JPH08143396A - Method for growing silicon carbide single crystal - Google Patents

Method for growing silicon carbide single crystal

Info

Publication number
JPH08143396A
JPH08143396A JP28695694A JP28695694A JPH08143396A JP H08143396 A JPH08143396 A JP H08143396A JP 28695694 A JP28695694 A JP 28695694A JP 28695694 A JP28695694 A JP 28695694A JP H08143396 A JPH08143396 A JP H08143396A
Authority
JP
Japan
Prior art keywords
crystal
single crystal
wafer
seed crystal
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28695694A
Other languages
Japanese (ja)
Other versions
JP3532978B2 (en
Inventor
Atsushi Takahashi
淳 高橋
Noboru Otani
昇 大谷
Masakazu Katsuno
正和 勝野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP28695694A priority Critical patent/JP3532978B2/en
Publication of JPH08143396A publication Critical patent/JPH08143396A/en
Application granted granted Critical
Publication of JP3532978B2 publication Critical patent/JP3532978B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE: To obtain a large-sized good-quality single crystal reduced in micropipe defects by newly taking out a wafer from an SiC single crystal with the specified crystal face grown as a seed crystal and again growing a single crystal by sublimation and recrystallization. CONSTITUTION: A seed crystal 8 is mounted on a seed crystal mounting part 7 in a graphite crucible 4, and an SiC material 5 is charged. A crystal inclined to a (0001) face at an angle of 60-120 deg. is used as the first seed crystal 8. The crucible 4 is evacuated, the raw material is heated to 2000 deg.C, and the crucible is kept at about 600Torr while introducing an inert gas. The crucible is then evacuated to 1-50Torr, and the growth of a single crystal is started at the raw material temp. of 2100-2500 deg.C. The seed crystal temp. is 40 to 100 deg.C lower than the raw material temp., and the temp. and pressure are adjusted so that the growth rate of the single crystal is controlled to 0.5-1.5mm/hr. The obtained ingot 2 is cut to form a (0001) wafer 3, and an SiC single crystal is grown on the (0001) face from the same material with the wafer as a second seed crystal 8.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、SiC単結晶の成長方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for growing a SiC single crystal.

【0002】詳しくは、短波長発光ダイオードや電子デ
バイスなどの基板ウェハとなる良質で大型のSiC単結
晶インゴットの成長方法に関するものである。
More particularly, the present invention relates to a method for growing a large-sized, high-quality SiC single crystal ingot which will be used as a substrate wafer for short-wavelength light emitting diodes, electronic devices, and the like.

【0003】[0003]

【従来の技術】SiC半導体は禁制帯幅がSiやGaA
sなどに比べて大きく、物理的・化学的に安定であり高
温や放射線に耐えられる素材であるため、耐環境性半導
体素子材料としての応用が期待されている。また、短波
長の発光ダイオード材料としても利用されている。
2. Description of the Related Art Forbidden band widths of SiC semiconductors are Si and GaA.
Since it is a material that is larger than s, etc., is physically and chemically stable, and can withstand high temperatures and radiation, it is expected to be applied as an environment-resistant semiconductor element material. It is also used as a short-wavelength light emitting diode material.

【0004】このような素子を作成するために必要なS
iC基板ウェハは、改良レイリー法と呼ばれる昇華再結
晶法によって成長させたSiC単結晶インゴットから切
り出されている。従来は種結晶としてSiC単結晶の
{0001}ウェハ基板が用いられ、この{0001}
面上にSiC単結晶インゴットを成長させていた。この
成長インゴットから再び{0001}ウェハを切り出
し、このウェハを種結晶として成長を行ない、これを繰
り返すことによって口径の拡大やウェハの増産を図って
いた。しかしながら、J.Crystal Growt
h 128(1993)358−362に記載されてい
るように、このような従来の方法で成長したインゴット
から取り出されたSiC{0001}ウェハ中には、マ
イクロパイプ欠陥と呼ばれるウェハを貫通する直径数ミ
クロンのピンホールが102 〜103個/cm2 含まれ
ていた。IEEE ELECTRON DEVICE
LETTER 15(1994)63〜65に記載され
ているように、これらの欠陥は素子を作製したときに電
気リーク等を引き起こし、SiCの電子デバイス応用に
おける最も重大な問題となっていた。またこれ以外に
も、Phisica B185(1993)211〜2
16に記載されているように、種結晶から成長結晶に中
空の黒い線状欠陥(Channel)が伸び、ウェハの
品質を低下させていた。
The S required to make such an element
The iC substrate wafer is cut out from a SiC single crystal ingot grown by a sublimation recrystallization method called a modified Rayleigh method. Conventionally, a SiC single crystal {0001} wafer substrate is used as a seed crystal.
The SiC single crystal ingot was grown on the surface. A {0001} wafer was again cut out from this growth ingot, growth was performed using this wafer as a seed crystal, and this was repeated to increase the diameter and increase the production of wafers. However, J. Crystal Growth
h 128 (1993) 358-362, in SiC {0001} wafers taken from ingots grown by such conventional methods, the number of diameters penetrating the wafer is called micropipe defects. It contained 10 2 to 10 3 micron pinholes / cm 2 . IEEE ELECTRON DEVICE
As described in LETTER 15 (1994) 63 to 65, these defects cause electric leakage when a device is manufactured, and have become the most serious problem in application of SiC to electronic devices. In addition to this, Phisica B185 (1993) 211-2
As described in No. 16, hollow black linear defects (Channel) extended from the seed crystal to the grown crystal, which deteriorated the quality of the wafer.

