JP3776374B2 - Method for producing SiC single crystal and method for producing SiC wafer with epitaxial film - Google Patents

Method for producing SiC single crystal and method for producing SiC wafer with epitaxial film Download PDF

Info

Publication number
JP3776374B2
JP3776374B2 JP2002128725A JP2002128725A JP3776374B2 JP 3776374 B2 JP3776374 B2 JP 3776374B2 JP 2002128725 A JP2002128725 A JP 2002128725A JP 2002128725 A JP2002128725 A JP 2002128725A JP 3776374 B2 JP3776374 B2 JP 3776374B2
Authority
JP
Japan
Prior art keywords
growth
crystal
single crystal
plane
sic single
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002128725A
Other languages
Japanese (ja)
Other versions
JP2003321298A (en
Inventor
大輔 中村
宏行 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Central R&D Labs Inc
Original Assignee
Denso Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Toyota Central R&D Labs Inc filed Critical Denso Corp
Priority to JP2002128725A priority Critical patent/JP3776374B2/en
Priority to DE10247017A priority patent/DE10247017B4/en
Priority to SE0202992A priority patent/SE523917C2/en
Priority to US10/268,103 priority patent/US6890600B2/en
Publication of JP2003321298A publication Critical patent/JP2003321298A/en
Application granted granted Critical
Publication of JP3776374B2 publication Critical patent/JP3776374B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【0001】
【技術分野】
本発明は,結晶中に転位及び欠陥をほとんど含有しないSiC単結晶製造方法,並びにエピタキシャル膜付きSiCウエハ製造方法に関する。
【0002】
【従来技術】
従来より,SiC単結晶を利用するSiC半導体は,Si半導体に代わる次世代パワーデバイスの候補材料として期待されている。高性能なSiCパワーデバイスを実現するためには,上記SiC半導体に生じるリーク電流を低減すること,及び耐圧低下を抑制することが必須条件である。これまでの研究報告によれば,上記SiC単結晶に生じるマイクロパイプ欠陥,螺旋転位,刃状転位,積層欠陥等の欠陥が,SiC半導体のリーク電流や耐圧低下等の原因となっていると考えられている。
また,上記パワーデバイスの用途には,特にエピタキシャル膜を有するSiCウエハが用いられる。そのため,SiC単結晶中のみならず,エピタキシャル膜中にも上記欠陥を含まないエピタキシャル膜付きSiCウエハの開発が望まれている。
【0003】
図7に示すごとく,SiC単結晶は主要な面方位として{0001}面(c面)と,{0001}面に垂直な{1−100}面(a面)及び{11−20}面(a面)とを有している。
従来より上記SiC単結晶を得る方法としては,まず,六方晶の{0001}面(c面)又は{0001}面からオフセット角度10°以内の面を種結晶面として露出するSiC種結晶を用いて,昇華再析出法等により種結晶面上にSiC単結晶を成長させる,いわゆるc面成長を行う方法が用いられてきた。
【0004】
しかし,上記のように{0001}面を種結晶面とし,<0001>方向に成長させてなるSiCバルク単結晶(c面成長結晶)中には,<0001>方向に略平行にマイクロパイプ欠陥,螺旋転位,刃状転位がそれぞれ100〜103cm-2,103〜104cm-2,104〜105cm-2程度含まれるという問題があった。さらに,このc面成長結晶からSiCウエハを作製してエピタキシャル膜を成膜すると,該エピタキシャル膜中にはSiCウエハの表面に露出する欠陥及び転位が継承される。これにより,上記エピタキシャル膜中にもSiCウエハと略同密度の転位が存在し,各種デバイス特性に悪影響を及ぼすという問題があった。
【0005】
一方,特開平5−262599号公報には,SiC単結晶の{0001}面からの傾きが60〜120°(好ましくは90°)の面を種結晶面として,この種結晶をa面成長させて,成長結晶(a面成長結晶)を得る方法が開示されている。そして,このa面成長結晶中には,マイクロパイプ欠陥や螺旋転位が含まれないことを明らかにした。
【0006】
【解決しようとする課題】
しかしながら,上記a面成長結晶中には,積層欠陥が{0001}面内であって成長方向と略平行に102〜104cm-1という高密度で含まれる。また,<0001>方向に平行及び直交なバーガースベクトルを持つ刃状転位が成長方向に略平行に高密度に含まれる。そして,このa面成長結晶からSiCウエハを作製しエピタキシャル膜を成膜すると,該エピタキシャル膜中にa面成長結晶に含まれる高密度の刃状転位及び積層欠陥から転位及び積層欠陥が継承される。このようにSiC単結晶及びエピタキシャル膜中に転位及び積層欠陥を高密度に含有するSiC単結晶は,オン抵抗が高くなり,また,逆方向リーク電流を生じるため,デバイス動作に悪影響を及ぼすおそれがある。
【0007】
本発明は,かかる従来の問題点に鑑みてなされたもので,転位及び欠陥をほとんど含まず高品質なSiC単結晶製造方法,並びにSiC単結晶及びエピタキシャル膜中に欠陥及び転位をほとんど含有しないエピタキシャル膜付きSiCウエハ製造方法提供しようとするものである。
【0008】
【課題の解決手段】
第1の発明は,六方晶のSiC単結晶よりなるSiC種結晶上にSiC単結晶を成長させてバルク状のSiC単結晶を製造する製造方法において,該製造方法はN回(NはN≧2の自然数)の成長工程を含み,各成長工程を第n成長工程(nは自然数であって1から始まりNで終わる序数)として表した場合,
n=1である第1成長工程においては,{0001}面から傾斜角度60°〜90°傾いた面を第1成長面として露出させた第1種結晶を作製して,該第1種結晶の上記第1成長面上にSiC単結晶を成長させ第1成長結晶を作製し,
n=2,3,...,Nである連続成長工程においては,第n成長面の法線ベクトルを{0001}面に投影したベクトルの方向を第n傾斜方向とした場合に,第(n−1)傾斜方向から<0001>を回転軸として45°〜135°回転したところに第n傾斜方向を有し,かつ{0001}面から傾斜角度10°〜90°(ただし,10°を除く)傾いた面を第n成長面として露出させた第n種結晶を第(n1)成長結晶から作製して,該第n種結晶の上記第n成長面上にSiC単結晶を成長させ第n成長結晶を作製し,
上記連続成長工程の第n成長工程においては,上記第n成長面と{0001}面との傾斜角度が60°〜90°である成長工程を1回以上有することを特徴とするSiC単結晶の製造方法にある(請求項1)。
【0009】
次に,本発明の作用効果につき説明する。
本発明の上記第1成長工程においては,{0001}面から傾斜角度60°〜90°傾いた面を第1成長面として露出させた第1種結晶を作製して,該第1種結晶の上記第1成長面上にSiC単結晶を成長させ第1成長結晶を作製する。
そのため,上記第1成長結晶中には主として上記第1成長面の表面から継承される転位が多数存在する。ここで,該転位の発生源は主として第1成長面に露出した欠陥(転位,マイクロパイプ欠陥)である。上記第1成長工程においては,上記転位の方向の大部分を第1成長面の法線ベクトルを{0001}面に投影したベクトルの方向である第1傾斜方向に略平行にそろえることができる。
【0010】
次に,上記連続成長工程においては,第(n−1)傾斜方向から<0001>を回転軸として45°〜135°回転したところに第n傾斜方向を有し,かつ{0001}面から傾斜角度10°〜90°(ただし,10°を除く)傾いた面を第n成長面として露出させた第n種結晶を第(n1)成長結晶から作製して,該第n種結晶の上記第n成長面上にSiC単結晶を成長させ第n成長結晶作製する。上記連続成長工程の第n成長工程においては,上記第n成長面と{0001}面との傾斜角度が60°〜90°である成長工程を1回以上有する。
