JP2017154953A - Silicon carbide single crystal production apparatus - Google Patents
Silicon carbide single crystal production apparatus Download PDFInfo
- Publication number
- JP2017154953A JP2017154953A JP2016042341A JP2016042341A JP2017154953A JP 2017154953 A JP2017154953 A JP 2017154953A JP 2016042341 A JP2016042341 A JP 2016042341A JP 2016042341 A JP2016042341 A JP 2016042341A JP 2017154953 A JP2017154953 A JP 2017154953A
- Authority
- JP
- Japan
- Prior art keywords
- single crystal
- crucible
- silicon carbide
- insulating material
- cylindrical member
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
本発明は、坩堝本体と上蓋とからなる黒鉛製の坩堝を用いて昇華再結晶法により炭化珪素単結晶を製造する際に、坩堝の上蓋の温度測定を安定して行うことができる炭化珪素単結晶製造装置に関する。 In the present invention, when a silicon carbide single crystal is produced by a sublimation recrystallization method using a graphite crucible including a crucible body and an upper lid, the temperature of the upper lid of the crucible can be stably measured. The present invention relates to a crystal manufacturing apparatus.
炭化珪素(SiC)は、耐熱性及び機械的強度も優れ、放射線に強い等の物理的、化学的性質から、耐環境性半導体材料として注目されている。SiCは、化学組成が同じでも、多数の異なった結晶構造を取る結晶多形(ポリタイプ)構造を持つ代表的物質である。ポリタイプとは、結晶構造においてSiとCの結合した分子を一単位として考えた場合、この単位構造分子が結晶のc軸方向([0001]方向)に積層する際の周期構造が異なることにより生じる。代表的なポリタイプとしては、6H、4H、15R又は3Cがある。ここで、最初の数字は積層の繰り返し周期を示し、アルファベットは結晶系(Hは六方晶系、Rは菱面体晶系、Cは立方晶系)を表す。各ポリタイプは、それぞれ物理的、電気的特性が異なり、その違いを利用して各種用途への応用が考えられている。例えば、6Hは、近年、青色から紫外にかけての短波長光デバイス用基板として用いられ、4Hは、高周波高耐圧電子デバイス等の基板ウェハとしての応用が考えられている。 Silicon carbide (SiC) has attracted attention as an environmentally resistant semiconductor material because of its excellent heat resistance and mechanical strength, and physical and chemical properties such as resistance to radiation. SiC is a typical material having a polymorphic polymorphic structure with many different crystal structures even though the chemical composition is the same. Polytype means that when a unit of Si and C bonded molecules in the crystal structure is considered as one unit, the unit structure molecule is different in the periodic structure when stacked in the c-axis direction ([0001] direction) of the crystal. Arise. Typical polytypes include 6H, 4H, 15R or 3C. Here, the first number indicates the repetition period of the lamination, and the alphabet represents a crystal system (H is a hexagonal system, R is a rhombohedral system, and C is a cubic system). Each polytype has different physical and electrical characteristics, and application to various uses is considered using the difference. For example, 6H is recently used as a substrate for short-wavelength optical devices from blue to ultraviolet, and 4H is considered to be used as a substrate wafer for high-frequency, high-voltage electronic devices.
しかしながら、大面積を有する高品質のSiC単結晶を、工業的規模で安定に供給し得る結晶成長技術は十分には確立されておらず、SiCは、上述のような多くの利点及び可能性を有する半導体材料にもかかわらず、広く実用化されるには未だ課題が多い。 However, a crystal growth technology that can stably supply a high-quality SiC single crystal having a large area on an industrial scale has not been sufficiently established, and SiC has many advantages and possibilities as described above. Despite the semiconductor materials, there are still many problems to be put into practical use.
従来、研究室程度の規模では、例えば、昇華再結晶法(レーリー法)でSiC単結晶を成長させ、半導体素子の作製が可能なサイズのSiC単結晶を得ていた。しかしながら、この方法では、得られた単結晶の面積が小さく、その寸法及び形状を高精度に制御することは困難である。また、SiCが有する結晶多形及び不純物キャリア濃度の制御も容易ではない。また、化学気相成長法(CVD法)を用いて、珪素(Si)等の異種基板上にヘテロエピタキシャル成長させることにより、立方晶のSiC単結晶を成長させることも行われている。この方法では、大面積の単結晶は得られるが、基板との格子不整合が約20%もあること等により、多くの欠陥(〜107cm-2)を含むSiC単結晶しか成長させることができず、高品質のSiC単結晶を得ることは容易でない。 Conventionally, on a laboratory scale scale, for example, a SiC single crystal was grown by a sublimation recrystallization method (Rayleigh method) to obtain a SiC single crystal of a size capable of manufacturing a semiconductor element. However, with this method, the area of the obtained single crystal is small, and it is difficult to control its size and shape with high accuracy. Also, it is not easy to control the crystal polymorphism and impurity carrier concentration of SiC. In addition, a cubic SiC single crystal is grown by heteroepitaxial growth on a heterogeneous substrate such as silicon (Si) using a chemical vapor deposition method (CVD method). With this method, a single crystal with a large area can be obtained, but only a SiC single crystal containing many defects (up to 10 7 cm -2 ) can be grown due to the lattice mismatch of about 20% with the substrate. It is not easy to obtain a high-quality SiC single crystal.
