JP3532978B2 - Method for growing SiC single crystal - Google Patents
Method for growing SiC single crystalInfo
- Publication number
- JP3532978B2 JP3532978B2 JP28695694A JP28695694A JP3532978B2 JP 3532978 B2 JP3532978 B2 JP 3532978B2 JP 28695694 A JP28695694 A JP 28695694A JP 28695694 A JP28695694 A JP 28695694A JP 3532978 B2 JP3532978 B2 JP 3532978B2
- Authority
- JP
- Japan
- Prior art keywords
- crystal
- wafer
- single crystal
- plane
- seed crystal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、SiC単結晶の成長方
法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for growing a SiC single crystal.
【0002】詳しくは、短波長発光ダイオードや電子デ
バイスなどの基板ウェハとなる良質で大型のSiC単結
晶インゴットの成長方法に関するものである。More particularly, the present invention relates to a method for growing a large-sized, high-quality SiC single crystal ingot which will be used as a substrate wafer for short-wavelength light emitting diodes, electronic devices, and the like.
【0003】[0003]
【従来の技術】SiC半導体は禁制帯幅がSiやGaA
sなどに比べて大きく、物理的・化学的に安定であり高
温や放射線に耐えられる素材であるため、耐環境性半導
体素子材料としての応用が期待されている。また、短波
長の発光ダイオード材料としても利用されている。2. Description of the Related Art Forbidden band widths of SiC semiconductors are Si and GaA.
Since it is a material that is larger than s, etc., is physically and chemically stable, and can withstand high temperatures and radiation, it is expected to be applied as an environment-resistant semiconductor element material. It is also used as a short-wavelength light emitting diode material.
【0004】このような素子を作成するために必要なS
iC基板ウェハは、改良レイリー法と呼ばれる昇華再結
晶法によって成長させたSiC単結晶インゴットから切
り出されている。従来は種結晶としてSiC単結晶の
{0001}ウェハ基板が用いられ、この{0001}
面上にSiC単結晶インゴットを成長させていた。この
成長インゴットから再び{0001}ウェハを切り出
し、このウェハを種結晶として成長を行ない、これを繰
り返すことによって口径の拡大やウェハの増産を図って
いた。しかしながら、J.Crystal Growt
h 128(1993)358−362に記載されてい
るように、このような従来の方法で成長したインゴット
から取り出されたSiC{0001}ウェハ中には、マ
イクロパイプ欠陥と呼ばれるウェハを貫通する直径数ミ
クロンのピンホールが102 〜103個/cm2 含まれ
ていた。IEEE ELECTRON DEVICE
LETTER 15(1994)63〜65に記載され
ているように、これらの欠陥は素子を作製したときに電
気リーク等を引き起こし、SiCの電子デバイス応用に
おける最も重大な問題となっていた。またこれ以外に
も、Phisica B185(1993)211〜2
16に記載されているように、種結晶から成長結晶に中
空の黒い線状欠陥(Channel)が伸び、ウェハの
品質を低下させていた。The S required to make such an element
The iC substrate wafer is cut out from a SiC single crystal ingot grown by a sublimation recrystallization method called a modified Rayleigh method. Conventionally, a SiC single crystal {0001} wafer substrate is used as a seed crystal.
The SiC single crystal ingot was grown on the surface. A {0001} wafer was again cut out from this growth ingot, growth was performed using this wafer as a seed crystal, and this was repeated to increase the diameter and increase the production of wafers. However, J. Crystal Growth
h 128 (1993) 358-362, in SiC {0001} wafers taken from ingots grown by such conventional methods, the number of diameters penetrating the wafer is called micropipe defects. It contained 10 2 to 10 3 micron pinholes / cm 2 . IEEE ELECTRON DEVICE
As described in LETTER 15 (1994) 63 to 65, these defects cause electric leakage when a device is manufactured, and have become the most serious problem in application of SiC to electronic devices. In addition to this, Phisica B185 (1993) 211-2
As described in No. 16, hollow black linear defects (Channel) extended from the seed crystal to the grown crystal, which deteriorated the quality of the wafer.
【0005】特開平5−262599号には、マイクロ
パイプ欠陥の存在しない単結晶の成長方法が開示されて
いる。この方法によって得られるSiC{0001}ウ
ェハはこの種の欠陥はないものの、図1のように成長方
向に切り出すことになるため、{0001}ウェハの面
内に不純物むらやキャリア濃度の不均一が生じやすい。
さらに、得られるウェハの外形は円形とはなりにくく、
形状の加工が必要となる。Japanese Unexamined Patent Publication (Kokai) No. 5-262599 discloses a method for growing a single crystal free from micropipe defects. Although the SiC {0001} wafer obtained by this method does not have this kind of defect, it is cut out in the growth direction as shown in FIG. 1, so that there is no unevenness of impurities or uneven carrier concentration in the plane of the {0001} wafer. It is easy to occur.