そのため,上記第n成長面には,第(n−1)成長結晶中に存在する転位はほとんど露出されない。第(n−1)成長結晶中の転位の多くは{0001}面内の第(n−1)傾斜方向に平行に存在しており,該転位が上記第n成長面に露出する確率は小さくなるからである。それ故,上記第n成長結晶中には第n成長面から転位が継承されることはほとんどなく,転位及び欠陥はほとんど発生しない。
また,上記連続成長工程は,1回(N=2のとき),複数回繰り返して行うことができる。そして,連続成長工程の回数を増やす毎に,得られる成長結晶のいわゆる転位密度を指数関数的に減少させることができる。
【0011】
このように,本発明によれば,マイクロパイプ欠陥,螺旋転位,刃状転位,及び積層欠陥をほとんど含まず,高品質なSiC単結晶の製造方法を提供することができる。
【0013】
上記第1の発明によって作製されたSiC単結晶はマイクロパイプ欠陥,螺旋転位,刃状転位,及び積層欠陥をほとんど含まず高品質である。それ故,高性能なパワーデバイスとして利用することができる。
【0014】
次に,第2の発明は,第1の発明の製造方法により作製されたSiC単結晶より成膜面を露出するSiCウエハを作製し,該SiCウエハの上記成膜面上にエピタキシャル膜を成膜することを特徴とするエピタキシャル膜付きSiCウエハの製造方法にある(請求項)。
【0015】
第1の発明の製造方法により製造されたSiC単結晶は,上述のごとくマイクロパイプ欠陥,螺旋転位,刃状転位,及び積層欠陥をほとんど含まず,高品質である。そのため,上記SiCウエハの成膜面には上記欠陥及び転位はほとんど露出せず,エピタキシャル膜中へも転位が継承されることはほとんどない。それ故,転位及び欠陥の少ない高品質なエピタキシャル膜付きSiCウエハを作製することができる。
【0017】
上記第2の発明の製造方法によって製造される上記エピタキシャル膜付きSiCウエハはSiC単結晶及びエピタキシャル膜中に転位や欠陥をほとんど含んでいない。それ故,高性能なSiC電子デバイスに利用することができる。
【0019】
上記エピタキシャル膜付きSiCウエハを用いた上記SiC電子デバイスはオン抵抗が低く,またリーク電流の発生もなく優れている。
【0020】
【発明の実施の形態】
上記第1の発明(請求項1)においては,上記第1成長面と{0001}との傾斜角度は60°〜90°である。1°未満の場合には,傾斜角度が小さすぎて,上記第n成長結晶は,いわゆるc面成長結晶と同等のものとなり,マイクロパイプ欠陥,螺旋転位,刃状転位等が高密度で発生する。また、傾斜角度が60°未満の場合には,傾斜方向と平行でない転位が次工程の種結晶の成長面に露出し,成長結晶に転位や欠陥を生じるおそれがある。
また,上記第n傾斜方向は,上記第(n−1)傾斜方向から<0001>を回転軸として45°〜135°回転したところにある。45°未満の場合には,第(n−1)成長結晶が第n成長面に露出する確率が高くなり,上記連続成長工程を繰り返しても,第n成長結晶に含まれる転位はほとんど減少しない。そのため,より好ましくは60°以上がよい。また,135°を超える場合も同様で,より好ましくは120°以下がよい。
【0021】
また,上記連続成長工程において,上記第n傾斜方向を,<0001>を回転軸として第(n−1)傾斜方向から90°回転させたところとする成長工程を1回以上含むことが好ましい。
この場合には,転位が第n成長面上に露出する確率が非常に小さくなり,第n成長結晶に転位及び欠陥が生じるおそれが少なくなる。なお,成長工程回数を増やすごとに成長結晶中の転位密度は小さくなる。
【0022】
また,上記各成長面の上にSiC単結晶を成長させる前には,各成長面の表面の付着物や加工変質層を除去しておくことが好ましい。
この場合には,上記付着物や加工変質層に起因する各成長面から各成長結晶に継承される転位を防ぐことができる。なお,上記付着物や加工変質層を除去する方法としては,例えば研磨,化学洗浄,Reactive Ion Etching(RIE),犠牲酸化等がある。
【0023】
次に,上記第n成長面(n=1,2,...,N)と{0001}面との傾斜角度は,70°未満であることが好ましい(請求項2)。
この場合には,結晶を高く成長させる必要がなく,コストダウンを図ることができる。70°以上の場合には,結晶を高く成長させる必要があり,製造コストが高くなるおそれがある。
【0024】
次に,上記第n成長面(n=1,2,...,N)と{0001}面との傾斜角度は,10°以上であることが好ましい。
この場合には,マイクロパイプ欠陥,螺旋転位及び刃状転位等の貫通欠陥を減少させることができる。10°未満の場合には,これら貫通欠陥が高密度で発生するおそれがある。
【0025】
次に,n=N(ただし,N=2を除く)である第N成長工程においては,上記第N成長面と{0001}面との傾斜角度が20°以下であることが好ましい(請求項3)。
この場合には,上記SiC単結晶は最終的に略c面成長方向に成長し,現在デバイス作製用として広く用いられている,いわゆるc面成長結晶となる。そのため,上記SiC単結晶をSiC電子デバイス作製上有効なものとすることができる。
【0026】
次に,上記連続成長工程の第n成長工程においては,上記第n成長面と{0001}面との傾斜角度が60°〜90°である成長工程を1回以上有する。
この場合には,結晶中の転位を効率よく減らすことができる。
一般に,{0001}面より1°〜90°の傾斜角度をもった成長面上に結晶を成長させると,成長結晶中に生じる転位の方向は傾斜方向に略平行になる場合が多い。この成長面と{0001}面との傾斜角度が60°を超えると該転位のほとんど全てが傾斜方向に略平行となる。そのため,上記第n成長面と{0001}面との傾斜角度を60°〜90°とした場合には,ほとんど全ての転位を傾斜方向に平行にすることことができ,次工程の種結晶の成長面に転位がほとんど露出しないようにすることが容易になる。
上記第n成長面と{0001}面との傾斜角度が60°未満の場合には,傾斜方向と平行でない転位が次工程の種結晶の成長面に露出し,成長結晶に転位や欠陥を生じるおそれがある。
【0027】
また,上記第n成長面と{0001}面との傾斜角度が60°〜90°である成長工程は,少なくとも1回以上行うことができるが,結晶中の転位が充分に低減された後の成長工程においては,もはや傾斜角度を大きくする必要はなく,例えば1〜20°という小さい傾斜角度でも充分に高品質な結晶を再現性良く作製することができる。また,上記第n成長面と{0001}面との傾斜角度を小さくすると結晶の高さを高くする必要がなくなるため,コストダウンを図ることができる。
【0028】
上記各種結晶上でのSiC単結晶の成長には昇華再析出法を用いることが好ましい(請求項
この場合には十分な成長高さが得られるため大口径のSiC単結晶を作製することができると共に,再現性よく,且つ生産性よく高品質のSiC単結晶を作製することができる。
なお,本発明において使用できるSiC単結晶成長手法は昇華再析出法に限らず,十分な成長高さのバルク状単結晶を成長できる手法であれば全て適用できる。例えば,Mater. Sci. Eng. B Vol.61−62(1999)113−120に示されているような2000℃を越える温度域での化学気相堆積法も用いることができる。
【0029】
上記各種結晶の厚みは,1mm以上であることが好ましい(請求項)。
この場合には,上記種結晶と種結晶を固定している物体との熱膨張差による応力によって成長結晶に生じる転位及び積層欠陥を防止することができる。即ち,上記種結晶の厚みを充分大きくすることにより,上記応力が種結晶を構成する格子を歪めて,成長結晶に転位及び積層欠陥が発生することを防止することができる。また,特に,上記種結晶の成長面の面積Aが500mm2を越える場合には,上記種結晶の厚みを1mmよりさらに大きくする必要がある。このときの必要最低限の厚みをtseedとすると,tseed=A1/2×2/πの式が与えられる。なお,上記種結晶及び成長結晶とは,本発明におけるすべての種結晶及びすべての成長結晶を含む概念である。
【0030】
また,第2の発明において,上記成膜面は,{0001}面からオフセット角度0.5°〜20°の面,{1−100}面からオフセット角度20°以下の面,又は{11−20}面からオフセット角度20°以下の面であることが好ましい(請求項)。
この場合には,上記エピタキシャル膜中へのマイクロパイプ欠陥,螺旋転位,刃状転位の発生をほとんど抑制することができる。なお,{0001}面からオフセット角度0.5°未満の面を成膜面とした場合には,上記エピタキシャル膜の成膜が困難になるおそれがある。
【0031】
また,{1−100}面からオフセット角度20°以下の面,又は{11−20}面からオフセット角度20°以下の面を上記成膜面として上記エピタキシャル膜付きSiCウエハを作製した場合には,該エピタキシャル膜付きSiCウエハは,その酸化膜とSiC単結晶との間の界面に発生する界面準位が著しく低減され,MOSFET(Metal-Oxide-Semiconductor Field Effect Transistor)デバイスを作製する上で有効である。なお,上記{1−100}面又は{11−20}面からオフセット角度20°以下の面は,それぞれ{1−100}面,又は{11−20}面を含む概念である。
