesion between the felt-like heat insulating material and the plate-like heat insulating material due to heat when the crucible is heated. 8. The apparatus for producing a single crystal according to 8.
前記載置台は、
上面に前記坩堝が載置される第1段部と、
前記第1段部の下に位置し、当該第1段部のより径が大きく、上面に前記炉芯管が載置される第2段部とを含む
請求項5から請求項9のいずれか1つに記載の単結晶の製造装置。
The table above is
A first step on which the crucible is placed on the upper surface;
10. The device according to claim 5, further comprising: a second step portion that is located under the first step portion, has a larger diameter than the first step portion, and on which the furnace core tube is placed. The manufacturing apparatus of the single crystal as described in one.
フェルト状断熱材から成り、前記炉芯管、前記第1および第2段部の側方を覆う側部断熱材をさらに備える
請求項10記載の単結晶の製造装置。
The single crystal manufacturing apparatus according to claim 10, further comprising a side heat insulating material made of a felt heat insulating material and covering a side of the furnace core tube and the first and second stepped portions.
前記載置台は、
前記第2段部の下に位置し、当該第2段部のより径が大きい第3段部をさらに含み、
側部断熱材は、前記第3段部の側方を覆わないように設置される
請求項11記載の単結晶の製造装置。
The table above is
A third step portion located below the second step portion and having a larger diameter than the second step portion;
The single crystal manufacturing apparatus according to claim 11, wherein the side heat insulating material is installed so as not to cover a side of the third stepped portion.
フェルト状断熱材から成り、前記炉芯管の側方を覆う側部断熱材をさらに備え、
前記加熱手段により前記坩堝を加熱する際、前記側部断熱材の下端は前記炉芯管の下端よりも低い位置となる
請求項1から請求項4記載のいずれか1つに記載の単結晶の製造装置。
It consists of a felt-like heat insulating material, further comprising a side heat insulating material that covers the side of the furnace core tube,
The single crystal according to any one of claims 1 to 4, wherein when the crucible is heated by the heating means, a lower end of the side heat insulating material is positioned lower than a lower end of the furnace core tube. Manufacturing equipment.
坩堝が載置される断熱性の載置台をさらに備え、
前記側部断熱材は、前記載置台の一部を露出するように設置される
請求項13記載の単結晶の製造装置。
It further comprises a heat-insulating mounting table on which the crucible is mounted,
The said side part heat insulating material is a manufacturing apparatus of the single crystal of Claim 13 installed so that a part of said mounting stand may be exposed.
フェルト状断熱材から成り、前記炉芯管の上面を覆う上部断熱材をさらに備える
請求項1から請求項14のいずれか1つに記載の単結晶の製造装置。
The single crystal manufacturing apparatus according to any one of claims 1 to 14, further comprising an upper heat insulating material made of a felt-like heat insulating material and covering an upper surface of the furnace core tube.
前記坩堝は、
単結晶の原料を収納する容器と、
単結晶の種結晶を設置する台座を有する蓋と、
前記容器の内側面に設けられ、前記原料が昇華したガスを前記台座へと導くテーパー状のガイドとを備える
請求項1から請求項15のいずれか1つに記載の単結晶の製造装置。
The crucible is
A container for storing single crystal raw materials;
A lid having a pedestal for placing a single crystal seed crystal;
The single crystal manufacturing apparatus according to any one of claims 1 to 15, further comprising a tapered guide provided on an inner surface of the container and configured to guide a gas obtained by sublimation of the raw material to the pedestal.
JP2010033069A 2010-02-18 2010-02-18 Single crystal manufacturing equipment Active JP5143159B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010033069A JP5143159B2 (en) 2010-02-18 2010-02-18 Single crystal manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010033069A JP5143159B2 (en) 2010-02-18 2010-02-18 Single crystal manufacturing equipment

Publications (2)

Publication Number Publication Date
JP2011168431A true JP2011168431A (en) 2011-09-01
JP5143159B2 JP5143159B2 (en) 2013-02-13

Family

ID=44682953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010033069A Active JP5143159B2 (en) 2010-02-18 2010-02-18 Single crystal manufacturing equipment

Country Status (1)

Country Link
JP (1) JP5143159B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150068457A1 (en) * 2013-09-06 2015-03-12 Gtat Corporation Apparatus for producing bulk silicon carbide
US20150068445A1 (en) * 2013-09-06 2015-03-12 Gtat Corporation Method for producing bulk silicon carbide
WO2015098330A1 (en) * 2013-12-27 2015-07-02 住友電気工業株式会社 Apparatus for producing silicon carbide single crystal, and method for producing silicon carbide single crystal
JP2020092113A (en) * 2018-12-03 2020-06-11 昭和電工株式会社 SiC CHEMICAL VAPOR DEPOSITION APPARATUS AND MANUFACTURING METHOD OF SiC EPITAXIAL WAFER
CN111593401A (en) * 2019-02-20 2020-08-28 硅晶体有限公司 Method for producing bulk SiC single crystal and growing apparatus therefor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0412096A (en) * 1990-04-26 1992-01-16 Nippon Steel Corp Method for growing 6h-type and 4h-type silicon carbide single crystal
JP2007204309A (en) * 2006-02-01 2007-08-16 Matsushita Electric Ind Co Ltd Single crystal growth device and single crystal growth method
JP2008110907A (en) * 2006-10-31 2008-05-15 Nippon Steel Corp Method for producing silicon carbide single crystal ingot, and silicon carbide single crystal ingot
JP2008290885A (en) * 2007-05-22 2008-12-04 Denso Corp Apparatus and method for producing silicon carbide single crystal