【0005】特開平5−262599号には、マイクロ
パイプ欠陥の存在しない単結晶の成長方法が開示されて
いる。この方法によって得られるSiC{0001}ウ
ェハはこの種の欠陥はないものの、図1のように成長方
向に切り出すことになるため、{0001}ウェハの面
内に不純物むらやキャリア濃度の不均一が生じやすい。
さらに、得られるウェハの外形は円形とはなりにくく、
形状の加工が必要となる。
Japanese Unexamined Patent Publication (Kokai) No. 5-262599 discloses a method for growing a single crystal free from micropipe defects. Although the SiC {0001} wafer obtained by this method does not have this kind of defect, it is cut out in the growth direction as shown in FIG. 1, so that there is no unevenness of impurities or nonuniform carrier concentration in the plane of the {0001} wafer. It is easy to occur.
Furthermore, the outer shape of the obtained wafer is unlikely to be circular,
Shape processing is required.

【0006】[0006]

【発明が解決しようとする課題】本発明は、マイクロパ
イプ欠陥の非常に少ない良質で大型のSiC単結晶を成
長させる方法を提供することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a method for growing a large-sized SiC single crystal of good quality with very few micropipe defects.

【0007】[0007]

【課題を解決するための手段】本発明は、黒鉛製の坩堝
内においてSiC原料粉末を不活性気体雰囲気中で加熱
昇華させ原料よりやや低温になっている種結晶のSiC
単結晶基板上にSiC単結晶を成長させる昇華再結晶法
において、第1の種結晶として{0001}面から約6
0°〜約120°傾いたSiC単結晶の結晶面を使用し
て成長させた第1のSiC単結晶から、新たに{000
1}ウェハを取り出し、これを第2の種結晶とし再び上
記昇華再結晶法によって第2のSiC単結晶を成長させ
ることによって課題が解決される。
DISCLOSURE OF THE INVENTION According to the present invention, a seed crystal SiC, which is slightly lower than the raw material, is obtained by heating and subliming a SiC raw material powder in an inert gas atmosphere in a graphite crucible.
In the sublimation recrystallization method for growing a SiC single crystal on a single crystal substrate, the first seed crystal is about 6 from the {0001} plane.
From the first SiC single crystal grown using the crystal plane of the SiC single crystal inclined from 0 ° to about 120 °, {000 is newly added.
The problem is solved by taking out the 1} wafer and using this as a second seed crystal to grow the second SiC single crystal again by the sublimation recrystallization method.

【0008】[0008]

【作用】SiC単結晶を{0001}面上に成長させる
とき、その種結晶基板表面にマイクロパイプ欠陥を含ん
でいる場合、成長結晶にマイクロパイプ欠陥が引き継が
れてしまう。{0001}面上の成長で種結晶基板にこ
のようなマイクロパイプ欠陥が全く存在しなくとも、成
長初期にマイクロパイプ欠陥や転位の発生が起こる。こ
のため、一度成長した単結晶インゴットから再び{00
01}ウェハを取り出しこれを種結晶として成長を行な
うと、マイクロパイプ欠陥の数は一般にはその種結晶よ
りも増えてしまうことになる。
When a SiC single crystal is grown on the {0001} plane, if the seed crystal substrate surface contains micropipe defects, the grown crystals will inherit the micropipe defects. Even if such a micropipe defect does not exist in the seed crystal substrate due to the growth on the {0001} plane, the micropipe defect or dislocation occurs at the initial stage of the growth. Therefore, once the single crystal ingot is grown, {00
When a 01} wafer is taken out and grown using this as a seed crystal, the number of micropipe defects generally increases more than that seed crystal.

【0009】従来から行なわれている{0001}面上
の成長で、マイクロパイプ欠陥のより少ない単結晶を成
長させるためには、種結晶としてマイクロパイプ欠陥が
存在しないまたは非常に少ない{0001}ウェハが必
要とされる。しかしながら現在入手可能なSiC単結晶
であるアチソン結晶は、確かにマイクロパイプ欠陥はほ
とんどなくこの欠陥の少ない良質な結晶を成長させるこ
とはできるが、結晶サイズが1cmと小さいため大口径
のインゴットを1度の成長で得ることはできない。
In the conventional growth on the {0001} plane, in order to grow a single crystal having less micropipe defects, a {0001} wafer having no or very few micropipe defects as seed crystals is used. Is required. However, the currently available SiC single crystal, the Acheson crystal, has few micropipe defects and can grow a good quality crystal with few defects. However, since the crystal size is as small as 1 cm, a large-diameter ingot is You can't get it with the degree of growth.