【0032】
ここで,{1−100},{11−20}及び{0001}は,いわゆる結晶面の面指数を表している。上記面指数において,「−」記号は通常数字の上に付されるが,本明細書及び図面においては書類作成の便宜上のため数字の左側に付した。また,<0001>,<11−20>,及び<1−100>は,結晶内の方向を表し,「−」記号の取り扱いについては,上記面指数と同様である。
【0033】
また,上記エピタキシャル膜の成膜には,CVD法,PVE法,又はLPE法を用いることができる。ここで上記CVD法は,Chemical VaporDeposition(化学気相堆積法)法,上記PVE法は,Physical Vapor Epitaxy(昇華エピタキシー)法,上記LPE法は,Liquid Phase Epitaxy(液相エピタキシー)法をいう。
この場合には,デバイス作製上重要な設計パラメータである膜厚及び膜中の不純物濃度を容易に制御することができる。
【0034】
また,上記エピタキシャル膜に1×1013〜1×1020/cm3の不純物を含有させることができる。
この場合には,上記不純物がドナーやアクセプタ等の役割を果たし,上記エピタキシャル膜付きSiCウエハを半導体デバイス等として用いることができる。上記不純物の含有量が1×1013/cm3未満の場合には,上記不純物は充分な量のキャリアを供給することができず,上記エピタキシャル膜付きSiCウエハのデバイス特性が低下するおそれがある。一方,1×1020/cm3を越える場合には,上記不純物が凝集し,その結果上記エピタキシャル膜中に転位や積層欠陥が発生するおそれがある。
【0035】
また,上記不純物はその構成元素として,窒素,ホウ素又はアルミニウムの1種以上を含有することができる。
この場合には,上記エピタキシャル膜をp又はn型半導体とすることができる。そのため,上記エピタキシャル膜付きSiCウエハをダイオード及びトランジスタ等の半導体デバイスとして利用することができる。
【0036】
【実施例】
(実施例1)
本発明の実施例にかかるSiC単結晶及びその製造方法につき説明する。
本発明のSiC単結晶の製造方法は,図1〜図5に示すごとく,六方晶のSiC単結晶よりなるSiC種結晶上にSiC単結晶を成長させてバルク状のSiC単結晶を製造する製造方法である。該製造方法はN回(本例ではN=2)の成長工程を含み,各成長工程を第n成長工程(nは自然数であって1から始まりNで終わる序数)として表す。
【0037】
図1に示すごとく,n=1である第1成長工程においては,{0001}面から<11−20>方向である第1傾斜方向153へ傾斜角度α(本例ではα=60°)傾いた面を第1成長面15として露出させた第1種結晶1を作製する。そして,図2に示すごとく該第1種結晶1の上記第1成長面15上にSiC単結晶を成長させ第1成長結晶10を作製する(第1成長工程)。
【0038】
次に,図3及び図4に示すごとく,n=2である連続成長工程においては,第2成長面25の法線ベクトル251を{0001}面に投影したベクトルの方向を第2傾斜方向253とした場合に,<11−20>方向である第1傾斜方向153から<0001>を回転軸としてβ(本例ではβ=90°)回転したところ,即ち<1−100>方向に第2傾斜方向253を有し,かつ{0001}面から傾斜角度γ(本例ではγ=60°)傾いた面を第2成長面25として露出させた第2種結晶2を第1成長結晶10から作製する。そして,図5に示すごとく該第2種結晶2の上記第2成長面25上にSiC単結晶を成長させ第2成長結晶20を作製し,最終的なSiC単結晶とする(連続成長工程)。
【0039】
以下,本例につき詳細に説明する。
本例は,図1〜図7に示すごとく,SiC単結晶よりなる種結晶上に昇華再析出法によりSiC単結晶を成長させて,SiC単結晶を製造する例である。また,本例は上記のごとくN=2,即ち2回の成長工程を含む例である。
【0040】
まず,昇華再析出法により成長したSiC単結晶を準備した。図7に示すごとく,SiC単結晶は,主要な面方位として{0001}面と,{0001}面に垂直な{1−100}面及び{11−20}面とを有している。また,{0001}面に垂直な方向が<0001>方向,{1−100}面に垂直な方向が<1−100>方向,{11−20}面に垂直な方向が<11−20>である。
【0041】
図1に示すごとく,上記SiC単結晶の{0001}面から<11−20>方向である第1傾斜方向153へ傾斜角度α(α=60°)傾いた面を第1成長面15として露出するように上記SiC単結晶を切断し,さらにこの第1成長面15を加工,研磨した。また,第1成長面15の表面を化学洗浄して付着物を除去し,RIE(Reactive Ion Etching),犠牲酸化により,切断・研磨に伴う加工変質層を除去し,これを第1種結晶1とした。なお,第1種結晶1の厚みは2mmである。
【0042】
次に,図6に示すごとく,上記第1種結晶1とSiC原料粉末75とをこれらが対向するように坩堝6内に配置した。このとき,上記第1種結晶1は坩堝6の蓋体65の内側面に接着剤を介して固定した。そして上記坩堝6を減圧不活性雰囲気中で2100〜2400℃に加熱した。このとき,SiC原料粉末75側の温度を第1種結晶1側の温度より20〜200℃高く設定した。これにより,坩堝6内のSiC原料粉末75が加熱により昇華し,該SiC原料粉末75より低温の第1種結晶1上に堆積し,第1成長結晶10を得た(第1成長工程)。
【0043】
図2に示すごとく,上記第1成長結晶中10には,<0001>方向に平行及び直交するバーガースベクトルをもつ転位105が多数存在する。該転位は第1種結晶1の第1成長面15に露出していた欠陥が上記第1成長結晶10中に継承された結果生じたものである。そして該転位105の方向はほとんど全てが第1傾斜方向153に平行になっている。
【0044】
次に,図3及び図4に示すごとく,<11−20>方向である第1傾斜方向153から<0001>を回転軸として>β(本例ではβ=90°)回転したところ,即ち<1−100>方向に第2傾斜方向253を有し,かつ{0001}面から傾斜角度γ(本例ではγ=60°)傾いた面を第2成長面25として露出させた第2種結晶2を第1種結晶1と同様にして作製した。なお,このときの第2種結晶の厚みは2mmとした。
【0045】
次に,図6に示すごとく,この第2種結晶2とSiC原料粉末75とをこれらが対向するように坩堝6内に配置した。このとき,上記第2種結晶2は坩堝6の蓋体65の内側面に接着剤を介して固定した。そして,上記坩堝6を減圧不活性雰囲気中で2100〜2400℃に加熱した。このとき,SiC原料粉末75側の温度を第2種結晶2側の温度より20〜200℃高く設定した。これにより,坩堝6内のSiC原料粉末75が加熱により昇華し,該SiC原料粉末75より低温の第2種結晶2上に堆積し,第2成長結晶20を得た(連続成長工程)。
図6に示すごとく,上記第2成長結晶20は,表面に欠陥をほとんど露出していない第2成長面25上に上記のようにして結晶を成長させたものである。そのため,第2成長結晶20中にも転位及び欠陥はほとんど継承されず,高品質であった。
【0046】
次に,上記のようにして作製したSiC単結晶中に含まれる欠陥密度を調べるために,上記SiC単結晶から作製したC面基板にKOHエッチングを施し,これによって生じたエッチピット数を測定した。
その結果,転位に対応するエッチピット数は,5×102〜1×103/cm2であり,非常に少なかった。
【0047】
以下,本例の作用効果につき説明する。
本例の第1成長工程においては,{0001}面から,<11−20>方向へ傾斜角度60°傾いた面を第1成長面15として露出させた第1種結晶1を作製して,該第1種結晶1の上記第1成長面15上にSiC単結晶を成長させ第1成長結晶10を作製している。
そのため,上記第1成長結晶10中には第1成長面15の表面から継承される転位105が多数存在するが,該転位105の方向の大部分を第1成長面15の法線ベクトル151を{0001}面に投影したベクトルの方向である第1傾斜方向153に略平行な方向にそろえることができる。
【0048】
次に,第2成長工程においては,<11−20>方向である第1傾斜方向153から<0001>を回転軸として90°回転したところに第2傾斜方向253,即ち<1−100>方向を有し,かつ{0001}面から傾斜角度60°傾いた面を第2成長面25として露出させた第2種結晶2を第1種結晶1と同様にして作製した。
そのため,上記のように第1成長結晶10から第2傾斜方向253に{0001}面より傾斜角度60°傾いた面を第2成長面25として露出させたとき,この第2成長面の表面には,第(n−1)成長結晶中に存在する転位はほとんど露出しない。上述したごとく,上記第1成長結晶10中の転位105の大部分は{0001}面内の第1傾斜方向153に平行に存在しており,上記転位105が第2成長面25に露出する確率は小さいからである。
【0049】
続いて,この第2種結晶2を上記第1種結晶と同様にして成長させ,図5に示すごとく該第2種結晶2の上記第2成長面25上にSiC単結晶を成長させ第2成長結晶20を作製し,最終的なSiC単結晶とした。