Furthermore, the outer shape of the obtained wafer is unlikely to be circular,
Shape processing is required.
【0006】[0006]
【発明が解決しようとする課題】本発明は、マイクロパ
イプ欠陥の非常に少ない良質で大型のSiC単結晶を成
長させる方法を提供することを目的とする。SUMMARY OF THE INVENTION It is an object of the present invention to provide a method for growing a large-sized SiC single crystal of good quality with very few micropipe defects.
【0007】[0007]
【課題を解決するための手段】本発明は、黒鉛製の坩堝
内においてSiC原料粉末を不活性気体雰囲気中で加熱
昇華させ原料よりやや低温になっている種結晶のSiC
単結晶基板上にSiC単結晶を成長させる昇華再結晶法
において、第1の種結晶として{0001}面から約6
0°〜約120°傾いたSiC単結晶の結晶面を使用し
て成長させた第1のSiC単結晶から、新たに{000
1}ウェハを取り出し、これを第2の種結晶とし再び上
記昇華再結晶法によって第2のSiC単結晶を成長させ
ることによって課題が解決される。DISCLOSURE OF THE INVENTION According to the present invention, a seed crystal SiC, which is slightly lower than the raw material, is obtained by heating and subliming a SiC raw material powder in an inert gas atmosphere in a graphite crucible.
In the sublimation recrystallization method for growing a SiC single crystal on a single crystal substrate, the first seed crystal is about 6 from the {0001} plane.
From the first SiC single crystal grown using the crystal plane of the SiC single crystal inclined from 0 ° to about 120 °, {000 is newly added.
The problem is solved by taking out the 1} wafer and using this as a second seed crystal to grow the second SiC single crystal again by the sublimation recrystallization method.
【0008】[0008]
【作用】SiC単結晶を{0001}面上に成長させる
とき、その種結晶基板表面にマイクロパイプ欠陥を含ん
でいる場合、成長結晶にマイクロパイプ欠陥が引き継が
れてしまう。{0001}面上の成長で種結晶基板にこ
のようなマイクロパイプ欠陥が全く存在しなくとも、成
長初期にマイクロパイプ欠陥や転位の発生が起こる。こ
のため、一度成長した単結晶インゴットから再び{00
01}ウェハを取り出しこれを種結晶として成長を行な
うと、マイクロパイプ欠陥の数は一般にはその種結晶よ
りも増えてしまうことになる。When a SiC single crystal is grown on the {0001} plane, if the seed crystal substrate surface contains micropipe defects, the grown crystals will inherit the micropipe defects. Even if such a micropipe defect does not exist in the seed crystal substrate due to the growth on the {0001} plane, the micropipe defect or dislocation occurs at the initial stage of the growth. Therefore, once the single crystal ingot is grown, {00
When a 01} wafer is taken out and grown using this as a seed crystal, the number of micropipe defects generally increases more than that seed crystal.
【0009】従来から行なわれている{0001}面上
の成長で、マイクロパイプ欠陥のより少ない単結晶を成
長させるためには、種結晶としてマイクロパイプ欠陥が
存在しないまたは非常に少ない{0001}ウェハが必
要とされる。しかしながら現在入手可能なSiC単結晶
であるアチソン結晶は、確かにマイクロパイプ欠陥はほ
とんどなくこの欠陥の少ない良質な結晶を成長させるこ
とはできるが、結晶サイズが1cmと小さいため大口径
のインゴットを1度の成長で得ることはできない。In the conventional growth on the {0001} plane, in order to grow a single crystal having less micropipe defects, a {0001} wafer having no or very few micropipe defects as seed crystals is used. Is required. However, the currently available SiC single crystal, the Acheson crystal, has few micropipe defects and can grow a good quality crystal with few defects. However, since the crystal size is as small as 1 cm, a large diameter ingot is You can't get it with the degree of growth.
【0010】そこで、特開平5−262599号に開示
した方法、つまり{0001}面から約60°〜約12
0°傾いた結晶面を第1の種結晶として使用し、成長し
た単結晶インゴットから図1のように切り出した{00
01}ウェハを種結晶に用いれば良い。このウェハには
ウェハを貫通するマイクロパイプ欠陥は存在せず、種結
晶から伝わるマイクロパイプ欠陥を防ぐことができる。
また、この{0001}ウェハには貫通する転位なども
ほとんどないため、種結晶から伸びる黒色の欠陥の発生
も抑えられる。さらに、種結晶として使える{000
1}ウェハはアチソン結晶に比べ十分大きなものが得ら
れるため、これを使用した成長で容易に大型の結晶が成
長できる。Therefore, the method disclosed in JP-A-5-262599, that is, about 60 ° to about 12 from the {0001} plane is used.