これらの問題点を解決するために、SiC単結晶{0001}面基板を種結晶として用いて昇華再結晶を行う、改良型のレーリー法が提案されている(非特許文献1)。この方法では、種結晶を用いているため結晶の核形成過程が制御でき、また、不活性ガスにより雰囲気圧力を100Pa〜15kPa程度に制御することにより、結晶の成長速度等を再現性良くコントロールできる。図2を用いて、改良レーリー法の原理を説明する。種結晶となるSiC単結晶を坩堝の上蓋(坩堝蓋)内面に設置し、原料となるSiC結晶粉末(通常、アチソン(Acheson)法で作製された研磨材を洗浄・前処理したものが使用される)は、坩堝(通常黒鉛)の下部に充填され、坩堝ごと二重石英管の内部に設置されて、アルゴン等の不活性ガス雰囲気中(133〜13.3kPa)、2000〜2400℃に加熱される。この際、原料粉末に比べ種結晶がやや低温になるように、温度勾配が設定される。原料は、昇華後、濃度勾配(温度勾配により形成される)により、種結晶方向へ拡散、輸送される。単結晶成長は、種結晶に到着した原料ガスが種結晶上で再結晶化することにより実現される。この際、結晶の体積抵抗率は、不活性ガスからなる雰囲気中に不純物ガスを添加する、あるいは、SiC原料粉末中に不純物元素あるいはその化合物を混合することにより、SiC単結晶構造中のシリコン又は炭素原子の位置を不純物元素にて置換させる(ドーピング)ことで、制御可能である。SiC単結晶中の置換型不純物として代表的なものに、窒素(n型)、ホウ素、アルミニウム(p型)がある。これらの不純物によりキャリア型及び濃度を制御しながら、SiC単結晶を成長させることができる。現在、上記の改良レーリー法で作製したSiC単結晶から口径2インチ(50.8mm)から6インチ(150.0mm)のSiC単結晶基板が切り出され、エピタキシャル薄膜成長、デバイス作製に供されている。 In order to solve these problems, an improved Rayleigh method has been proposed in which sublimation recrystallization is performed using a SiC single crystal {0001} plane substrate as a seed crystal (Non-patent Document 1). In this method, since the seed crystal is used, the nucleation process of the crystal can be controlled, and the growth rate of the crystal can be controlled with good reproducibility by controlling the atmospheric pressure to about 100 Pa to 15 kPa with an inert gas. . The principle of the improved Rayleigh method will be described with reference to FIG. The SiC single crystal that will be the seed crystal is placed on the inner surface of the crucible's upper lid (crucible lid), and the SiC crystal powder that is the raw material (usually the one that has been cleaned and pre-treated with the abrasive prepared by the Acheson method is used. Is filled in the lower part of the crucible (usually graphite), and the crucible is installed inside the double quartz tube and heated to 2000-2400 ° C in an inert gas atmosphere such as argon (133-13.3kPa). The At this time, the temperature gradient is set so that the seed crystal has a slightly lower temperature than the raw material powder. After sublimation, the raw material is diffused and transported in the direction of the seed crystal by a concentration gradient (formed by a temperature gradient). Single crystal growth is realized by recrystallization of the source gas that has arrived at the seed crystal on the seed crystal. At this time, the volume resistivity of the crystal is determined by adding an impurity gas in an atmosphere composed of an inert gas, or by mixing an impurity element or a compound thereof in the SiC raw material powder, It can be controlled by replacing the carbon atom position with an impurity element (doping). Typical substitutional impurities in SiC single crystals include nitrogen (n-type), boron, and aluminum (p-type). A SiC single crystal can be grown while controlling the carrier type and concentration by these impurities. Currently, SiC single crystal substrates having a diameter of 2 inches (50.8 mm) to 6 inches (150.0 mm) are cut out from the SiC single crystals produced by the above-described improved Rayleigh method, and are used for epitaxial thin film growth and device fabrication.