上述したごとく,上記第2成長面25の表面には転位及び欠陥はほとんど露出していないため,第2成長結晶10中には第2成長面25から転位が継承されることはほとんどなく,転位及び欠陥はほとんど発生せず,高品質である。
【0050】
また,本例においては,上記第1成長面15及び第2成長面25上にSiC単結晶を成長させる前に,付着物や加工変質層を取り除いている。そのため,上記付着物や加工変質層に起因し各成長面15,25から各成長結晶10,20に継承される転位を防ぐことができる。
【0051】
また,上記各種結晶の厚みを1mm以上にしている。
そのため,上記各種結晶1,2と種結晶が接触している蓋体65との熱膨張差による応力によって成長結晶10,20に生じる転位及び積層欠陥を防止することができる。
【0052】
このように,本例によれば,欠陥及び転位をほとんど含有せず,高品質なSiC単結晶及びその製造方法を提供することができる。
【0053】
(実施例2)
本例では,実施例1の第2成長工程における傾斜角度γを90°に変更してSiC単結晶を作製した例を示す。
まず,実施例1と同様のSiC単結晶を準備した。このSiC単結晶から実施例1と同様にして第1種結晶1を作製した。なお,第1種結晶1の厚みは2mmである。そして,さらに実施例1と同様にして第1成長結晶10を得た(第1成長工程)。
【0054】
次に,図3及び図4に示すごとく,<11−20>方向である第1傾斜方向153から<0001>を回転軸としてβ(本例ではβ=90°)回転したところ,即ち<1−100>方向に第2傾斜方向253を有し,かつ{0001}面から傾斜角度γ(本例ではγ=90°)傾いた面を第2成長面25として露出させた第2種結晶2を第1種結晶1と同様にして作製した。そして,この第2種結晶2を上記第1種結晶と同様にして成長させ,図5に示すごとく該第2種結晶2の上記第2成長面25上にSiC単結晶を成長させ第2成長結晶20を作製し,最終的なSiC単結晶とした(連続成長工程)。
本例においても,実施例1と同様にマイクロパイプ欠陥,転位等が非常に少なく,高品質のSiC単結晶を得ることができた。
【0055】
(実施例3)
本例では,実施例1の第1成長工程及び第2成長工程における傾斜角度α及びγを共に90°としてSiC単結晶を作製した例を示す。
まず,実施例1と同様のSiC単結晶を準備した。そして,上記SiC単結晶の{0001}面から<11−20>方向である第1傾斜方向153へ傾斜角度α(α=90°)傾いた面を第1成長面15として露出するように上記SiC単結晶を切断し,さらにこの第1成長面15を加工,研磨した。また,実施例1と同様にして第1成長面15の表面を化学洗浄して付着物を除去し,RIE(Reactive Ion Etching),犠牲酸化により,切断・研磨に伴う加工変質層を除去し,これを第1種結晶1とした。なお,第1種結晶1の厚みは2mmである。続いて,さらに実施例1と同様にして第1成長結晶10を得た(第1成長工程)。
【0056】
次に,図3及び図4に示すごとく,<11−20>方向である第1傾斜方向153から<0001>を回転軸としてβ(本例ではβ=90°)回転したところ,即ち<1−100>方向に第2傾斜方向253を有し,かつ{0001}面から傾斜角度γ(本例ではγ=90°)傾いた面を第2成長面25として露出させた第2種結晶2を第1種結晶1と同様にして作製した。そして,この第2種結晶2を上記第1種結晶と同様にして成長させ,図5に示すごとく該第2種結晶2の上記第2成長面25上にSiC単結晶を成長させ第2成長結晶20を作製し,最終的なSiC単結晶とした(連続成長工程)。
本例においても,実施例1及び2と同様にマイクロパイプ欠陥,転位等が非常に少なく,高品質のSiC単結晶を得ることができた。
【0057】
(実施例4)
本例においては,N=4,即ち成長工程を4回行ってSiC単結晶を作製した例を示す。
まず,実施例1と同様のSiC単結晶を準備した。
第1成長工程においては,実施例1〜3と同様にして上記SiC単結晶より{0001}面から<11−20>方向である第1傾斜方向153へ傾斜角度α(本例ではα=90°)傾いた面を第1成長面15として露出させた第1種結晶1を作製し,該第1種結晶1の第1成長面15上にSiC単結晶を成長させて第1成長結晶10を得た。
【0058】
次に,n=2である第2成長工程においては,実施例1〜3と同様に,<11−20>方向である第1傾斜方向153から<0001>を回転軸としてβ(本例ではβ=90°)回転したところ,即ち<1−100>方向に第2傾斜方向253を有し,かつ{0001}面から傾斜角度γ(本例ではγ=90°)傾いた面を第2成長面25として露出させた第2種結晶2を第1成長結晶10から作製する。そして,該第2種結晶2の第2成長面25上にSiC単結晶を成長させて第1成長結晶20を得た。
【0059】
次に,n=3である第3成長工程においては,<1−100>方向である第2傾斜方向153から<0001>を回転軸として90°回転したところ,即ち<11−20>方向に第3傾斜方向を有し,かつ{0001}面から傾斜角度3°傾いた面を第3成長面として露出させた第3種結晶を第2種結晶2と同様にして作製した。なお,このときの第3種結晶の厚みは2mmとした。そして,この第3種結晶を上記第1及び第2種結晶と同様に成長させ,第3成長結晶を作製した。
第3成長結晶は,マイクロパイプ欠陥,転位等が非常に少なく,高品質であった。
【0060】
次に,n=4である第4成長工程においては,<11−20>方向である第3傾斜方向から<0001>を回転軸として90°回転したところ,即ち<1−100>方向に第4傾斜方向を有し,かつ{0001}面から傾斜角度3°傾いた面を第4成長面として露出させた第4種結晶を第3種結晶と同様にして作製した。なお,このときの第4種結晶の厚みは2mmとした。そして,この第4種結晶を上記第1〜第3種結晶と同様に成長させ,第4成長結晶を作製した。
第4成長結晶は,マイクロパイプ欠陥,転位等が非常に少なく,第3成長結晶と同等以上に高品質であった。
【0061】
(実施例5)
本例では,エピタキシャル膜付きSiCウエハを作製する例を示す。
本例のエピタキシャル膜付きSiCウエハ4の製造方法は,図8に示すごとく,SiC単結晶より成膜面35を露出するSiCウエハ3を作製し,該SiCウエハ3の上記成膜面35上にエピタキシャル膜30を成膜する。
【0062】
まず,実施例3で得られた高品質のSiC単結晶20を準備した。このSiC単結晶20の{0001}面から<11−20>方向へ5°傾いた面,{1−100}面,及び{11−20}面を成膜面として露出した,3種類のSiCウエハを作製した。このSiCウエハの成膜面に,上記実施例1における第1種結晶の作製時と同様に加工,研磨,化学洗浄,RIE,犠牲酸化等の表面処理を施した。
【0063】
そして,図8にしめすごとく,化学気相堆積法により上記SiCウエハ3の成膜面35上にエピタキシャル膜30を成膜し,エピタキシャル膜付きSiCウエハ4を作製した。具体的には,原料ガスとしてSiH4ガス及びC38ガスを5ミリリットル/分にて,またキャリアガスとしてH2ガスを10リットル/分にてそれぞれ反応管に導入し,SiCウエハを保持しているサセプタの温度を1550℃,雰囲気圧を10kPaとして成膜を行った。
【0064】
本例におけるエピタキシャル膜30中のマイクロパイプ欠陥,転位,インクルージョン等の欠陥密度は非常に小さく,高品質のエピタキシャル膜付きSiCウエハ4を得ることができた。
【図面の簡単な説明】
【図1】実施例1〜5にかかる,第1成長面の面方位を示す説明図。
【図2】実施例1〜5にかかる,第1成長結晶の成長方向及び転位の方向を示す説明図。
【図3】実施例1〜5にかかる,第1傾斜方向と第2傾斜方向の関係を示す説明図。
【図4】実施例1〜5にかかる,第2成長面の面方位を示す説明図。
【図5】実施例1〜5にかかる,第2成長結晶の成長方向を示す説明図。
【図6】実施例1〜5にかかる,昇華再析出法によるSiC単結晶の成長方法を示す説明図。
【図7】実施例1にかかる,SiC単結晶の主要な面方位を示す説明図。
【図8】実施例5にかかる,エピタキシャル膜付きSiCウエハの説明図。
【符号の説明】
1...第1種結晶,
15...第1成長面,
151...法線ベクトル(第1成長工程),
153...第1傾斜方向,
10...第1成長結晶,
2...第2種結晶,
25...第2成長面,
251...法線ベクトル(第2成長工程),
253...第2傾斜方向,
20...第2成長結晶,
3...SiCウエハ,
35...成膜面,
30...エピタキシャル膜,
4...エピタキシャル膜付きSiCウエハ,
[0001]
【Technical field】
  The present invention relates to a SiC single crystal containing almost no dislocations and defects in the crystal.ofManufacturing method and SiC wafer with epitaxial filmofIt relates to a manufacturing method.