A crystal plane tilted by 0 ° was used as a first seed crystal, and a single crystal ingot grown was cut out as shown in FIG.
The 01} wafer may be used as the seed crystal. This wafer has no micropipe defects penetrating the wafer, and the micropipe defects transmitted from the seed crystal can be prevented.
In addition, since the {0001} wafer has almost no penetrating dislocations, the generation of black defects extending from the seed crystal can be suppressed. In addition, it can be used as a seed crystal {000
Since a 1} wafer having a size sufficiently larger than that of an Acheson crystal can be obtained, a large crystal can be easily grown by using this wafer.
【0011】一般的に単結晶インゴット成長において
は、その成長方向の軸はより結晶対称性の良い軸が好ま
しい。これは成長結晶の品質と後の加工のしやすさに影
響する。その意味でさらに好ましい前記第1の種結晶は
{0001}面に垂直な結晶面Generally, in single crystal ingot growth, the axis of the growth direction is preferably an axis having better crystal symmetry. This affects the quality of the grown crystal and the ease of further processing. In that sense, the more preferable first seed crystal is a crystal plane perpendicular to the {0001} plane.
【0012】[0012]
【外2】 [Outside 2]
【0013】響をうけにくく、良質結晶を成長しやすい
ためである。このとき、{0001}に垂直な結晶面と
は厳密に垂直を意味するのではなく、これより10°以
内の傾きならば同じ効果が期待できる。This is because it is difficult to receive a sound and it is easy to grow a good quality crystal. At this time, the crystal plane perpendicular to {0001} does not mean strictly perpendicular, but the same effect can be expected if the inclination is within 10 °.
【0014】以下、図面を用いて本発明の内容を詳細に
説明する。図2は、本発明のSiC単結晶の成長方法に
おいて用いられる単結晶成長装置の一例を示すものであ
る。図に示されるように、該単結晶成長装置に使用され
る黒鉛製の坩堝は、有底の坩堝4とSiC基板種結晶8
の取り付け部7を有する前記坩堝4の開口部を覆う黒鉛
製の坩堝蓋6とにより構成され、坩堝4と坩堝蓋6の側
面および上下は黒鉛フィルト製の断熱材9により覆われ
ており、さらに真空排気装置により真空排気できかつ内
部雰囲気をArなどの不活性気体で圧力制御できる容器
に入れられている。加熱は、例えば容器外に巻装した高
周波誘導コイルなどにより行なう。坩堝温度の計測は、
例えば坩堝下部を覆うフェルトの中央部に直径2〜4m
mの光路10を設け坩堝下部の光を取り出し、二色温度
計を用いて常時行なう。この温度を原料温度とみなす。
予め上部フェルトに同じような光路を設け坩堝蓋の温度
を測定し、これを種結晶の温度とみなす。The contents of the present invention will be described in detail below with reference to the drawings. FIG. 2 shows an example of a single crystal growth apparatus used in the method for growing a SiC single crystal of the present invention. As shown in the figure, the graphite crucible used in the single crystal growth apparatus comprises a bottomed crucible 4 and a SiC substrate seed crystal 8.
And a crucible lid 6 made of graphite for covering the opening of the crucible 4 having a mounting part 7 of the crucible 4. The container is placed in a container that can be evacuated by a vacuum exhaust device and whose internal atmosphere can be pressure-controlled by an inert gas such as Ar. The heating is performed by, for example, a high frequency induction coil wound outside the container. Measuring the crucible temperature,
For example, in the center of the felt that covers the lower part of the crucible, a diameter of 2 to 4 m
The optical path 10 of m is provided and the light in the lower part of the crucible is extracted, and the light is constantly measured using a two-color thermometer. This temperature is regarded as the raw material temperature.
A similar optical path is provided in advance on the upper felt, the temperature of the crucible lid is measured, and this is regarded as the temperature of the seed crystal.
【0015】図3は、第1の種結晶として使用する結晶
面を説明した図である。本発明の第1の種結晶として使
用する結晶面は{0001}面から約60°〜120°
傾いた面であり、この傾き角は図中θで示される。この
所望の面を出したSiC単結晶の基板ウェハを種結晶と
して坩堝蓋に取り付け、例えば下記のように結晶成長を
行なう。FIG. 3 is a diagram for explaining a crystal plane used as the first seed crystal. The crystal plane used as the first seed crystal of the present invention is about 60 ° to 120 ° from the {0001} plane.