上記したように、SiC単結晶は黒鉛製坩堝内にて高温下で昇華した原料が温度勾配により形成される濃度勾配によって拡散、輸送され種結晶上へ到達し、そこで再結晶化することで成長する。このため、結晶成長における坩堝内の温度分布の制御は極めて重要な技術となる。改良レーリー法によるSiC単結晶成長において必要となる、黒鉛坩堝を2000〜2400℃の高温に加熱する方法としては、高周波印加による誘導加熱が一般的に使用されている。具体的には、高周波により導電性材料中に発生する誘導電流によって導電性材料(本事例では黒鉛製坩堝)自体が発熱することを利用する。坩堝の形状としては、高周波誘導電流による発熱が導電性材料のキャリアによる遮蔽効果のため内部に浸透せず導電性材料の表面で生じる(表皮効果)ことから、坩堝内での温度分布を均等にしやすいとして、円柱型の坩堝が常用される。 As described above, the SiC single crystal grows by recrystallizing, where the raw material sublimated at high temperature in the graphite crucible is diffused and transported by the concentration gradient formed by the temperature gradient and reaches the seed crystal. To do. For this reason, control of the temperature distribution in the crucible during crystal growth is a very important technique. As a method for heating a graphite crucible to a high temperature of 2000 to 2400 ° C., which is necessary for SiC single crystal growth by the modified Rayleigh method, induction heating by applying a high frequency is generally used. Specifically, it is utilized that the conductive material (in this case, a graphite crucible) itself generates heat due to an induced current generated in the conductive material by high frequency. As for the shape of the crucible, heat generation due to high-frequency induced current does not penetrate inside due to the shielding effect of the carrier of the conductive material and occurs on the surface of the conductive material (skin effect), so the temperature distribution in the crucible is made uniform. For ease of use, a cylindrical crucible is commonly used.
また、発熱体である黒鉛からの熱損失を抑え2000℃以上の高温を維持させる目的で、断熱材で坩堝周囲を覆うことがこれも一般的に用いられている。この際、高周波が直接坩堝に作用するように、断熱材としては導電性の無い材料か、誘導電流の発生しにくい構造にする必要がある。実際には、黒鉛製フェルトが断熱材として一般的に用いられている。 Further, for the purpose of suppressing heat loss from graphite as a heating element and maintaining a high temperature of 2000 ° C. or higher, it is also generally used to cover the crucible periphery with a heat insulating material. At this time, it is necessary that the heat insulating material is a non-conductive material or a structure in which an induced current is not easily generated so that the high frequency acts directly on the crucible. In practice, graphite felt is generally used as a heat insulating material.
実際に断熱材を配置する場合、成長時の坩堝内部での温度分布が結晶成長にとって理想的な分布となるように断熱材に加工を施す。具体的には、結晶成長中のインゴット形状が凸形状を維持できるように、種結晶が内面に取り付けられる坩堝の上蓋を覆う断熱材(上部断熱材)の中央に抜熱目的の孔を開けることで(断熱材の厚み方向に貫通した貫通孔を設けることで)、上蓋中央からの抜熱を周辺部よりも促進させて周辺部よりも中央付近が低温となり、結晶成長速度も増加することで結果として成長中の凸形状が維持できる。 When the heat insulating material is actually arranged, the heat insulating material is processed so that the temperature distribution inside the crucible during growth becomes an ideal distribution for crystal growth. Specifically, in order to maintain the convex shape of the ingot during crystal growth, a hole for heat extraction purposes is opened in the center of the heat insulating material (upper heat insulating material) that covers the crucible upper lid on which the seed crystal is attached to the inner surface. (By providing a through-hole penetrating in the thickness direction of the heat insulating material), the heat removal from the center of the upper lid is promoted more than the periphery, the temperature near the center is lower than the periphery, and the crystal growth rate is also increased. As a result, the growing convex shape can be maintained.
成長時において坩堝の温度を制御することは極めて重要であるため、実際には、上記のようにして温度分布設定用に開けた上蓋中央の断熱材の抜熱孔を利用して、その下に見える黒鉛坩堝からの放射光を検出することで坩堝上部(上蓋)の温度を放射温度計により測定し、成長時の温度計測およびそれに基づく加熱炉の電力調整を行っている(図3(a))。しかしながら、成長途中に原料から昇華した昇華ガスの一部が坩堝から漏れ出して拡散し、より低温部である抜熱孔(温度測定の際に放射光通過用の孔としても利用)の上部付近の断熱材に付着する現象が発生する(図3(b))。 Since it is extremely important to control the temperature of the crucible at the time of growth, actually, using the heat removal hole of the heat insulating material in the center of the upper lid opened for setting the temperature distribution as described above, By detecting the radiation from the visible graphite crucible, the temperature of the upper part of the crucible (top lid) is measured with a radiation thermometer, and the temperature is measured during growth and the power of the heating furnace is adjusted based on this (Fig. 3 (a)) ). However, part of the sublimation gas sublimated from the raw material during the growth leaks from the crucible and diffuses, and near the upper part of the heat removal hole, which is a lower temperature part (also used as a synchrotron radiation passage hole for temperature measurement) The phenomenon of adhering to the heat insulating material occurs (Fig. 3 (b)).