【0010】そこで、特開平5−262599号に開示
した方法、つまり{0001}面から約60°〜約12
0°傾いた結晶面を第1の種結晶として使用し、成長し
た単結晶インゴットから図1のように切り出した{00
01}ウェハを種結晶に用いれば良い。このウェハには
ウェハを貫通するマイクロパイプ欠陥は存在せず、種結
晶から伝わるマイクロパイプ欠陥を防ぐことができる。
また、この{0001}ウェハには貫通する転位なども
ほとんどないため、種結晶から伸びる黒色の欠陥の発生
も抑えられる。さらに、種結晶として使える{000
1}ウェハはアチソン結晶に比べ十分大きなものが得ら
れるため、これを使用した成長で容易に大型の結晶が成
長できる。
Therefore, the method disclosed in JP-A-5-262599, that is, about 60 ° to about 12 from the {0001} plane is used.
A crystal plane tilted by 0 ° was used as a first seed crystal, and a single crystal ingot grown was cut out as shown in FIG.
The 01} wafer may be used as the seed crystal. This wafer has no micropipe defects penetrating the wafer, and the micropipe defects transmitted from the seed crystal can be prevented.
In addition, since the {0001} wafer has almost no penetrating dislocations, the generation of black defects extending from the seed crystal can be suppressed. In addition, it can be used as a seed crystal {000
Since a 1} wafer having a size sufficiently larger than that of an Acheson crystal can be obtained, a large crystal can be easily grown by using this wafer.

【0011】一般的に単結晶インゴット成長において
は、その成長方向の軸はより結晶対称性の良い軸が好ま
しい。これは成長結晶の品質と後の加工のしやすさに影
響する。その意味でさらに好ましい前記第1の種結晶は
{0001}面に垂直な結晶面
Generally, in single crystal ingot growth, the axis of the growth direction is preferably an axis having better crystal symmetry. This affects the quality of the grown crystal and the ease of further processing. In that sense, the more preferable first seed crystal is a crystal plane perpendicular to the {0001} plane.

【0012】[0012]

【外2】 [Outside 2]

【0013】響をうけにくく、良質結晶を成長しやすい
ためである。このとき、{0001}に垂直な結晶面と
は厳密に垂直を意味するのではなく、これより10°以
内の傾きならば同じ効果が期待できる。
This is because it is difficult to receive a sound and it is easy to grow a good quality crystal. At this time, the crystal plane perpendicular to {0001} does not mean strictly perpendicular, but the same effect can be expected if the inclination is within 10 °.

【0014】以下、図面を用いて本発明の内容を詳細に
説明する。図2は、本発明のSiC単結晶の成長方法に
おいて用いられる単結晶成長装置の一例を示すものであ
る。図に示されるように、該単結晶成長装置に使用され
る黒鉛製の坩堝は、有底の坩堝4とSiC基板種結晶8
の取り付け部7を有する前記坩堝4の開口部を覆う黒鉛
製の坩堝蓋6とにより構成され、坩堝4と坩堝蓋6の側
面および上下は黒鉛フィルト製の断熱材9により覆われ
ており、さらに真空排気装置により真空排気できかつ内
部雰囲気をArなどの不活性気体で圧力制御できる容器
に入れられている。加熱は、例えば容器外に巻装した高
周波誘導コイルなどにより行なう。坩堝温度の計測は、
例えば坩堝下部を覆うフェルトの中央部に直径2〜4m
mの光路10を設け坩堝下部の光を取り出し、二色温度
計を用いて常時行なう。この温度を原料温度とみなす。
予め上部フェルトに同じような光路を設け坩堝蓋の温度
を測定し、これを種結晶の温度とみなす。
The contents of the present invention will be described in detail below with reference to the drawings. FIG. 2 shows an example of a single crystal growth apparatus used in the method for growing a SiC single crystal of the present invention. As shown in the figure, the graphite crucible used in the single crystal growth apparatus comprises a bottomed crucible 4 and a SiC substrate seed crystal 8.
And a crucible lid 6 made of graphite for covering the opening of the crucible 4 having a mounting part 7 of the crucible 4. The container is placed in a container that can be evacuated by a vacuum exhaust device and whose internal atmosphere can be pressure-controlled by an inert gas such as Ar. The heating is performed by, for example, a high frequency induction coil wound outside the container. Measuring the crucible temperature,
For example, in the center of the felt that covers the lower part of the crucible, a diameter of 2-4 m
The optical path 10 of m is provided and the light in the lower part of the crucible is extracted, and the light is constantly measured using a two-color thermometer. This temperature is regarded as the raw material temperature.
A similar optical path is provided in advance on the upper felt, the temperature of the crucible lid is measured, and this is regarded as the temperature of the seed crystal.