It is an inclined surface, and this inclination angle is indicated by θ in the figure. The SiC single crystal substrate wafer having the desired surface is attached as a seed crystal to the crucible lid, and crystal growth is performed as follows, for example.
【0016】容器内を真空とし、原料温度を約2000
℃まで上げる。その後、不活性気体を流入させながら約
8×10 4 Paに保ち、原料温度を目標温度に上昇させ
る。減圧は、10〜90分かけて行ない、雰囲気圧力を
1.3×10 2 〜6.7×10 3 Pa、より好ましくは
6.7×10 2 〜2.7×10 3 Pa、原料温度を21
00〜2500℃、より好ましくは2200〜2400
℃に設定し成長を開始するのが望ましい。これより低温
では原料が気化しずらくなり、これより高温では熱エッ
チングなどにより良質の単結晶が成長しずらくなる。ま
た、種結晶温度は原料温度より40〜100℃、より好
ましくは50〜70℃低く、温度勾配は5〜25℃/c
m、より好ましくは10〜20℃/hとなるように設定
するのが望ましい。さらに、温度と圧力の関係は、単結
晶の成長速度が0.5〜1.5mm/h、より好ましく
は、0.8〜1.3mm/hとなるようにすることが望
ましい。これより高速では結晶品質が低下するため適当
ではなく、これより低速では生産性が良くない。The container is evacuated and the raw material temperature is about 2000.
Raise to ℃. After that, while inflowing an inert gas,
The raw material temperature is raised to the target temperature while keeping it at 8 × 10 4 Pa . Decompression takes 10 to 90 minutes to reduce the atmospheric pressure.
1.3 × 10 2 to 6.7 × 10 3 Pa , more preferably
6.7 × 10 2 to 2.7 × 10 3 Pa , raw material temperature 21
00 to 2500 ° C, more preferably 2200 to 2400
It is desirable to set the temperature to ℃ and start the growth. If the temperature is lower than this, the raw material is less likely to be vaporized, and if the temperature is higher than this, it becomes difficult to grow a good quality single crystal due to thermal etching or the like. The seed crystal temperature is lower than the raw material temperature by 40 to 100 ° C, more preferably 50 to 70 ° C, and the temperature gradient is 5 to 25 ° C / c.
m, and more preferably 10 to 20 ° C./h. Furthermore, the relationship between temperature and pressure is preferably such that the growth rate of the single crystal is 0.5 to 1.5 mm / h, and more preferably 0.8 to 1.3 mm / h. If the speed is higher than this, the crystal quality is deteriorated, which is not suitable, and if the speed is lower than this, the productivity is not good.
【0017】このようにして得られたインゴットを図1
のように切断し、研磨加工を行ない{0001}ウェハ
を作製する。このウェハを第2の成長の種結晶として使
用し、{0001}面上に例えば上記と同じ成長条件で
成長を行なう。この{0001}ウェハは成長に悪影響
がなければ、{0001}面から20°程度傾いていて
も構わない。The ingot thus obtained is shown in FIG.
Then, the wafer is cut as described above and polished to produce a {0001} wafer. Use this wafer as a seed crystal of the second growth
For example , the {0001} plane is grown under the same growth conditions as described above. The {0001} wafer may be tilted by about 20 ° from the {0001} plane as long as the growth is not adversely affected.
【0018】この2度の成長で得られた単結晶の評価は
以下の手順で行なった。作製した単結晶インゴットを切
断、研磨によって{0001}ウェハに加工する。この
時、ウェハに加工歪が残らないように注意する。エッチ
ングは、約530度のKOH融液で約10分間行った。
エッチング後、ノマルスキー微分干渉顕微鏡により発生
したエッチピット個数を計測した。この時大型の正六角
形のエッチピットがマイクロパイプ欠陥に対応する。ま
た前後に偏光板を取り付けた透過型の偏光顕微鏡の観測
によっても、切り出した{0001}ウェハのマイクロ
パイプ欠陥は伴う結晶歪に対応するコントラストによっ
て計測できる。また、結晶のホール測定はファン・デル
・ポー法によって行った。The evaluation of the single crystal obtained by the twice growth was carried out by the following procedure. The produced single crystal ingot is cut and polished into a {0001} wafer. At this time, be careful not to leave processing distortion on the wafer. The etching was performed with a KOH melt at about 530 degrees for about 10 minutes.