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0412096A (en) * 1990-04-26 1992-01-16 Nippon Steel Corp Method for growing 6h-type and 4h-type silicon carbide single crystal
JP2007204309A (en) * 2006-02-01 2007-08-16 Matsushita Electric Ind Co Ltd Single crystal growth device and single crystal growth method
JP2008110907A (en) * 2006-10-31 2008-05-15 Nippon Steel Corp Method for producing silicon carbide single crystal ingot, and silicon carbide single crystal ingot
JP2008290885A (en) * 2007-05-22 2008-12-04 Denso Corp Apparatus and method for producing silicon carbide single crystal

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10851473B2 (en) * 2013-09-06 2020-12-01 Gtat Corporation Apparatus for producing bulk silicon carbide
US10801126B2 (en) * 2013-09-06 2020-10-13 Gtat Corporation Method for producing bulk silicon carbide
US11591714B2 (en) * 2013-09-06 2023-02-28 Gtat Corporation Apparatus for producing bulk silicon carbide
JP2016532630A (en) * 2013-09-06 2016-10-20 ジーティーエイティー コーポレーションGtat Corporation Equipment for producing bulk silicon carbide
JP2019163206A (en) * 2013-09-06 2019-09-26 ジーティーエイティー コーポレーションGtat Corporation Apparatus for producing bulk silicon carbide
US20150068457A1 (en) * 2013-09-06 2015-03-12 Gtat Corporation Apparatus for producing bulk silicon carbide
US20150068445A1 (en) * 2013-09-06 2015-03-12 Gtat Corporation Method for producing bulk silicon carbide
US11505876B2 (en) 2013-09-06 2022-11-22 Gtat Corporation Method for producing bulk silicon carbide
WO2015098330A1 (en) * 2013-12-27 2015-07-02 住友電気工業株式会社 Apparatus for producing silicon carbide single crystal, and method for producing silicon carbide single crystal
JP2020092113A (en) * 2018-12-03 2020-06-11 昭和電工株式会社 SiC CHEMICAL VAPOR DEPOSITION APPARATUS AND MANUFACTURING METHOD OF SiC EPITAXIAL WAFER
JP7242990B2 (en) 2018-12-03 2023-03-22 株式会社レゾナック SiC chemical vapor deposition apparatus and method for manufacturing SiC epitaxial wafer
CN111593401A (en) * 2019-02-20 2020-08-28 硅晶体有限公司 Method for producing bulk SiC single crystal and growing apparatus therefor
JP2020158385A (en) * 2019-02-20 2020-10-01 エスアイクリスタル ゲゼルシャフト ミット ベシュレンクテル ハフツング PRODUCTION METHOD OF SiC BULK SINGLE CRYSTAL AND GROWTH DEVICE FOR THE SAME
CN111593401B (en) * 2019-02-20 2024-04-09 硅晶体有限公司 Method for producing bulk SiC single crystal and apparatus for growing the same

Also Published As

Publication number Publication date
JP5143159B2 (en) 2013-02-13

Similar Documents

Publication Publication Date Title
JP5143159B2 (en) Single crystal manufacturing equipment
JP3792699B2 (en) SiC single crystal manufacturing method and SiC single crystal manufacturing apparatus
JP5146418B2 (en) Crucible for producing silicon carbide single crystal and method for producing silicon carbide single crystal
JP6584007B2 (en) Single crystal manufacturing method and single crystal manufacturing apparatus
US20120234231A1 (en) Process for producing silicon carbide single crystals
WO2009139447A1 (en) Single crystal manufacturing device and manufacturing method
JP4585359B2 (en) Method for producing silicon carbide single crystal
JP6813779B2 (en) Single crystal manufacturing equipment and single crystal manufacturing method
US8986466B2 (en) Method for carburizing tantalum member, and tantalum member
JP5602093B2 (en) Single crystal manufacturing method and manufacturing apparatus
JP2011219295A (en) Apparatus for producing silicon carbide single crystal ingot
KR20150066015A (en) Growth device for single crystal
JP6152981B2 (en) Silicon carbide single crystal
CN112553694A (en) Method and device for high-temperature annealing of silicon carbide single crystal
JP2008110907A (en) Method for producing silicon carbide single crystal ingot, and silicon carbide single crystal ingot
KR101724291B1 (en) Apparatus for growing silicon carbide single crystal using the method of reversal of Physical Vapor Transport
JP2019156660A (en) Method for manufacturing silicon carbide single crystal
JP5630400B2 (en) Single crystal manufacturing apparatus and manufacturing method
KR101619610B1 (en) Apparatus and method for growing large diameter single crystal
JP2013075789A (en) Apparatus and method for producing compound semiconductor single crystal
JP2017154953A (en) Silicon carbide single crystal production apparatus
JP2005093519A (en) Silicon carbide substrate and method of manufacturing the same
JP5573753B2 (en) SiC growth equipment
JP2013075793A (en) Apparatus and method for producing single crystal
KR101350933B1 (en) Single-crystal growing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121023

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121120

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5143159

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250