[0002]
[Prior art]
Conventionally, SiC semiconductors using SiC single crystals are expected as candidate materials for next-generation power devices that replace Si semiconductors. In order to realize a high-performance SiC power device, it is essential to reduce the leakage current generated in the SiC semiconductor and to suppress the breakdown voltage. According to previous research reports, defects such as micropipe defects, spiral dislocations, edge dislocations, stacking faults, etc. occurring in the SiC single crystal are considered to cause leakage currents and breakdown voltage reduction of SiC semiconductors. It has been.
In addition, a SiC wafer having an epitaxial film is used for the power device. Therefore, it is desired to develop a SiC wafer with an epitaxial film that does not contain the above defects in the epitaxial film as well as in the SiC single crystal.
[0003]
As shown in FIG. 7, the SiC single crystal has {0001} plane (c plane) as main plane orientations, {1-100} plane (a plane) and {11-20} plane perpendicular to {0001} plane ( a side).
Conventionally, as a method for obtaining the SiC single crystal, first, an SiC seed crystal that exposes a hexagonal {0001} plane (c plane) or a plane within an offset angle of 10 ° from the {0001} plane as a seed crystal plane is used. Thus, a so-called c-plane growth method has been used in which a SiC single crystal is grown on a seed crystal surface by a sublimation reprecipitation method or the like.
[0004]
However, in the SiC bulk single crystal (c-plane grown crystal) grown in the <0001> direction with the {0001} plane as the seed crystal plane as described above, the micropipe defect is substantially parallel to the <0001> direction. , Spiral dislocation and edge dislocation 10 respectively0-10Threecm-2, 10Three-10Fourcm-2, 10Four-10Fivecm-2There was a problem of being included. Furthermore, when a SiC wafer is produced from this c-plane grown crystal and an epitaxial film is formed, defects and dislocations exposed on the surface of the SiC wafer are inherited in the epitaxial film. As a result, dislocations having substantially the same density as the SiC wafer exist in the epitaxial film, which has a problem of adversely affecting various device characteristics.
[0005]
On the other hand, in Japanese Patent Laid-Open No. 5-262599, a surface of a SiC single crystal whose inclination from the {0001} plane is 60 to 120 ° (preferably 90 °) is used as a seed crystal surface, and this seed crystal is grown in a-plane. Thus, a method for obtaining a growth crystal (a-plane growth crystal) is disclosed. And it was clarified that this a-plane grown crystal does not contain micropipe defects and screw dislocations.
[0006]
[Problems to be solved]
However, in the a-plane grown crystal, the stacking fault is in the {0001} plane and is approximately parallel to the growth direction.2-10Fourcm-1It is included at a high density. Further, edge dislocations having Burgers vectors parallel to and orthogonal to the <0001> direction are included in a high density substantially parallel to the growth direction. When an SiC wafer is formed from this a-plane grown crystal and an epitaxial film is formed, the dislocation and stacking fault are inherited from the high-density edge dislocations and stacking faults contained in the a-plane grown crystal in the epitaxial film. . As described above, the SiC single crystal and the SiC single crystal containing dislocations and stacking faults in a high density in the epitaxial film have a high on-resistance and a reverse leakage current, which may adversely affect the device operation. is there.
[0007]
  The present invention has been made in view of such conventional problems, and is a high-quality SiC single crystal containing almost no dislocations and defects.ofManufacturing method and SiC wafer with epitaxial film containing almost no defects and dislocations in SiC single crystal and epitaxial filmofProduction methodTheIt is something to be offered.
[0008]
[Means for solving problems]
  A first invention is a manufacturing method for manufacturing a bulk SiC single crystal by growing a SiC single crystal on a SiC seed crystal composed of a hexagonal SiC single crystal, wherein the manufacturing method is N times (N is N ≧ N ≧). 2), and each growth step is expressed as an nth growth step (n is a natural number and starts with 1 and ends with N).
  In the first growth step where n = 1, the angle of inclination from the {0001} plane60A first seed crystal having a face inclined by 90 ° to 90 ° exposed as a first growth face is produced, and a SiC single crystal is grown on the first growth face of the first seed crystal to produce a first growth crystal. And
  n = 2, 3,. . . , N in the continuous growth step, when the normal vector of the n-th growth surface is projected onto the {0001} plane and the direction of the vector is the n-th inclination direction, <0001 from the (n−1) -th inclination direction. > As the axis of rotation, and has an nth inclination direction when rotated by 45 ° to 135 °, and an inclination angle of 10 ° to 90 ° from the {0001} plane.(Except 10 °)The n-th seed crystal with the inclined surface exposed as the n-th growth surface is the n-th crystal (n1) An n-th growth crystal is manufactured by growing a SiC single crystal on the n-th growth surface of the n-th seed crystal.And
  The nth growth step of the continuous growth step has at least one growth step in which the inclination angle between the nth growth surface and the {0001} plane is 60 ° to 90 °.(1) A method for producing a SiC single crystal.
[0009]
  Next, the effects of the present invention will be described.
  In the first growth step of the present invention, the inclination angle from the {0001} plane60 °A first seed crystal having a surface inclined by 90 ° exposed as a first growth surface is produced, and a SiC single crystal is grown on the first growth surface of the first seed crystal to produce a first growth crystal. .
  Therefore, there are many dislocations inherited mainly from the surface of the first growth surface in the first growth crystal. Here, the generation source of the dislocation is mainly a defect (dislocation, micropipe defect) exposed on the first growth surface. In the first growth step, most of the dislocation directions can be aligned substantially parallel to the first tilt direction, which is the vector direction obtained by projecting the normal vector of the first growth surface onto the {0001} plane.
[0010]
  Next, in the continuous growth step, the nth tilt direction is obtained when rotated from 45 ° to 135 ° about <0001> as the rotation axis from the (n−1) th tilt direction, and tilted from the {0001} plane. Angle 10 ° ~ 90 °(Except 10 °)The n-th seed crystal with the inclined surface exposed as the n-th growth surface is the n-th crystal (n1) An n-th growth crystal is manufactured by growing a SiC single crystal on the n-th growth surface of the n-th seed crystal.The n-th growth step of the continuous growth step includes one or more growth steps in which the inclination angle between the n-th growth surface and the {0001} plane is 60 ° to 90 °.