【0015】図3は、第1の種結晶として使用する結晶
面を説明した図である。本発明の第1の種結晶として使
用する結晶面は{0001}面から約60°〜120°
傾いた面であり、この傾き角は図中θで示される。この
所望の面を出したSiC単結晶の基板ウェハを種結晶と
して坩堝蓋に取り付け、例えば下記のように結晶成長を
行なう。
FIG. 3 is a diagram for explaining a crystal plane used as the first seed crystal. The crystal plane used as the first seed crystal of the present invention is about 60 ° to 120 ° from the {0001} plane.
It is an inclined surface, and this inclination angle is indicated by θ in the figure. The SiC single crystal substrate wafer having the desired surface is attached as a seed crystal to the crucible lid, and crystal growth is performed as follows, for example.

【0016】容器内を真空とし、原料温度を約2000
℃まで上げる。その後、不活性気体を流入させながら約
600Torrに保ち、原料温度を目標温度に上昇させ
る。減圧は、10〜90分かけて行ない、雰囲気圧力を
1〜50Torr、より好ましくは5〜20Torr、
原料温度を2100〜2500℃、より好ましくは22
00〜2400℃に設定し成長を開始するのが望まし
い。これより低温では原料が気化しずらくなり、これよ
り高温では熱エッチングなどにより良質の単結晶が成長
しずらくなる。また、種結晶温度は原料温度より40〜
100℃、より好ましくは50〜70℃低く、温度勾配
は5〜25℃/cm、より好ましくは10〜20℃/h
となるように設定するのが望ましい。さらに、温度と圧
力の関係は、単結晶の成長速度が0.5〜1.5mm/
h、より好ましくは、0.8〜1.3mm/hとなるよ
うにすることが望ましい。これより高速では結晶品質が
低下するため適当ではなく、これより低速では生産性が
良くない。
The container is evacuated and the raw material temperature is about 2000.
Raise to ℃. After that, while keeping the inert gas at about 600 Torr, the raw material temperature is raised to the target temperature. The depressurization is performed for 10 to 90 minutes, and the atmospheric pressure is 1 to 50 Torr, more preferably 5 to 20 Torr.
The raw material temperature is 2100 to 2500 ° C., more preferably 22.
It is desirable to set the temperature to 00 to 2400 ° C. and start the growth. If the temperature is lower than this, the raw material is less likely to be vaporized, and if the temperature is higher than this, it becomes difficult to grow a good quality single crystal due to thermal etching or the like. Further, the seed crystal temperature is 40 to
100 ° C, more preferably 50 to 70 ° C lower, temperature gradient 5 to 25 ° C / cm, more preferably 10 to 20 ° C / h.
It is desirable to set so that Furthermore, the relationship between temperature and pressure is that the growth rate of a single crystal is 0.5 to 1.5 mm /
h, more preferably 0.8 to 1.3 mm / h. If the speed is higher than this, the crystal quality is deteriorated, which is not suitable, and if the speed is lower than this, the productivity is not good.

【0017】このようにして得られたインゴットを図1
のように切断し、研磨加工を行ない{0001}ウェハ
を作製する。このウェハを第2の成長の種結晶として
{0001}面状に例えば上記と同じ成長条件で成長を
行なう。この{0001}ウェハは成長に悪影響がなけ
れば、{0001}面から20°程度傾いていても構わ
ない。
The ingot thus obtained is shown in FIG.
Then, the wafer is cut as described above and polished to produce a {0001} wafer. Using this wafer as a seed crystal for the second growth, the {0001} plane is grown, for example, under the same growth conditions as described above. The {0001} wafer may be tilted by about 20 ° from the {0001} plane as long as the growth is not adversely affected.

【0018】この2度の成長で得られた単結晶の評価は
以下の手順で行なった。作製した単結晶インゴットを切
断、研磨によって{0001}ウェハに加工する。この
時、ウェハに加工歪が残らないように注意する。エッチ
ングは、約530度のKOH融液で約10分間行った。
エッチング後、ノマルスキー微分干渉顕微鏡により発生
したエッチピット個数を計測した。この時大型の正六角
形のエッチピットがマイクロパイプ欠陥に対応する。ま
た切り出した{0001}ウェハを前後に偏光板を取り
付けた透過型の偏光顕微鏡の観測によっても、マイクロ
パイプ欠陥は伴う結晶歪に対応するコントラストによっ
て計測できる。また、結晶のホール測定はファン・デル
・ポー法によって行った。
The evaluation of the single crystal obtained by the twice growth was carried out by the following procedure. The produced single crystal ingot is cut and polished into a {0001} wafer. At this time, be careful not to leave processing distortion on the wafer. The etching was performed with a KOH melt at about 530 degrees for about 10 minutes.
After etching, the number of etch pits generated by a Nomarski differential interference microscope was measured. At this time, a large regular hexagonal etch pit corresponds to the micropipe defect. Also, the observation of a cut-out {0001} wafer with a transmission polarization microscope in which polarizing plates are attached to the front and the back can measure micropipe defects by the contrast corresponding to the crystal strain accompanied. The hole measurement of the crystal was performed by the van der Pauw method.