この現象により、成長時間途中で断熱材の抜熱孔の上部の周囲への付着物によって孔径が狭まるため、そこからの放射光を利用した坩堝上部の温度測定が乱され、正確な温度が計測できなくなるという問題が顕在化した。すなわち、結晶成長自体は温度測定が妨げられても維持できるが、実際の温度が途中から分からなくなるために本来理想とする「成長全般に亘っての温度計測による制御」が出来なくなるため、特に成長後半における温度制御が出来なくなり、再現性に優れた安定した結晶成長を継続することが困難となっていた。 Due to this phenomenon, the hole diameter is narrowed due to the deposits around the heat removal holes in the insulation material during the growth time, so the temperature measurement at the top of the crucible using the emitted light is disturbed and the accurate temperature is measured. The problem of being unable to do so became apparent. In other words, the crystal growth itself can be maintained even if temperature measurement is hindered, but since the actual temperature is not known from the middle, it is impossible to perform “control by temperature measurement over the entire growth”, which is the ideal ideal. Temperature control in the latter half was not possible, and it was difficult to continue stable crystal growth with excellent reproducibility.
以上述べてきたように、種結晶を用いた昇華再結晶法におけるSiC単結晶成長時間全般に亘って、黒鉛坩堝上蓋の温度を安定して測定できなかった原因は、成長時に原料から発生する昇華ガスの一部が坩堝外に漏れた際に坩堝の上蓋を覆う断熱材に設けた抜熱用の孔(同時に温度測定のための坩堝からの放射光通過孔の役割を持つ)に昇華ガスが付着して孔を塞ぐことであった。 As described above, the reason why the temperature of the graphite crucible upper lid could not be stably measured over the entire SiC single crystal growth time in the sublimation recrystallization method using the seed crystal is the sublimation generated from the raw material during the growth. When a part of the gas leaks out of the crucible, the sublimation gas enters the hole for heat removal provided in the heat insulating material that covers the top cover of the crucible (at the same time as the radiation passing hole from the crucible for temperature measurement). It was to stick and close the hole.
そこで、本発明では、上記の従来技術での問題を解決し、結晶成長時間全般に亘り、放射光通過孔でもある断熱材の抜熱孔の閉塞を防止して、安定した温度測定を実現する方法を提供することを目的とする。 Therefore, the present invention solves the above-described problems in the prior art and prevents the heat removal hole of the heat insulating material that is also a radiation light passage hole from being blocked over the entire crystal growth time, thereby realizing stable temperature measurement. It aims to provide a method.
すなわち、本発明の要旨は、
(1)炭化珪素原料を充填する坩堝本体と内面に種結晶を設置する上蓋とからなる黒鉛製坩堝の外側が断熱材で覆われて、昇華再結晶法により炭化珪素単結晶を製造するための炭化珪素単結晶製造装置であって、前記上蓋の表面を覆う断熱材が厚み方向に貫通した貫通孔を備えて、該貫通孔には黒鉛製の円筒状部材が配置されていることを特徴とする炭化珪素単結晶製造装置、
(2)前記円筒状部材の内径が5mm以上25mm以下であることを特徴とする(1)に記載の炭化珪素単結晶製造装置、
(3)前記円筒状部材が断熱材の貫通孔に配置された状態で、断熱材の表面から円筒状部材が20〜100mmの長さで突出することを特徴とする(1)又は(2)に記載の炭化珪素単結晶製造装置、
(4)前記円筒状部材の一端が、上蓋の表面中央部に接続されていることを特徴とする(1)〜(3)のいずれかに記載の炭化珪素単結晶製造装置、
である。
That is, the gist of the present invention is as follows.
(1) For manufacturing a silicon carbide single crystal by a sublimation recrystallization method in which the outer side of a graphite crucible comprising a crucible body filled with a silicon carbide raw material and an upper lid on which seed crystals are placed on the inner surface is covered with a heat insulating material. A silicon carbide single crystal manufacturing apparatus, characterized in that a heat insulating material covering the surface of the upper lid is provided with a through hole penetrating in a thickness direction, and a graphite cylindrical member is disposed in the through hole. A silicon carbide single crystal manufacturing apparatus,
(2) The silicon carbide single crystal manufacturing apparatus according to (1), wherein an inner diameter of the cylindrical member is 5 mm or more and 25 mm or less,
(3) The cylindrical member protrudes from the surface of the heat insulating material with a length of 20 to 100 mm in a state where the cylindrical member is disposed in the through hole of the heat insulating material (1) or (2) A silicon carbide single crystal manufacturing apparatus according to claim 1,
(4) One end of the cylindrical member is connected to the center of the surface of the upper lid, The silicon carbide single crystal manufacturing apparatus according to any one of (1) to (3),
It is.
本発明の製造装置によれば、高周波印加による誘導加熱を用いた昇華再結晶法によるSiC単結晶成長において、坩堝上部(上蓋)の温度測定を結晶成長全般に亘って安定して行なえることにより、結晶性の良好なSiC単結晶を高い歩留まりで製造することができる。 According to the manufacturing apparatus of the present invention, in the SiC single crystal growth by the sublimation recrystallization method using induction heating by applying high frequency, the temperature measurement of the upper part of the crucible (upper lid) can be stably performed over the entire crystal growth. Thus, it is possible to produce a SiC single crystal having good crystallinity with a high yield.