  For this reason, dislocations existing in the (n-1) th grown crystal are hardly exposed on the nth growth surface. Most of the dislocations in the (n-1) th grown crystal exist in parallel to the (n-1) th tilt direction in the {0001} plane, and the dislocations are exposed to the nth growth surface.probabilityThis is because becomes smaller. Therefore, dislocations are hardly inherited from the n-th growth surface in the n-th growth crystal, and dislocations and defects are hardly generated.
  The continuous growth process can be performed once (when N = 2) and repeated a plurality of times. Each time the number of continuous growth steps is increased, the so-called dislocation density of the obtained grown crystal can be decreased exponentially.
[0011]
Thus, according to the present invention, it is possible to provide a method for producing a high-quality SiC single crystal that hardly contains micropipe defects, spiral dislocations, edge dislocations, and stacking faults.
[0013]
  Made according to the first inventionSiC single crystal,High quality with few micropipe defects, screw dislocations, edge dislocations, and stacking faults. Therefore, it can be used as a high-performance power device.
[0014]
  Next, the second invention is to produce a SiC wafer exposing a film formation surface from the SiC single crystal produced by the manufacturing method of the first invention, and to form an epitaxial film on the film formation surface of the SiC wafer. A method of manufacturing an SiC wafer with an epitaxial film, characterized in that the film is formed (claim).6).
[0015]
As described above, the SiC single crystal manufactured by the manufacturing method of the first invention has almost no micropipe defects, spiral dislocations, edge dislocations, and stacking faults, and has high quality. For this reason, the defects and dislocations are hardly exposed on the film-forming surface of the SiC wafer, and the dislocations are hardly inherited into the epitaxial film. Therefore, a SiC wafer with a high quality epitaxial film with few dislocations and defects can be produced.
[0017]
  Manufactured by the manufacturing method of the second invention.The SiC wafer with an epitaxial film is,The SiC single crystal and the epitaxial film contain almost no dislocations or defects. Therefore, it can be used for high-performance SiC electronic devices.
[0019]
  Using the above SiC wafer with an epitaxial filmThe SiC electronic device is,Low on-resistance and no leakage current.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
  In the first invention (invention 1), the inclination angle between the first growth surface and {0001} is60° to 90 °. When the angle is less than 1 °, the inclination angle is too small, and the n-th grown crystal is equivalent to a so-called c-plane grown crystal, and micropipe defects, spiral dislocations, edge dislocations, etc. occur at high density. .If the tilt angle is less than 60 °, dislocations that are not parallel to the tilt direction are exposed on the growth surface of the seed crystal in the next process, which may cause dislocations and defects in the grown crystal.
  Further, the nth tilt direction is at a position rotated from 45 ° to 135 ° about <0001> as a rotation axis from the (n−1) th tilt direction. When the angle is less than 45 °, the probability that the (n−1) th grown crystal is exposed to the nth growth surface is high, and even if the above continuous growth process is repeated, the dislocation contained in the nth grown crystal is hardly reduced. . Therefore, 60 degrees or more is more preferable. The same applies to cases where the angle exceeds 135 °, and more preferably 120 ° or less.
[0021]
The continuous growth step preferably includes one or more growth steps in which the n-th tilt direction is rotated 90 ° from the (n−1) -th tilt direction with <0001> as the rotation axis.
In this case, the probability that the dislocation is exposed on the nth growth surface becomes very small, and the possibility that dislocations and defects are generated in the nth growth crystal is reduced. As the number of growth steps is increased, the dislocation density in the grown crystal decreases.
[0022]
Moreover, before growing a SiC single crystal on each said growth surface, it is preferable to remove the deposit and work-affected layer on the surface of each growth surface.
In this case, it is possible to prevent dislocations inherited by each growth crystal from each growth surface caused by the deposits and the work-affected layer. Examples of methods for removing the deposits and the work-affected layer include polishing, chemical cleaning, reactive ion etching (RIE), sacrificial oxidation, and the like.
[0023]
Next, it is preferable that an inclination angle between the nth growth surface (n = 1, 2,..., N) and the {0001} plane is less than 70 °.
In this case, it is not necessary to grow the crystal highly, and the cost can be reduced. In the case of 70 ° or more, it is necessary to grow the crystal highly, which may increase the manufacturing cost.
[0024]
  Next, the inclination angle between the nth growth plane (n = 1, 2,..., N) and the {0001} plane is preferably 10 ° or more.
  In this case, penetrating defects such as micropipe defects, spiral dislocations, and edge dislocations can be reduced. If the angle is less than 10 °, these through defects may occur at a high density.
[0025]
  Next, n = N(However, excluding N = 2)In the Nth growth step, the inclination angle between the Nth growth surface and the {0001} plane is preferably 20 ° or less.
  In this case, the SiC single crystal finally grows in a substantially c-plane growth direction and becomes a so-called c-plane grown crystal that is widely used for device fabrication at present. Therefore, the SiC single crystal can be made effective for the production of SiC electronic devices.
[0026]
  next,In the n-th growth step of the above continuous growth stepThe growth process in which the inclination angle between the nth growth surface and the {0001} plane is 60 ° to 90 ° is performed once or more.
  In this case, dislocations in the crystal can be reduced efficiently.
  In general, when a crystal is grown on a growth surface having a tilt angle of 1 ° to 90 ° with respect to the {0001} plane, the direction of dislocations generated in the grown crystal often becomes substantially parallel to the tilt direction. When the inclination angle between the growth surface and the {0001} plane exceeds 60 °, almost all of the dislocations are substantially parallel to the inclination direction. Therefore, the nth growth plane and the {0001} planeInclination angleWhen the angle is set to 60 ° to 90 °, almost all dislocations can be made parallel to the tilt direction, and it becomes easy to hardly expose the dislocations on the growth surface of the seed crystal in the next step. .
  When the inclination angle between the n-th growth surface and the {0001} plane is less than 60 °, dislocations not parallel to the inclination direction are exposed on the growth surface of the seed crystal in the next process, and dislocations and defects are generated in the growth crystal. There is a fear.
[0027]
The growth process in which the inclination angle between the nth growth surface and the {0001} plane is 60 ° to 90 ° can be performed at least once, but after the dislocations in the crystal are sufficiently reduced. In the growth process, it is no longer necessary to increase the tilt angle, and a sufficiently high-quality crystal can be produced with good reproducibility even at a tilt angle as small as 1 to 20 °. In addition, if the inclination angle between the nth growth surface and the {0001} plane is reduced, it is not necessary to increase the height of the crystal, so that the cost can be reduced.
[0028]
  Sublimation reprecipitation is preferably used for the growth of the SiC single crystal on the various crystals.4)
  In this case, since a sufficient growth height can be obtained, a large-diameter SiC single crystal can be produced, and a high-quality SiC single crystal can be produced with good reproducibility and good productivity.
  The SiC single crystal growth technique that can be used in the present invention is not limited to the sublimation reprecipitation method, and any technique that can grow a bulk single crystal having a sufficient growth height can be applied. For example, Mater. Sci. Eng. B Vol. A chemical vapor deposition method in a temperature range exceeding 2000 ° C. as shown in 61-62 (1999) 113-120 can also be used.
[0029]
  The thickness of the various crystals is preferably 1 mm or more.5).
  In this case, it is possible to prevent dislocations and stacking faults that occur in the grown crystal due to the stress due to the difference in thermal expansion between the seed crystal and the object that fixes the seed crystal. That is, by sufficiently increasing the thickness of the seed crystal, it is possible to prevent the stress from distorting the lattice constituting the seed crystal and causing dislocations and stacking faults in the grown crystal. In particular, the area A of the seed crystal growth surface is 500 mm.2In the case of exceeding 1, the thickness of the seed crystal needs to be larger than 1 mm. If the minimum necessary thickness at this time is tseed, tseed = A1/2The formula x2 / π is given. The seed crystal and the grown crystal are a concept including all seed crystals and all grown crystals in the present invention.