【0019】[0019]

【実施例】【Example】

実施例1 Example 1

【0020】[0020]

【外3】 [Outside 3]

【0021】2280℃、雰囲気圧力を10Torrと
して単結晶成長を行なった。得られた単結晶インゴット
から{0001}ウェハを取り出し、このウェハを種結
晶として再び同じ成長条件で成長を行なった。成長イン
ゴットから{0001}ウェハを取り出し、エッチング
や偏光顕微鏡で観測したところ、マイクロパイプ欠陥は
平均して100個/cm2 以下と非常に少ない値を示し
た。またウェハ内にはこの欠陥が全く存在していない領
域も多く見られた。さらに、種結晶付近に通常に見られ
る黒色の線状欠陥がこの結晶ではほとんど見られなかっ
た。またホール測定によってウェハの面内分布を調べる
と、キャリア濃度は面内でほぼ均一であった。
Single crystal growth was carried out at 2280 ° C. and an atmospheric pressure of 10 Torr. A {0001} wafer was taken out from the obtained single crystal ingot, and this wafer was used as a seed crystal to grow again under the same growth conditions. When the {0001} wafer was taken out from the growth ingot and observed by etching or a polarization microscope, micropipe defects showed a very small value of 100 defects / cm 2 or less on average. Also, there were many areas in the wafer where this defect did not exist at all. Furthermore, the black line defects that are usually found near the seed crystal were hardly found in this crystal. When the in-plane distribution of the wafer was examined by hole measurement, the carrier concentration was almost uniform in the plane.

【0022】実施例2 種結晶として{0001}面から90°傾いた結晶面を
使用して、原料温度を2370℃、種結晶温度を231
0℃、雰囲気圧力を20Torrとして単結晶成長を行
なった。得られた単結晶インゴットから{0001}ウ
ェハを取り出し、このウェハを種結晶として再び同じ成
長条件で成長を行なった。成長インゴットから{000
1}ウェハを取り出し、エッチングや偏光顕微鏡で観測
したところ、マイクロパイプ欠陥は平均して100/c
2 以下と少ない値を示した。さらに、種結晶付近に通
常見られる黒色の線状欠陥はこの結晶ではほとんど見ら
れなかった。またホール測定によってウェハの面内分布
を調べると、キャリア濃度は面内でほぼ均一であった。
Example 2 Using a crystal plane inclined by 90 ° from the {0001} plane as a seed crystal, the raw material temperature was 2370 ° C. and the seed crystal temperature was 231.
Single crystal growth was performed at 0 ° C. and an atmospheric pressure of 20 Torr. A {0001} wafer was taken out from the obtained single crystal ingot, and this wafer was used as a seed crystal to grow again under the same growth conditions. From growth ingot {000
1} The wafer was taken out and observed by etching and a polarization microscope. Micropipe defects were 100 / c on average.
The value was as small as m 2 or less. Furthermore, the black line defects that are usually found near the seed crystal were hardly found in this crystal. When the in-plane distribution of the wafer was examined by hole measurement, the carrier concentration was almost uniform in the plane.

【0023】実施例3 種結晶として{0001}面から60°傾いた結晶面を
使用して、原料温度を2370℃、種結晶温度を231
0℃、雰囲気圧力を20Torrとして単結晶成長を行
なった。得られた単結晶インゴットから{0001}ウ
ェハを取り出し、このウェハを種結晶として再び同じ成
長条件で成長を行なった。成長インゴットから{000
1}ウェハを取り出し、エッチングや偏光顕微鏡で観測
したところ、マイクロパイプ欠陥は平均して200/c
2 以下と少ない値を示した。さらに、種結晶付近に通
常見られる黒色の線状欠陥はこの結晶ではほとんど見ら
れなかった。またホール測定によってウェハの面内分布
を調べると、キャリア濃度は面内でほぼ均一であった。
Example 3 Using a crystal plane inclined by 60 ° from the {0001} plane as a seed crystal, the raw material temperature was 2370 ° C. and the seed crystal temperature was 231.
Single crystal growth was performed at 0 ° C. and an atmospheric pressure of 20 Torr. A {0001} wafer was taken out from the obtained single crystal ingot, and this wafer was used as a seed crystal to grow again under the same growth conditions. From growth ingot {000
1} The wafer was taken out and observed by etching and a polarization microscope. Micropipe defects were 200 / c on average.
The value was as small as m 2 or less. Furthermore, the black line defects that are usually found near the seed crystal were hardly found in this crystal. When the in-plane distribution of the wafer was examined by hole measurement, the carrier concentration was almost uniform in the plane.