本発明に係る実施の形態を以下に説明する。
本発明は、炭化珪素原料を充填する坩堝本体と内面に種結晶を設置する上蓋とからなる黒鉛製坩堝の外側が断熱材で覆われて、昇華再結晶法により炭化珪素単結晶を製造するための炭化珪素単結晶製造装置であり、本発明者らは、坩堝上部に相当する坩堝上蓋の温度を非接触の温度計で測定するための放射光の通過孔となる断熱材の抜熱孔に対する、上述したような昇華ガスの侵入が抑制できれば、放射光通過孔が閉塞される問題が解決できると考え、試行錯誤を行い本発明に至った。すなわち、坩堝上蓋の表面を覆う断熱材が厚み方向に貫通した貫通孔を備えて、該貫通孔には黒鉛製の円筒状部材が配置されるようにする。
Embodiments according to the present invention will be described below.
The present invention is to manufacture a silicon carbide single crystal by a sublimation recrystallization method in which the outside of a graphite crucible composed of a crucible body filled with a silicon carbide raw material and an upper lid on which seed crystals are placed on the inner surface is covered with a heat insulating material. The silicon carbide single crystal manufacturing apparatus of the present invention, the inventors of the present invention, with respect to the heat removal hole of the heat insulating material that becomes a passage hole for the synchrotron radiation for measuring the temperature of the crucible upper lid corresponding to the crucible upper portion with a non-contact thermometer If the invasion of the sublimation gas as described above can be suppressed, the problem that the radiated light passage hole is blocked can be solved. That is, a heat insulating material that covers the surface of the crucible upper cover is provided with a through hole penetrating in the thickness direction, and a graphite cylindrical member is disposed in the through hole.
より詳しくは、図1に例示したように、坩堝上蓋の表面中央部に接するように黒鉛製の円筒状部材を設けるようにしてその一端を上蓋に接続させ、該黒鉛製円筒状部材が坩堝の上蓋の上に設けた断熱材を貫通して、他端を突き出させるのが好ましい。このようにして、円筒状部材の内部を放射光の通過孔として用いれば、黒鉛製の円筒状部材は根底部(根本部分)で坩堝の上蓋と接しており、接合部は昇華ガスの侵入が抑制できるようになっているため、結晶成長時間全般に亘り安定した温度測定を行うことができると共に、坩堝上蓋における中央からの抜熱を周辺部よりも促進させることができて種結晶に対する好適な成長結晶の凸形状を維持することができる。 More specifically, as illustrated in FIG. 1, a graphite cylindrical member is provided so as to be in contact with the center of the surface of the crucible upper lid, and one end of the graphite cylindrical member is connected to the upper lid. It is preferable to penetrate the heat insulating material provided on the upper lid and protrude the other end. In this way, if the inside of the cylindrical member is used as a passage hole for synchrotron radiation, the graphite cylindrical member is in contact with the crucible top lid at the root (the root portion), and sublimation gas intrudes at the joint. Since the temperature can be controlled stably over the entire crystal growth time, heat removal from the center of the crucible upper lid can be promoted more than the peripheral portion, which is suitable for the seed crystal. The convex shape of the grown crystal can be maintained.
従来、昇華再結晶法により炭化珪素単結晶の製造においては、図3に示したように、成長が進むにつれて坩堝から漏れ出した昇華ガスが二重石英管内を拡散し、他に比べて低温部である断熱材の抜熱孔に付着して孔を塞いでしまったり、放射光を遮ってしまうなどの問題が生じていた。それに対して、本発明によれば、放射光透過用の孔の位置まで拡散した昇華ガスは、黒鉛製の円筒状部材が坩堝上蓋表面の断熱材を貫通して設けられているため、図4に示したように、仮に漏れ出した昇華ガスが付着したとしても円筒状部材の外側(外周)での付着に留まり、円筒状部材の内側となる空間は常に放射光が遮られることなく通過できて、成長全般を通して安定した温度測定が可能となる。 Conventionally, in the production of a silicon carbide single crystal by the sublimation recrystallization method, as shown in FIG. 3, the sublimation gas leaking from the crucible diffuses in the double quartz tube as the growth proceeds, and the low temperature portion is compared with the others. There are problems such as adhering to the heat removal hole of the heat insulating material and blocking the hole or blocking the emitted light. On the other hand, according to the present invention, the sublimation gas diffused to the position of the hole for transmitting radiated light is provided with the graphite cylindrical member penetrating the heat insulating material on the crucible upper lid surface. As shown in Fig. 4, even if the leaked sublimation gas adheres, it stays on the outside (outer periphery) of the cylindrical member, and the radiation inside the cylindrical member can always pass through without being blocked. Thus, stable temperature measurement is possible throughout growth.