After etching, the number of etch pits generated by a Nomarski differential interference microscope was measured. At this time, a large regular hexagonal etch pit corresponds to the micropipe defect. Observation with a transmission polarization microscope with polarizing plates attached to the front and back
Also, the micropipe defect of the cut {0001} wafer can be measured by the contrast corresponding to the accompanying crystal strain. The hole measurement of the crystal was performed by the van der Pauw method.
【0019】[0019]
実施例1 Example 1
【0020】[0020]
【外3】 [Outside 3]
【0021】2280℃、雰囲気圧力を1.3×10 3
Paとして単結晶成長を行なった。得られた単結晶イン
ゴットから{0001}ウェハを取り出し、このウェハ
を種結晶として再び同じ成長条件で成長を行なった。成
長インゴットから{0001}ウェハを取り出し、エッ
チングや偏光顕微鏡で観測したところ、マイクロパイプ
欠陥は平均して100個/cm2 以下と非常に少ない
値を示した。またウェハ内にはこの欠陥が全く存在して
いない領域も多く見られた。さらに、種結晶付近に通常
に見られる黒色の線状欠陥がこの結晶ではほとんど見ら
れなかった。またホール測定によってウェハの面内分布
を調べると、キャリア濃度は面内でほぼ均一であった。At 2280 ° C., the atmospheric pressure is 1.3 × 10 3.
A single crystal was grown with Pa . A {0001} wafer was taken out from the obtained single crystal ingot, and this wafer was used as a seed crystal to grow again under the same growth conditions. When a {0001} wafer was taken out from the growth ingot and observed by etching or a polarization microscope, micropipe defects showed a very small value of 100 defects / cm 2 or less on average. Also, there were many areas in the wafer where this defect did not exist at all. Furthermore, the black line defects that are usually found near the seed crystal were hardly found in this crystal. When the in-plane distribution of the wafer was examined by hole measurement, the carrier concentration was almost uniform in the plane.
【0022】実施例2
種結晶として{0001}面から90°傾いた結晶面を
使用して、原料温度を2370℃、種結晶温度を231
0℃、雰囲気圧力を2.7×10 3 Paとして単結晶成
長を行なった。得られた単結晶インゴットから{000
1}ウェハを取り出し、このウェハを種結晶として再び
同じ成長条件で成長を行なった。成長インゴットから
{0001}ウェハを取り出し、エッチングや偏光顕微
鏡で観測したところ、マイクロパイプ欠陥は平均して1
00/cm2 以下と少ない値を示した。さらに、種結
晶付近に通常見られる黒色の線状欠陥はこの結晶ではほ
とんど見られなかった。またホール測定によってウェハ
の面内分布を調べると、キャリア濃度は面内でほぼ均一
であった。Example 2 Using a crystal plane inclined by 90 ° from the {0001} plane as a seed crystal, the raw material temperature was 2370 ° C. and the seed crystal temperature was 231.
Single crystal growth was performed at 0 ° C. and an atmospheric pressure of 2.7 × 10 3 Pa . {000 from the obtained single crystal ingot
1) The wafer was taken out, and this wafer was used as a seed crystal to grow again under the same growth conditions. When the {0001} wafer was taken out from the growth ingot and observed by etching and a polarization microscope, micropipe defects were 1 on average.
The value was as small as 00 / cm 2 or less. Furthermore, the black line defects that are usually found near the seed crystal were hardly found in this crystal. When the in-plane distribution of the wafer was examined by hole measurement, the carrier concentration was almost uniform in the plane.
【0023】実施例3
種結晶として{0001}面から60°傾いた結晶面を
使用して、原料温度を2370℃、種結晶温度を231
0℃、雰囲気圧力を2.7×10 3 Paとして単結晶成
長を行なった。得られた単結晶インゴットから{000
1}ウェハを取り出し、このウェハを種結晶として再び
同じ成長条件で成長を行なった。成長インゴットから
{0001}ウェハを取り出し、エッチングや偏光顕微
鏡で観測したところ、マイクロパイプ欠陥は平均して2
00/cm2 以下と少ない値を示した。さらに、種結
晶付近に通常見られる黒色の線状欠陥はこの結晶ではほ
とんど見られなかった。またホール測定によってウェハ
の面内分布を調べると、キャリア濃度は面内でほぼ均一
であった。Example 3 Using a crystal plane inclined by 60 ° from the {0001} plane as a seed crystal, the raw material temperature was 2370 ° C. and the seed crystal temperature was 231.