【0024】実施例4 種結晶として{0001}面から120°傾いた結晶面
を使用して、原料温度を2370℃、種結晶温度を23
10℃、雰囲気圧力を20Torrとして単結晶成長を
行なった。得られた単結晶インゴットから{0001}
ウェハを取り出し、このウェハを種結晶として再び同じ
成長条件で成長を行なった。成長インゴットから{00
01}ウェハを取り出し、エッチングや偏光顕微鏡で観
測したところ、マイクロパイプ欠陥は平均して200/
cm2 以下と少ない値を示した。さらに、種結晶付近に
通常見られる黒色の線状欠陥はこの結晶ではほとんど見
られなかった。またホール測定によってウェハの面内分
布を調べると、キャリア濃度は面内でほぼ均一であっ
た。
Example 4 Using a crystal plane inclined by 120 ° from the {0001} plane as a seed crystal, the raw material temperature was 2370 ° C. and the seed crystal temperature was 23.
Single crystal growth was performed at 10 ° C. and an atmospheric pressure of 20 Torr. From the obtained single crystal ingot {0001}
The wafer was taken out, and this wafer was used as a seed crystal to grow again under the same growth conditions. From growth ingot {00
When the {01} wafer was taken out and observed by etching or a polarization microscope, micropipe defects were 200 / average on average.
The value was as small as cm 2 or less. Furthermore, the black line defects that are usually found near the seed crystal were hardly found in this crystal. When the in-plane distribution of the wafer was examined by hole measurement, the carrier concentration was almost uniform in the plane.

【0025】比較例1 種結晶として{0001}面を使用し、原料温度を23
40℃、種結晶温度を2280℃、雰囲気圧力を10T
orrとして単結晶成長を行なった。得られた単結晶イ
ンゴットから{0001}ウェハを取り出した。ウェハ
には非常に多くのマイクロパイプ欠陥が含まれていた。
この、ウェハを種結晶として再び同じ成長条件で成長を
行なった。成長インゴットから{0001}ウェハを取
り出し、エッチングや偏光顕微鏡で観測したところ、マ
イクロパイプ欠陥は平均して102 〜103 個/cm2
と非常に多い値を示していた。さらに、種結晶の近くか
ら切り出したウェハには黒い線状欠陥が含まれていた。
Comparative Example 1 A {0001} plane was used as a seed crystal and the raw material temperature was set to 23.
40 ° C, seed crystal temperature 2280 ° C, atmospheric pressure 10T
Single crystal growth was performed as orr. A {0001} wafer was taken out from the obtained single crystal ingot. The wafer contained numerous micropipe defects.
This wafer was used as a seed crystal and grown again under the same growth conditions. When the {0001} wafer was taken out from the growth ingot and observed by etching or a polarization microscope, micropipe defects were on average 10 2 to 10 3 / cm 2.
And showed a very large value. Further, the wafer cut out near the seed crystal contained black line defects.

【0026】比較例2 種結晶として{0001}面から40°傾いた結晶面を
使用して、原料温度を2370℃、種結晶温度を221
0℃、雰囲気圧力を20Torrとして単結晶成長を行
なった。得られた単結晶インゴットから{0001}ウ
ェハを取り出した。ウェハには多くのマイクロパイプ欠
陥や黒い線状欠陥が含まれていた。この、ウェハを種結
晶として再び同じ成長条件で成長を行った。成長インゴ
ットから{0001}ウェハを取り出し、エッチングや
偏光顕微鏡で観測したところ、マイクロパイプ欠陥は平
均して102 〜103 個/cm2 と非常に多い上、黒い
線状欠陥も多数見られた。
Comparative Example 2 Using a crystal plane inclined by 40 ° from the {0001} plane as a seed crystal, the raw material temperature was 2370 ° C. and the seed crystal temperature was 221.
Single crystal growth was performed at 0 ° C. and an atmospheric pressure of 20 Torr. A {0001} wafer was taken out from the obtained single crystal ingot. The wafer contained many micropipe defects and black line defects. This wafer was used as a seed crystal to grow again under the same growth conditions. When {0001} wafer was taken out from the growth ingot and observed by etching or a polarization microscope, micropipe defects were very large on average of 10 2 to 10 3 / cm 2 , and many black line defects were also observed. .

【0027】[0027]

【発明の効果】本発明を用いることにより良質で大型の
SiC単結晶を用いた電子デバイスの各種応用面に有用
なマイクロパイプ欠陥の少ない大口径単結晶ウェハの供
給を可能とする。
By using the present invention, it is possible to supply a large-diameter single crystal wafer with few micropipe defects, which is useful for various applications of electronic devices using a high-quality large-sized SiC single crystal.

【図面の簡単な説明】[Brief description of drawings]

【外4】 ハを取り出す図である。[Outside 4] FIG.

【図2】は、本発明のSiC単結晶成長に用いられる単
結晶の成長装置の一例の構造を模式的に示す断面図であ
る。
FIG. 2 is a cross-sectional view schematically showing the structure of an example of a single crystal growth apparatus used for SiC single crystal growth of the present invention.

【図3】は、第1の種結晶として使用する結晶面を説明
した図である。
FIG. 3 is a diagram illustrating a crystal plane used as a first seed crystal.