[0030]
  In the second invention, the film-forming surface is a surface having an offset angle of 0.5 ° to 20 ° from the {0001} surface, a surface having an offset angle of 20 ° or less from the {1-100} surface, or {11- 20} plane is preferably a plane having an offset angle of 20 ° or less.7).
  In this case, the occurrence of micropipe defects, spiral dislocations, and edge dislocations in the epitaxial film can be substantially suppressed. Note that, when a surface having an offset angle of less than 0.5 ° from the {0001} surface is used as the film formation surface, it may be difficult to form the epitaxial film.
[0031]
In addition, when the SiC wafer with an epitaxial film is manufactured using the surface having an offset angle of 20 ° or less from the {1-100} surface or the surface having an offset angle of 20 ° or less from the {11-20} surface as the film formation surface, The SiC wafer with an epitaxial film has a significantly reduced interface state generated at the interface between the oxide film and the SiC single crystal, and is effective in fabricating a MOSFET (Metal-Oxide-Semiconductor Field Effect Transistor) device. It is. In addition, the surface whose offset angle is 20 ° or less from the {1-100} plane or the {11-20} plane is a concept including the {1-100} plane or the {11-20} plane, respectively.
[0032]
Here, {1-100}, {11-20}, and {0001} represent plane indices of so-called crystal planes. In the above surface index, the “-” symbol is usually added on the number, but in the present specification and drawings, it is added on the left side of the number for convenience of document preparation. Further, <0001>, <11-20>, and <1-100> represent directions in the crystal, and the handling of the “−” symbol is the same as the above-described plane index.
[0033]
The epitaxial film can be formed by CVD, PVE, or LPE. Here, the CVD method is a Chemical Vapor Deposition method, the PVE method is a Physical Vapor Epitaxy method, and the LPE method is a Liquid Phase Epitaxy (liquid phase epitaxy) method.
In this case, it is possible to easily control the film thickness and the impurity concentration in the film, which are design parameters important for device fabrication.
[0034]
In addition, 1 × 1013~ 1x1020/ CmThreeImpurities may be included.
In this case, the impurity serves as a donor, an acceptor, etc., and the SiC wafer with the epitaxial film can be used as a semiconductor device or the like. The impurity content is 1 × 1013/ CmThreeIf it is less than the above, the impurities cannot supply a sufficient amount of carriers, and the device characteristics of the SiC wafer with an epitaxial film may be deteriorated. On the other hand, 1 × 1020/ CmThreeIn the case of exceeding the above, the impurities aggregate and as a result, dislocations and stacking faults may occur in the epitaxial film.
[0035]
Moreover, the said impurity can contain 1 or more types of nitrogen, boron, or aluminum as the structural element.
In this case, the epitaxial film can be a p-type or n-type semiconductor. Therefore, the SiC wafer with an epitaxial film can be used as a semiconductor device such as a diode and a transistor.
[0036]
【Example】
(Example 1)
An SiC single crystal and a method for manufacturing the same according to an embodiment of the present invention will be described.
The SiC single crystal manufacturing method of the present invention is a manufacturing method in which a SiC single crystal is grown on a SiC seed crystal composed of a hexagonal SiC single crystal as shown in FIGS. 1 to 5 to manufacture a bulk SiC single crystal. Is the method. The manufacturing method includes N growth steps (N = 2 in this example), and each growth step is represented as an nth growth step (n is a natural number and starts with 1 and ends with N).
[0037]
As shown in FIG. 1, in the first growth step where n = 1, the inclination angle α (α = 60 ° in this example) is inclined from the {0001} plane to the first inclination direction 153 which is the <11-20> direction. The first seed crystal 1 with the exposed surface exposed as the first growth surface 15 is produced. Then, as shown in FIG. 2, a SiC single crystal is grown on the first growth surface 15 of the first seed crystal 1 to produce the first growth crystal 10 (first growth step).
[0038]
Next, as shown in FIGS. 3 and 4, in the continuous growth process where n = 2, the direction of the vector obtained by projecting the normal vector 251 of the second growth surface 25 onto the {0001} plane is the second inclined direction 253. In this case, the first tilt direction 153 which is the <11-20> direction is rotated by β (β = 90 ° in this example) about <0001> as the rotation axis, that is, the second direction in the <1-100> direction. A second seed crystal 2 having a tilt direction 253 and exposing a plane tilted from the {0001} plane by a tilt angle γ (γ = 60 ° in this example) as the second growth plane 25 is formed from the first growth crystal 10. Make it. Then, as shown in FIG. 5, a SiC single crystal is grown on the second growth surface 25 of the second seed crystal 2 to produce a second growth crystal 20 to obtain a final SiC single crystal (continuous growth step). .
[0039]
Hereinafter, this example will be described in detail.
In this example, as shown in FIGS. 1 to 7, an SiC single crystal is manufactured by growing an SiC single crystal on a seed crystal made of an SiC single crystal by a sublimation reprecipitation method. This example is an example including N = 2, that is, two growth steps as described above.
[0040]
First, a SiC single crystal grown by a sublimation reprecipitation method was prepared. As shown in FIG. 7, the SiC single crystal has a {0001} plane, a {1-100} plane and a {11-20} plane perpendicular to the {0001} plane as main plane orientations. Further, the direction perpendicular to the {0001} plane is the <0001> direction, the direction perpendicular to the {1-100} plane is the <1-100> direction, and the direction perpendicular to the {11-20} plane is <11-20>. It is.
[0041]
As shown in FIG. 1, a surface inclined from the {0001} plane of the SiC single crystal by a tilt angle α (α = 60 °) in the first tilt direction 153 that is the <11-20> direction is exposed as the first growth surface 15. Thus, the SiC single crystal was cut, and the first growth surface 15 was further processed and polished. Further, the surface of the first growth surface 15 is chemically cleaned to remove deposits, and a work-affected layer associated with cutting / polishing is removed by RIE (Reactive Ion Etching) and sacrificial oxidation. It was. The thickness of the first seed crystal 1 is 2 mm.
[0042]
Next, as shown in FIG. 6, the first seed crystal 1 and the SiC raw material powder 75 were placed in the crucible 6 so as to face each other. At this time, the first seed crystal 1 was fixed to the inner surface of the lid 65 of the crucible 6 with an adhesive. And the said crucible 6 was heated at 2100-2400 degreeC in pressure reduction inert atmosphere. At this time, the temperature on the SiC raw material powder 75 side was set 20 to 200 ° C. higher than the temperature on the first seed crystal 1 side. Thereby, the SiC raw material powder 75 in the crucible 6 was sublimated by heating and deposited on the first seed crystal 1 having a temperature lower than that of the SiC raw material powder 75 to obtain the first growth crystal 10 (first growth step).
[0043]
As shown in FIG. 2, in the first grown crystal 10, there are many dislocations 105 having Burgers vectors parallel and orthogonal to the <0001> direction. The dislocation is a result of the defects exposed on the first growth surface 15 of the first seed crystal 1 being inherited in the first growth crystal 10. The direction of the dislocation 105 is almost all parallel to the first tilt direction 153.
[0044]
Next, as shown in FIG. 3 and FIG. 4, a rotation of> β (in this example, β = 90 °) from the first inclination direction 153 that is the <11-20> direction with <0001> as the rotation axis, that is, < A second seed crystal having a second inclined direction 253 in the 1-100> direction and exposing a plane inclined by an inclination angle γ (γ = 60 ° in this example) from the {0001} plane as the second growth plane 25 2 was prepared in the same manner as the first seed crystal 1. The thickness of the second seed crystal at this time was 2 mm.
[0045]
Next, as shown in FIG. 6, the second seed crystal 2 and the SiC raw material powder 75 were placed in the crucible 6 so as to face each other. At this time, the second seed crystal 2 was fixed to the inner surface of the lid body 65 of the crucible 6 with an adhesive. And the said crucible 6 was heated at 2100-2400 degreeC in pressure reduction inert atmosphere. At this time, the temperature on the SiC raw material powder 75 side was set 20 to 200 ° C. higher than the temperature on the second seed crystal 2 side. Thereby, the SiC raw material powder 75 in the crucible 6 was sublimated by heating and deposited on the second seed crystal 2 having a temperature lower than that of the SiC raw material powder 75 to obtain the second growth crystal 20 (continuous growth step).