Single crystal growth was performed at 0 ° C. and an atmospheric pressure of 2.7 × 10 3 Pa . {000 from the obtained single crystal ingot
1) The wafer was taken out, and this wafer was used as a seed crystal to grow again under the same growth conditions. When the {0001} wafer was taken out from the growth ingot and observed by etching and a polarization microscope, micropipe defects were 2 on average.
The value was as small as 00 / cm 2 or less. Furthermore, the black line defects that are usually found near the seed crystal were hardly found in this crystal. When the in-plane distribution of the wafer was examined by hole measurement, the carrier concentration was almost uniform in the plane.
【0024】実施例4
種結晶として{0001}面から120°傾いた結晶面
を使用して、原料温度を2370℃、種結晶温度を23
10℃、雰囲気圧力を2.7×10 3 Paとして単結晶
成長を行なった。得られた単結晶インゴットから{00
01}ウェハを取り出し、このウェハを種結晶として再
び同じ成長条件で成長を行なった。成長インゴットから
{0001}ウェハを取り出し、エッチングや偏光顕微
鏡で観測したところ、マイクロパイプ欠陥は平均して2
00/cm2 以下と少ない値を示した。さらに、種結
晶付近に通常見られる黒色の線状欠陥はこの結晶ではほ
とんど見られなかった。またホール測定によってウェハ
の面内分布を調べると、キャリア濃度は面内でほぼ均一
であった。Example 4 Using a crystal plane inclined by 120 ° from the {0001} plane as a seed crystal, the raw material temperature was 2370 ° C. and the seed crystal temperature was 23.
Single crystal growth was performed at 10 ° C. and an atmospheric pressure of 2.7 × 10 3 Pa . From the obtained single crystal ingot, {00
The 01} wafer was taken out, and this wafer was used as a seed crystal to grow again under the same growth conditions. When the {0001} wafer was taken out from the growth ingot and observed by etching and a polarization microscope, micropipe defects were 2 on average.
The value was as small as 00 / cm 2 or less. Furthermore, the black line defects that are usually found near the seed crystal were hardly found in this crystal. When the in-plane distribution of the wafer was examined by hole measurement, the carrier concentration was almost uniform in the plane.
【0025】比較例1
種結晶として{0001}面を使用し、原料温度を23
40℃、種結晶温度を2280℃、雰囲気圧力を1.3
×10 3 Paとして単結晶成長を行なった。得られた単
結晶インゴットから{0001}ウェハを取り出した。
ウェハには非常に多くのマイクロパイプ欠陥が含まれて
いた。このウェハを種結晶として再び同じ成長条件で成
長を行なった。成長インゴットから{0001}ウェハ
を取り出し、エッチングや偏光顕微鏡で観測したとこ
ろ、マイクロパイプ欠陥は平均して102 〜103
個/cm2 と非常に多い値を示していた。さらに、種
結晶の近くから切り出したウェハには黒い線状欠陥が含
まれていた。Comparative Example 1 A {0001} plane was used as a seed crystal and the raw material temperature was set to 23.
40 ° C., seed crystal temperature 2280 ° C., atmospheric pressure 1.3
Single crystal growth was performed at × 10 3 Pa . A {0001} wafer was taken out from the obtained single crystal ingot.
The wafer contained numerous micropipe defects. It was carried out to grow at the same growth conditions again the c E c of this as a seed crystal. When the {0001} wafer was taken out from the growth ingot and observed by etching or a polarization microscope, micropipe defects were 10 2 to 10 3 on average.
The number was as high as pcs / cm 2 . Further, the wafer cut out near the seed crystal contained black line defects.
【0026】比較例2
種結晶として{0001}面から40°傾いた結晶面を
使用して、原料温度を2370℃、種結晶温度を221
0℃、雰囲気圧力を2.7×10 3 Paとして単結晶成
長を行なった。得られた単結晶インゴットから{000
1}ウェハを取り出した。ウェハには多くのマイクロパ
イプ欠陥や黒い線状欠陥が含まれていた。このウェハを
種結晶として再び同じ成長条件で成長を行った。成長イ
ンゴットから{0001}ウェハを取り出し、エッチン
グや偏光顕微鏡で観測したところ、マイクロパイプ欠陥
は平均して102 〜103 個/cm2 と非常に多
い上、黒い線状欠陥も多数見られた。Comparative Example 2 Using a crystal plane inclined by 40 ° from the {0001} plane as a seed crystal, the raw material temperature was 2370 ° C. and the seed crystal temperature was 221.
Single crystal growth was performed at 0 ° C. and an atmospheric pressure of 2.7 × 10 3 Pa . {000 from the obtained single crystal ingot
1} The wafer was taken out. The wafer contained many micropipe defects and black line defects. Again the c E c of this as a seed crystal was grown under the same growth conditions. When the {0001} wafer was taken out from the growth ingot and observed by etching or a polarization microscope, micropipe defects were very large on average of 10 2 to 10 3 / cm 2 , and many black line defects were also found. .