【符号の説明】[Explanation of symbols]

1…種結晶、 2…成長単結晶、 3…{0001}ウェハ、 4…坩堝、 5…SiC原料、 6…坩堝蓋 7…種結晶取り付け部、 8…種結晶、 9…断熱フェルト、 10…光路、 11…SiC単結晶。 DESCRIPTION OF SYMBOLS 1 ... Seed crystal, 2 ... Growth single crystal, 3 ... {0001} wafer, 4 ... Crucible, 5 ... SiC raw material, 6 ... Crucible lid, 7 ... Seed crystal attachment part, 8 ... Seed crystal, 9 ... Insulating felt, 10 ... Optical path, 11 ... SiC single crystal.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 黒鉛製の坩堝内においてSiC原料粉末
を不活性気体雰囲気中で加熱昇華させ原料よりやや低温
になっている種結晶のSiC単結晶基板上にSiC単結
晶を成長させる昇華再結晶法において、{0001}面
から約60°〜約120°傾いたSiC単結晶の結晶面
を第1の種結晶として使用して成長させた第1のSiC
単結晶から、新たに{0001}ウェハを取り出し、こ
れを第2の種結晶とし再び上記昇華再結晶法によって第
2のSiC単結晶を成長させる方法。
1. A sublimation recrystallization in which a SiC raw material powder is heated and sublimated in a graphite crucible in an inert gas atmosphere to grow a SiC single crystal on a seed crystal SiC single crystal substrate which is slightly lower than the raw material. In the method, a first SiC grown by using a crystal plane of a SiC single crystal tilted by about 60 ° to about 120 ° from a {0001} plane as a first seed crystal.
A method in which a {0001} wafer is newly taken out from a single crystal, and this is used as a second seed crystal, and a second SiC single crystal is grown again by the sublimation recrystallization method.
【請求項2】 {0001}面に垂直な結晶面を第1の
種結晶として使用する請求項1に記載の方法。 【外1】 の方法。
2. The method according to claim 1, wherein a crystal plane perpendicular to the {0001} plane is used as the first seed crystal. [Outside 1] the method of.
JP28695694A 1994-11-21 1994-11-21 Method for growing SiC single crystal Expired - Lifetime JP3532978B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28695694A JP3532978B2 (en) 1994-11-21 1994-11-21 Method for growing SiC single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28695694A JP3532978B2 (en) 1994-11-21 1994-11-21 Method for growing SiC single crystal

Publications (2)

Publication Number Publication Date
JPH08143396A true JPH08143396A (en) 1996-06-04
JP3532978B2 JP3532978B2 (en) 2004-05-31

Family

ID=17711136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28695694A Expired - Lifetime JP3532978B2 (en) 1994-11-21 1994-11-21 Method for growing SiC single crystal

Country Status (1)

Country Link
JP (1) JP3532978B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002308698A (en) * 2001-04-06 2002-10-23 Denso Corp METHOD FOR PRODUCING SiC SINGLE CRYSTAL
JP2003277193A (en) * 2002-03-22 2003-10-02 Toyota Central Res & Dev Lab Inc SiC WAFER WITH EPITAXIAL FILM, METHOD FOR PRODUCING THE SAME, AND SiC ELECTRONIC DEVICE
JP2003321298A (en) * 2002-04-30 2003-11-11 Toyota Central Res & Dev Lab Inc SiC SINGLE CRYSTAL AND METHOD FOR PRODUCING THE SAME, SiC WAFER WITH EPITAXIAL FILM AND METHOD FOR PRODUCING THE SAME, AND SiC ELECTRONIC DEVICE
US6890600B2 (en) 2001-10-12 2005-05-10 Denso Corporation SiC single crystal, method for manufacturing SiC single crystal, SiC wafer having an epitaxial film, method for manufacturing SiC wafer having an epitaxial film, and SiC electronic device
US7135074B2 (en) 2003-04-10 2006-11-14 Kabushiki Kaisha Toyota Chuo Kenkyusho Method for manufacturing silicon carbide single crystal from dislocation control seed crystal
JP2007332019A (en) * 2006-05-18 2007-12-27 Showa Denko Kk Method for producing silicon carbide single crystal
US7387680B2 (en) 2005-05-13 2008-06-17 Cree, Inc. Method and apparatus for the production of silicon carbide crystals
US8044408B2 (en) 2009-05-20 2011-10-25 Nippon Steel Corporation SiC single-crystal substrate and method of producing SiC single-crystal substrate
JP2012046424A (en) * 2000-12-28 2012-03-08 Bridgestone Corp Silicon carbide single crystal
JP2012046377A (en) * 2010-08-26 2012-03-08 Toyota Central R&D Labs Inc METHOD FOR MANUFACTURING SiC SINGLE CRYSTAL
US9051663B2 (en) 2010-11-29 2015-06-09 Denso Corporation Manufacturing method of silicon carbide single crystal
US9096947B2 (en) 2011-06-05 2015-08-04 Kabushiki Kaisha Toyota Chuo Kenkyusho SiC single crystal, production method therefor, SiC wafer and semiconductor device
CN113668044A (en) * 2021-07-14 2021-11-19 威科赛乐微电子股份有限公司 Single crystal regrowth method