ここで、黒鉛製の円筒状部材の長さは、短すぎると円筒状部材と断熱材との僅かな隙間を通過した昇華ガスが回り込んで筒状部材の内部に侵入して付着する現象が発生するため、好ましくは、円筒状部材が断熱材の貫通孔に配置された状態で、断熱材の表面から突出している円筒状部材の長さは少なくとも20mm(すなわち上部断熱材の厚さよりも20mm長いことになる)必要であり、反対に、同部分(突出している部分)が長過ぎても坩堝運搬の点等で支障があるため100mm以下であるのがよい。断熱材から突出している円筒状部材の長さは30mm〜70mmが更に好ましい。 Here, if the length of the cylindrical member made of graphite is too short, there is a phenomenon that the sublimation gas that has passed through a slight gap between the cylindrical member and the heat insulating material wraps around and enters the inside of the cylindrical member. Preferably, the length of the cylindrical member protruding from the surface of the heat insulating material is at least 20 mm (that is, 20 mm larger than the thickness of the upper heat insulating material) with the cylindrical member disposed in the through hole of the heat insulating material. On the other hand, even if the same part (protruding part) is too long, there is a problem in carrying the crucible and the like, so it is preferable that the length is 100 mm or less. The length of the cylindrical member protruding from the heat insulating material is more preferably 30 mm to 70 mm.
また、黒鉛製の円筒状部材の内径に関しては、抜熱量と測温のために十分な面積の光が得られる条件を満足する必要があり、好ましくは5mm以上であることが望ましく、かつ大きすぎると抜熱による温度分布への影響が出るために25mm以下であることが望ましく、より好ましくは10mm〜16mmであることが望ましい。 Further, regarding the inner diameter of the cylindrical cylindrical member made of graphite, it is necessary to satisfy the conditions for obtaining a sufficient amount of light for heat extraction and temperature measurement, and it is desirable that the inner diameter is preferably 5 mm or more and too large. In order to affect the temperature distribution due to heat removal, the thickness is desirably 25 mm or less, and more desirably 10 mm to 16 mm.
本発明におけるSiC単結晶製造装置は、上記のように坩堝上蓋を覆う断熱材を貫通させて円筒状部材を設けること以外は、従来公知の製造装置と同様にすることができる。ここで、例えば坩堝の形状としては、種結晶を保持でき、SiC原料粉末を収容できれば、円柱、円錐、多角柱、多角錐等のどのような形状でもよいが、坩堝から外部への放熱に関して、周方向における放熱量の均一性において優れている円柱形が最適である。それ以外についても同様であり、坩堝内でSiC原料を昇華させて種結晶上に再結晶させる昇華再結晶法に用いられる公知の製造装置を使用することができる。 The SiC single crystal manufacturing apparatus in the present invention can be the same as a conventionally known manufacturing apparatus except that a cylindrical member is provided by penetrating the heat insulating material covering the crucible upper lid as described above. Here, for example, the shape of the crucible may be any shape such as a cylinder, a cone, a polygonal column, a polygonal pyramid, etc., as long as it can hold the seed crystal and can accommodate the SiC raw material powder. A cylindrical shape that is excellent in the uniformity of heat radiation in the circumferential direction is optimal. The same applies to other cases, and a known production apparatus used in a sublimation recrystallization method in which a SiC raw material is sublimated in a crucible and recrystallized on a seed crystal can be used.
以下に、本発明の実施例について述べる。なお、本発明はこれらの内容に制限されるものではない。 Examples of the present invention will be described below. The present invention is not limited to these contents.
(実施例1)
先ず、この実施例で使用した単結晶成長装置(本発明に係るSiC単結晶製造装置)について、図5を用いながら簡単に説明する。結晶成長は、種結晶を用いた従来の昇華再結晶法と同様であり、黒鉛製坩堝3を構成する坩堝本体に装入したSiC結晶粉末2を昇華させ、種結晶として用いたSiC単結晶1上で再結晶化させることにより行われる。種結晶のSiC単結晶1は、高純度黒鉛製の坩堝3を構成する上蓋4の内面に取り付けられる。原料のSiC結晶粉末2は、高純度黒鉛製坩堝3を構成する坩堝本体の下部に充填される。このような黒鉛製坩堝3は、二重石英管5の内部に入れられて、黒鉛の支持棒6により設置される。また、黒鉛製坩堝3の周囲には、断熱性向上のための黒鉛製フェルト(断熱材)7が設置されている。
Example 1