【0027】[0027]
【発明の効果】本発明を用いることにより、良質で大型
のSiC単結晶を用いた電子デバイスの各種応用面に有
用なマイクロパイプ欠陥の少ない大口径単結晶ウェハの
供給を可能とする。By using the present invention, to allow the supply of useful low micropipe defects large diameter single crystal wafer in various application surface of an electronic device using a large SiC single crystal of good quality.
【外4】 ハを取り出す図である。[Outside 4] FIG.
【図2】は、本発明のSiC単結晶成長に用いられる単
結晶の成長装置の一例の構造を模式的に示す断面図であ
る。FIG. 2 is a cross-sectional view schematically showing the structure of an example of a single crystal growth apparatus used for SiC single crystal growth of the present invention.
【図3】は、第1の種結晶として使用する結晶面を説明
した図である。FIG. 3 is a diagram illustrating a crystal plane used as a first seed crystal.
1…種結晶、 2…成長単結晶、 3…{0001}ウェハ、 4…坩堝、 5…SiC原料、 6…坩堝蓋 7…種結晶取り付け部、 8…種結晶、 9…断熱フェルト、 10…光路、 11…SiC単結晶。 1 ... Seed crystal, 2 ... grown single crystal, 3 ... {0001} wafer, 4 ... crucible, 5 ... SiC raw material, 6 ... crucible lid 7 ... Seed crystal mounting part, 8 ... Seed crystal, 9 ... Insulating felt, 10 ... optical path, 11 ... SiC single crystal.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 勝野 正和 神奈川県相模原市淵野辺5−10−1 新 日本製鐵株式会社 エレクトロニクス研 究所内 (56)参考文献 特開 平5−262599(JP,A) 特開 平4−12096(JP,A) 特開 平5−319997(JP,A) 特開 平5−178698(JP,A) 特開 平6−298600(JP,A) (58)調査した分野(Int.Cl.7,DB名) C30B 1/00 - 35/00 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Masakazu Katsuno Masakazu Katsuno 5-10-1 Fuchinobe, Sagamihara-shi, Kanagawa Electronics Research Laboratory, Nippon Steel Corporation (56) Reference JP-A-5-262599 JP 4-12096 (JP, A) JP 5-319997 (JP, A) JP 5-17896 (JP, A) JP 6-298600 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) C30B 1/00-35/00
Claims (2)
を不活性気体雰囲気中で加熱昇華させ原料よりやや低温
になっている種結晶のSiC単結晶基板上にSiC単結
晶を成長させる昇華再結晶法において、{0001}面
から約60°〜約120°傾いたSiC単結晶の結晶面
を第1の種結晶として使用して成長させた第1のSiC
単結晶から、新たに{0001}ウェハを取り出し、こ
れを第2の種結晶とし再び上記昇華再結晶法によって第
2のSiC単結晶を成長させる方法。1. A sublimation recrystallization in which a SiC raw material powder is heated and sublimated in a graphite crucible in an inert gas atmosphere to grow a SiC single crystal on a seed crystal SiC single crystal substrate whose temperature is slightly lower than that of the raw material. In the method, a first SiC grown by using a crystal plane of a SiC single crystal tilted by about 60 ° to about 120 ° from a {0001} plane as a first seed crystal.
A method in which a {0001} wafer is newly taken out from a single crystal, and this is used as a second seed crystal, and a second SiC single crystal is grown again by the sublimation recrystallization method.