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012046424A (en) * 2000-12-28 2012-03-08 Bridgestone Corp Silicon carbide single crystal
JP2002308698A (en) * 2001-04-06 2002-10-23 Denso Corp METHOD FOR PRODUCING SiC SINGLE CRYSTAL
US6890600B2 (en) 2001-10-12 2005-05-10 Denso Corporation SiC single crystal, method for manufacturing SiC single crystal, SiC wafer having an epitaxial film, method for manufacturing SiC wafer having an epitaxial film, and SiC electronic device
DE10247017B4 (en) * 2001-10-12 2009-06-10 Denso Corp., Kariya-shi SiC single crystal, a method of producing a SiC single crystal, SiC wafers with an epitaxial film, and a method of producing a SiC wafer having an epitaxial film
JP2003277193A (en) * 2002-03-22 2003-10-02 Toyota Central Res & Dev Lab Inc SiC WAFER WITH EPITAXIAL FILM, METHOD FOR PRODUCING THE SAME, AND SiC ELECTRONIC DEVICE
JP2003321298A (en) * 2002-04-30 2003-11-11 Toyota Central Res & Dev Lab Inc SiC SINGLE CRYSTAL AND METHOD FOR PRODUCING THE SAME, SiC WAFER WITH EPITAXIAL FILM AND METHOD FOR PRODUCING THE SAME, AND SiC ELECTRONIC DEVICE
US7135074B2 (en) 2003-04-10 2006-11-14 Kabushiki Kaisha Toyota Chuo Kenkyusho Method for manufacturing silicon carbide single crystal from dislocation control seed crystal
US7387680B2 (en) 2005-05-13 2008-06-17 Cree, Inc. Method and apparatus for the production of silicon carbide crystals
JP2007332019A (en) * 2006-05-18 2007-12-27 Showa Denko Kk Method for producing silicon carbide single crystal
US8044408B2 (en) 2009-05-20 2011-10-25 Nippon Steel Corporation SiC single-crystal substrate and method of producing SiC single-crystal substrate
JP2012046377A (en) * 2010-08-26 2012-03-08 Toyota Central R&D Labs Inc METHOD FOR MANUFACTURING SiC SINGLE CRYSTAL
US8936682B2 (en) 2010-08-26 2015-01-20 Denso Corporation Method of manufacturing homogeneous silicon carbide single crystal with low potential of generating defects
US9051663B2 (en) 2010-11-29 2015-06-09 Denso Corporation Manufacturing method of silicon carbide single crystal
US9096947B2 (en) 2011-06-05 2015-08-04 Kabushiki Kaisha Toyota Chuo Kenkyusho SiC single crystal, production method therefor, SiC wafer and semiconductor device
CN113668044A (en) * 2021-07-14 2021-11-19 威科赛乐微电子股份有限公司 Single crystal regrowth method
CN113668044B (en) * 2021-07-14 2024-03-15 威科赛乐微电子股份有限公司 Single crystal regeneration method

Also Published As

Publication number Publication date
JP3532978B2 (en) 2004-05-31

Similar Documents

Publication Publication Date Title
US5441011A (en) Sublimation growth of single crystal SiC
JP3491402B2 (en) Single crystal manufacturing method and single crystal manufacturing apparatus
JPH05262599A (en) Sic single crystal and method for growing the same
JP4603386B2 (en) Method for producing silicon carbide single crystal
JP3532978B2 (en) Method for growing SiC single crystal
TWI774929B (en) Manufacturing method of silicon carbide single crystal
JPH09268096A (en) Production of single crystal and seed crystal
JP4523733B2 (en) Method for producing silicon carbide single crystal ingot and method for mounting seed crystal for growing silicon carbide single crystal
JP2004099340A (en) Seed crystal for silicon carbide single crystal growth, silicon carbide single crystal ingot and method of manufacturing the same
JPH05339100A (en) Compound semiconductor single crystal and growth method therefor
JP3637157B2 (en) Method for producing silicon carbide single crystal and seed crystal used therefor
JP4253974B2 (en) SiC single crystal and growth method thereof
JP3662694B2 (en) Method for producing single crystal silicon carbide ingot
EP1122341A1 (en) Single crystal SiC
JPH0637354B2 (en) Method and apparatus for growing silicon carbide single crystal
JP3848446B2 (en) Method for growing low resistance SiC single crystal
JPH07267795A (en) Growth method of silicon carbide single crystal
JPH05178698A (en) Apparatus and process for production of silicon carbide bulk single crystal
JPH06340490A (en) Apparatus for production of silicon single crystal
TW201938853A (en) Method for producing silicon carbide single crystal
JP2002121099A (en) Seed crystal for growing silicon carbide single crystal, silicon carbide single crystal ingot, silicon carbide single crystal wafer, and method for producing silicon carbide single crystal
JPH0797299A (en) Method for growing sic single crystal
TWI802616B (en) Manufacturing method of silicon carbide single crystal
JPH0977594A (en) Production of low resistance single crystal silicon carbide
JP2003137694A (en) Seed crystal for growing silicon carbide single crystal, silicon carbide single crystal ingot and method of producing the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040305

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080312

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090312

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090312

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100312

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110312

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120312

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140312

Year of fee payment: 10

EXPY Cancellation because of completion of term