First, the single crystal growth apparatus (SiC single crystal manufacturing apparatus according to the present invention) used in this example will be briefly described with reference to FIG. The crystal growth is the same as in the conventional sublimation recrystallization method using a seed crystal. The SiC single crystal 1 used as a seed crystal is obtained by sublimating the
ここで、上記の二重石英管5は、真空排気装置11により高真空排気(10-3Pa以下)することができ、かつ、内部雰囲気をガス流量調節計10を通って導入されるArガスにより圧力制御することができる。各種ドーピングガス(窒素、トリメチルアルミニウム、トリメチルボロン)も、ガス流量調節計10を通して導入することができる。また、二重石英管5の外周には、ワークコイル8が設置されており、高周波電流を流すことにより黒鉛製坩堝3を加熱し、SiC原料2及び種結晶1を所望の温度に加熱することができる。更には、成長途中の結晶表面の温度分布を下に凸型に調整するために、坩堝上部の上蓋4を覆うフェルトの中央部に抜熱孔(直径22mm)が設けられ、この抜熱孔(フェルトの厚み方向に貫通した貫通孔)から検出できる放射光により図示外の放射温度計を用いて坩堝上蓋4の温度を測定する。ここでは、フェルト中央部の抜熱孔12に黒鉛製の円筒状部材13が配置されるようにした。詳しくは、坩堝上蓋4の表面中央部にその一端が接続されるようにして黒鉛製の円筒状部材13を配置した。接続方法は、図1(b)に示したように、円筒状部材13の先端外周の一部に雄ネジ部を形成し、坩堝上蓋4に雌ネジ部を形成して、これらを螺合させて(捻じ込んで)固定した。黒鉛製円筒状部材の寸法は、内径が16mm、外径が22mmである。また、坩堝上蓋4の表面を覆う黒鉛製フェルト7の厚みは10mmであり、黒鉛製の円筒状部材13はこの断熱材のフェルト(抜熱用兼温度測定用の孔を開けている)の孔12部分を貫通して断熱材フェルトの上に突出した形となっており、断熱材7から突出した部分の長さは60mmとした。
Here, the
次に、本発明の結晶成長装置を用いたSiC単結晶の製造について実施例を説明する。先ず、種結晶1として、口径150mmの(0001)面を有した4HポリタイプのSiC単結晶ウェハを用意した。この種結晶のオフセット角度は{0001}面から4°の角度を有するものを使用した。次に、種結晶1を黒鉛製坩堝3の上蓋4の内面に取り付けた。黒鉛製坩堝3の下部には、アチソン法により作製したSiC結晶粉末(SiC原料)2を充填した。次いで、SiC原料2を充填した黒鉛製坩堝3を、上蓋4で閉じ、黒鉛製フェルト7で被覆した後、黒鉛製支持棒6の上に乗せて、二重石英管5の内部に設置した。そして、二重石英管5の内部を真空排気した後、ワークコイル8に電流を流して、原料温度を2000℃まで上げた。その後、雰囲気ガスとして高純度Arガス(純度99.9995%)を流入させ、二重石英管5内の圧力は成長全体を通じて1.3kPaに保った。この圧力下において、原料温度を2000℃から目標温度である2400℃まで上昇させ、その後、同温度を保って約20時間結晶成長を続けた。この成長時間中、成長開始時には窒素流量を0.5×10-6m3/sec(同流量にて、成長結晶中の窒素濃度が種結晶中濃度と同等の1×1019cm-3となることから、この流量を用いた)とし、成長終了時まで保った。得られたSiC単結晶の口径は151mmであり、高さは30mm程度であった。
Next, an example will be described for the production of an SiC single crystal using the crystal growth apparatus of the present invention. First, as a seed crystal 1, a 4H polytype SiC single crystal wafer having a (0001) plane with a diameter of 150 mm was prepared. The seed crystal had an offset angle of 4 ° from the {0001} plane. Next, the seed crystal 1 was attached to the inner surface of the upper lid 4 of the graphite crucible 3. The lower part of the graphite crucible 3 was filled with SiC crystal powder (SiC raw material) 2 produced by the Atchison method. Next, the graphite crucible 3 filled with the SiC
こうして得られた炭化珪素単結晶について、上記のSiC単結晶の製造を繰り返して実験回数20回での得られた単結晶の結晶品質について調べたところ、成長中盤以降の異種ポリタイプ混入によりマイクロパイプ欠陥が発生して結晶品質が劣化したものが2回のみに抑えられて、良好成長の歩留まりとして90%が得られた。 With respect to the silicon carbide single crystal thus obtained, the production of the SiC single crystal was repeated, and the crystal quality of the obtained single crystal was examined after 20 experiments. Defects occurred and the crystal quality was deteriorated only twice, and 90% was obtained as a yield of good growth.
(比較例1)
坩堝上蓋を覆う断熱材7に設けた抜熱孔12(直径22mm)に対して黒鉛製円筒状部材13を取り付けずに、そのまま温度を測定するようにした以外は実施例1と同様にしてSiC単結晶の成長を実施した。
(Comparative Example 1)
SiC was used in the same manner as in Example 1, except that the graphite
こうして得られた実施例1とほぼ同程度の大きさの炭化珪素単結晶について、実験回数20回で得られた単結晶の結晶品質を調べたところ、成長中盤以降の異種ポリタイプ混入によりマイクロパイプ欠陥が発生して結晶品質が劣化したものが8回あり、良好成長の歩留まりは温度分布の不安定性を反映した結果、60%に留まった。 With respect to the silicon carbide single crystal having the same size as that of Example 1 thus obtained, the crystal quality of the single crystal obtained after 20 experiments was examined. There were eight defects in which the crystal quality deteriorated due to defects, and the yield of good growth was 60% as a result of reflecting the instability of the temperature distribution.