種結晶として使用する請求項1に記載の方法。 【外1】 の方法。2. The method according to claim 1, wherein a crystal plane perpendicular to the {0001} plane is used as the first seed crystal. [Outer 1] the method of.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28695694A JP3532978B2 (en) | 1994-11-21 | 1994-11-21 | Method for growing SiC single crystal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28695694A JP3532978B2 (en) | 1994-11-21 | 1994-11-21 | Method for growing SiC single crystal |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08143396A JPH08143396A (en) | 1996-06-04 |
JP3532978B2 true JP3532978B2 (en) | 2004-05-31 |
Family
ID=17711136
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28695694A Expired - Lifetime JP3532978B2 (en) | 1994-11-21 | 1994-11-21 | Method for growing SiC single crystal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3532978B2 (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012046424A (en) * | 2000-12-28 | 2012-03-08 | Bridgestone Corp | Silicon carbide single crystal |
JP4691815B2 (en) * | 2001-04-06 | 2011-06-01 | 株式会社デンソー | Method for producing SiC single crystal |
JP3750622B2 (en) * | 2002-03-22 | 2006-03-01 | 株式会社デンソー | SiC wafer with epitaxial film, manufacturing method thereof, and SiC electronic device |
JP3776374B2 (en) * | 2002-04-30 | 2006-05-17 | 株式会社豊田中央研究所 | Method for producing SiC single crystal and method for producing SiC wafer with epitaxial film |
DE10247017B4 (en) | 2001-10-12 | 2009-06-10 | Denso Corp., Kariya-shi | SiC single crystal, a method of producing a SiC single crystal, SiC wafers with an epitaxial film, and a method of producing a SiC wafer having an epitaxial film |
JP3764462B2 (en) | 2003-04-10 | 2006-04-05 | 株式会社豊田中央研究所 | Method for producing silicon carbide single crystal |
US7387680B2 (en) | 2005-05-13 | 2008-06-17 | Cree, Inc. | Method and apparatus for the production of silicon carbide crystals |
JP2007332019A (en) * | 2006-05-18 | 2007-12-27 | Showa Denko Kk | Method for producing silicon carbide single crystal |
US8044408B2 (en) | 2009-05-20 | 2011-10-25 | Nippon Steel Corporation | SiC single-crystal substrate and method of producing SiC single-crystal substrate |
JP5276068B2 (en) * | 2010-08-26 | 2013-08-28 | 株式会社豊田中央研究所 | Method for producing SiC single crystal |
JP5189156B2 (en) | 2010-11-29 | 2013-04-24 | 株式会社豊田中央研究所 | Method for producing SiC single crystal |
JP6039888B2 (en) | 2011-06-05 | 2016-12-07 | 株式会社豊田中央研究所 | Method for producing SiC single crystal |
CN113668044B (en) * | 2021-07-14 | 2024-03-15 | 威科赛乐微电子股份有限公司 | Single crystal regeneration method |
-
1994
- 1994-11-21 JP JP28695694A patent/JP3532978B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH08143396A (en) | 1996-06-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2804860B2 (en) | SiC single crystal and growth method thereof | |
JP3532978B2 (en) | Method for growing SiC single crystal | |
US5441011A (en) | Sublimation growth of single crystal SiC | |
US5248385A (en) | Process for the homoepitaxial growth of single-crystal silicon carbide films on silicon carbide wafers | |
JP4603386B2 (en) | Method for producing silicon carbide single crystal | |
JP3414321B2 (en) | Method for producing silicon carbide single crystal | |
WO2003085175A1 (en) | Seed crystal of silicon carbide single crystal and method for producing ingot using same | |
TWI774929B (en) | Manufacturing method of silicon carbide single crystal | |
JP4523733B2 (en) | Method for producing silicon carbide single crystal ingot and method for mounting seed crystal for growing silicon carbide single crystal | |
JP2004099340A (en) | Seed crystal for silicon carbide single crystal growth, silicon carbide single crystal ingot and method of manufacturing the same | |
JPH05339100A (en) | Compound semiconductor single crystal and growth method therefor | |
JP3637157B2 (en) | Method for producing silicon carbide single crystal and seed crystal used therefor | |
EP0964081A2 (en) | Single crystal SiC and a method of producing the same | |
JP4253974B2 (en) | SiC single crystal and growth method thereof | |
JP4654030B2 (en) | SiC wafer and manufacturing method thereof | |
Durose et al. | Structural properties of crystals of CdTe grown from the vapour phase | |
US6376900B1 (en) | Single crystal SiC | |
JP3848446B2 (en) | Method for growing low resistance SiC single crystal | |
JPH07267795A (en) | Growth method of silicon carbide single crystal | |
JPH0797299A (en) | Method for growing sic single crystal | |
JP4157326B2 (en) | 4H type silicon carbide single crystal ingot and wafer | |
TW201938853A (en) | Method for producing silicon carbide single crystal | |
JPH1017399A (en) | Method for growing 6h-silicon carbide single crystal | |
JP2002121099A (en) | Seed crystal for growing silicon carbide single crystal, silicon carbide single crystal ingot, silicon carbide single crystal wafer, and method for producing silicon carbide single crystal | |
JP2000034199A (en) | Production of silicon carbide single crystal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040115 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040210 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040305 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080312 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090312 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090312 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100312 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110312 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120312 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130312 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130312 Year of fee payment: 9 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130312 Year of fee payment: 9 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130312 Year of fee payment: 9 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140312 Year of fee payment: 10 |
|
EXPY | Cancellation because of completion of term |