1 種結晶(SiC単結晶)
2 SiC結晶粉末(SiC原料)
3 黒鉛製坩堝
4 坩堝上蓋
5 二重石英管
6 支持棒
7 黒鉛製フェルト(断熱材)
8 ワークコイル
9 ガス配管
10 マスフローコントローラ
11 真空排気装置
12 抜熱孔(兼放射光透過孔)
13 黒鉛製円筒状部材
14 放射温度計
15 坩堝からの放射光
16 昇華ガス固化による付着物
1 seed crystal (SiC single crystal)
2 SiC crystal powder (SiC raw material)
3 Graphite crucible
4 Crucible top lid
5 Double quartz tube
6 Support rod
7 Graphite felt (insulation)
8 Work coil
9 Gas piping
10 Mass flow controller
11 Vacuum exhaust system
12 Heat removal hole (also radiation transmission hole)
13 Graphite cylindrical member
14 Radiation thermometer
15 Synchrotron radiation from a crucible
16 Deposits from sublimation gas solidification
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016042341A JP2017154953A (en) | 2016-03-04 | 2016-03-04 | Silicon carbide single crystal production apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016042341A JP2017154953A (en) | 2016-03-04 | 2016-03-04 | Silicon carbide single crystal production apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2017154953A true JP2017154953A (en) | 2017-09-07 |
Family
ID=59808041
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016042341A Pending JP2017154953A (en) | 2016-03-04 | 2016-03-04 | Silicon carbide single crystal production apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2017154953A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018030773A (en) * | 2016-08-26 | 2018-03-01 | 國家中山科學研究院 | Apparatus used for single crystal growth |
US11761113B2 (en) | 2018-09-06 | 2023-09-19 | Resonac Corporation | SiC single crystal manufacturing apparatus |
CN118621433A (en) * | 2024-08-15 | 2024-09-10 | 苏州优晶半导体科技股份有限公司 | Crucible equipment and use method |
-
2016
- 2016-03-04 JP JP2016042341A patent/JP2017154953A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018030773A (en) * | 2016-08-26 | 2018-03-01 | 國家中山科學研究院 | Apparatus used for single crystal growth |
US11761113B2 (en) | 2018-09-06 | 2023-09-19 | Resonac Corporation | SiC single crystal manufacturing apparatus |
CN118621433A (en) * | 2024-08-15 | 2024-09-10 | 苏州优晶半导体科技股份有限公司 | Crucible equipment and use method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4388538B2 (en) | Silicon carbide single crystal manufacturing equipment | |
JP4926556B2 (en) | Method for manufacturing silicon carbide single crystal ingot and silicon carbide single crystal substrate | |
JP4585359B2 (en) | Method for producing silicon carbide single crystal | |
JP5931825B2 (en) | Method for producing silicon carbide single crystal ingot | |
WO2016051485A1 (en) | Silicon carbide single crystal wafer and method for producing silicon carbide single crystal ingot | |
JP4818754B2 (en) | Method for producing silicon carbide single crystal ingot | |
JP6200018B2 (en) | Silicon carbide single crystal wafer | |
JP2007204309A (en) | Single crystal growth device and single crystal growth method | |
JP5031651B2 (en) | Method for producing silicon carbide single crystal ingot | |
JP2008110907A (en) | Method for producing silicon carbide single crystal ingot, and silicon carbide single crystal ingot | |
KR101353679B1 (en) | Apparatus for growing large diameter single crystal and method for growing using the same | |
JP2004099340A (en) | Seed crystal for silicon carbide single crystal growth, silicon carbide single crystal ingot and method of manufacturing the same | |
JP2017154953A (en) | Silicon carbide single crystal production apparatus | |
JP6869077B2 (en) | Method for manufacturing silicon carbide single crystal ingot | |
JP2012254892A (en) | Manufacturing method and manufacturing device for single crystal | |
KR20090077446A (en) | The sic single crystal growth equipment for enlargement of sic diameter | |
JP2018140903A (en) | Method for manufacturing silicon carbide single crystal ingot | |
KR101724290B1 (en) | Apparatus for growing silicon carbide single crystal | |
EP3072995B1 (en) | Method for producing silicon carbide crystals from vapour phase | |
JP3590464B2 (en) | Method for producing 4H type single crystal silicon carbide | |
JP6861557B2 (en) | Silicon Carbide Single Crystal Ingot Manufacturing Equipment and Silicon Carbide Single Crystal Ingot Manufacturing Method | |
JPH05178698A (en) | Apparatus and process for production of silicon carbide bulk single crystal | |
JPH0977594A (en) | Production of low resistance single crystal silicon carbide | |
JP2003137694A (en) | Seed crystal for growing silicon carbide single crystal, silicon carbide single crystal ingot and method of producing the same | |
KR102475267B1 (en) | Apparatus for growing large diameter single crystal and method for growing using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20180301 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20180621 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20180628 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20181204 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190809 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190820 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20200310 |