As shown in FIG. 6, the second grown crystal 20 is obtained by growing a crystal on the second growth surface 25 in which almost no defects are exposed on the surface as described above. Therefore, dislocations and defects are hardly inherited in the second grown crystal 20, and the quality is high.
[0046]
Next, in order to investigate the defect density contained in the SiC single crystal produced as described above, the C-plane substrate produced from the SiC single crystal was subjected to KOH etching, and the number of etch pits generated thereby was measured. .
As a result, the number of etch pits corresponding to dislocations is 5 × 10.2~ 1x10Three/ Cm2And very few.
[0047]
Hereinafter, the function and effect of this example will be described.
In the first growth step of this example, a first seed crystal 1 is produced in which a surface inclined from the {0001} plane by an inclination angle of 60 ° in the <11-20> direction is exposed as the first growth surface 15; A SiC single crystal is grown on the first growth surface 15 of the first seed crystal 1 to produce the first growth crystal 10.
For this reason, there are many dislocations 105 inherited from the surface of the first growth surface 15 in the first growth crystal 10, and most of the dislocations 105 in the direction of the normal vector 151 of the first growth surface 15. They can be aligned in a direction substantially parallel to the first tilt direction 153, which is the direction of the vector projected onto the {0001} plane.
[0048]
Next, in the second growth step, the second inclined direction 253, that is, the <1-100> direction is obtained by rotating 90 ° about the <0001> from the first inclined direction 153 that is the <11-20> direction. And the second seed crystal 2 having a surface inclined by 60 ° from the {0001} plane and exposed as the second growth surface 25 was produced in the same manner as the first seed crystal 1.
Therefore, when a surface inclined from the {0001} plane by an inclination angle of 60 ° from the {0001} plane is exposed as the second growth surface 25 in the second inclination direction 253 as described above, the surface of the second growth surface is exposed. Does not expose the dislocations present in the (n-1) th grown crystal. As described above, most of the dislocations 105 in the first growth crystal 10 exist in parallel to the first inclined direction 153 in the {0001} plane, and the probability that the dislocations 105 are exposed to the second growth surface 25. Because is small.
[0049]
Subsequently, the second seed crystal 2 is grown in the same manner as the first seed crystal, and a SiC single crystal is grown on the second growth surface 25 of the second seed crystal 2 as shown in FIG. A grown crystal 20 was produced to obtain a final SiC single crystal.
As described above, since dislocations and defects are hardly exposed on the surface of the second growth surface 25, dislocations are hardly inherited from the second growth surface 25 in the second growth crystal 10, and dislocations are not transferred. And there are few defects and it is of high quality.
[0050]
Further, in this example, before the SiC single crystal is grown on the first growth surface 15 and the second growth surface 25, the deposits and the work-affected layer are removed. Therefore, it is possible to prevent dislocations inherited from the respective growth surfaces 15 and 25 to the respective grown crystals 10 and 20 due to the deposits and the work-affected layer.
[0051]
Further, the thickness of the various crystals is set to 1 mm or more.
Therefore, it is possible to prevent dislocations and stacking faults generated in the grown crystals 10 and 20 due to the stress due to the difference in thermal expansion between the various crystals 1 and 2 and the lid 65 in contact with the seed crystal.
[0052]
Thus, according to the present example, it is possible to provide a high-quality SiC single crystal and a method for manufacturing the same, which hardly contain defects and dislocations.
[0053]
(Example 2)
In this example, an SiC single crystal is manufactured by changing the tilt angle γ in the second growth step of Example 1 to 90 °.
First, the same SiC single crystal as in Example 1 was prepared. A first seed crystal 1 was produced from this SiC single crystal in the same manner as in Example 1. The thickness of the first seed crystal 1 is 2 mm. Further, a first growth crystal 10 was obtained in the same manner as in Example 1 (first growth step).
[0054]
Next, as shown in FIG. 3 and FIG. 4, the first tilt direction 153 that is the <11-20> direction is rotated by β (β = 90 ° in this example) about <0001> as the rotation axis, that is, <1 A second seed crystal 2 having a second inclined direction 253 in the −100> direction and an exposed surface inclined by an inclination angle γ (γ = 90 ° in this example) from the {0001} plane as the second growth surface 25 Was prepared in the same manner as the first seed crystal 1. Then, the second seed crystal 2 is grown in the same manner as the first seed crystal, and a SiC single crystal is grown on the second growth surface 25 of the second seed crystal 2 as shown in FIG. A crystal 20 was produced to obtain a final SiC single crystal (continuous growth process).
Also in this example, as in Example 1, there were very few micropipe defects and dislocations, and a high-quality SiC single crystal could be obtained.
[0055]
(Example 3)
In this example, an example is shown in which a SiC single crystal is manufactured with the inclination angles α and γ in the first growth step and the second growth step of Example 1 both set to 90 °.
First, the same SiC single crystal as in Example 1 was prepared. Then, a surface inclined from the {0001} plane of the SiC single crystal by a tilt angle α (α = 90 °) in the first tilt direction 153 that is the <11-20> direction is exposed as the first growth surface 15. The SiC single crystal was cut, and the first growth surface 15 was further processed and polished. Similarly to Example 1, the surface of the first growth surface 15 is chemically cleaned to remove deposits, and the work-affected layer associated with cutting / polishing is removed by RIE (Reactive Ion Etching) and sacrificial oxidation. This was designated as first seed crystal 1. The thickness of the first seed crystal 1 is 2 mm. Subsequently, a first growth crystal 10 was obtained in the same manner as in Example 1 (first growth step).
[0056]
Next, as shown in FIG. 3 and FIG. 4, the first tilt direction 153 that is the <11-20> direction is rotated by β (β = 90 ° in this example) about <0001> as the rotation axis, that is, <1 A second seed crystal 2 having a second inclined direction 253 in the −100> direction and an exposed surface inclined by an inclination angle γ (γ = 90 ° in this example) from the {0001} plane as the second growth surface 25 Was prepared in the same manner as the first seed crystal 1. Then, the second seed crystal 2 is grown in the same manner as the first seed crystal, and a SiC single crystal is grown on the second growth surface 25 of the second seed crystal 2 as shown in FIG. A crystal 20 was produced to obtain a final SiC single crystal (continuous growth process).
Also in this example, as in Examples 1 and 2, there were very few micropipe defects and dislocations, and a high-quality SiC single crystal could be obtained.
[0057]
(Example 4)
In this example, N = 4, that is, an example in which the growth process is performed four times to produce a SiC single crystal.
First, the same SiC single crystal as in Example 1 was prepared.
In the first growth step, the inclination angle α (α = 90 in this example) from the SiC single crystal to the first inclination direction 153 that is the <11-20> direction from the SiC single crystal in the same manner as in Examples 1 to 3. °) A first seed crystal 1 having a tilted surface exposed as a first growth surface 15 is produced, and a SiC single crystal is grown on the first growth surface 15 of the first seed crystal 1 to thereby produce a first growth crystal 10. Got.
[0058]
Next, in the second growth step where n = 2, as in the first to third embodiments, β (in this example) the first inclination direction 153, which is the <11-20> direction, from <0001> as the rotation axis. β = 90 °), that is, the second inclined direction 253 in the <1-100> direction and the surface inclined by the inclination angle γ (γ = 90 ° in this example) from the {0001} plane is the second. The second seed crystal 2 exposed as the growth surface 25 is produced from the first growth crystal 10. Then, a SiC single crystal was grown on the second growth surface 25 of the second seed crystal 2 to obtain the first growth crystal 20.
[0059]
Next, in the third growth step where n = 3, the second tilt direction 153 which is the <1-100> direction is rotated by 90 ° about <0001> as the rotation axis, that is, in the <11-20> direction. A third seed crystal having a third tilt direction and exposing a plane inclined at an inclination angle of 3 ° from the {0001} plane as a third growth plane was produced in the same manner as the second seed crystal 2. The thickness of the third seed crystal at this time was 2 mm. Then, the third seed crystal was grown in the same manner as the first and second seed crystals to produce a third growth crystal.
The third grown crystal had high quality with very few micropipe defects and dislocations.
[0060]
Next, in the fourth growth step where n = 4, the film is rotated by 90 ° from the third tilt direction, which is the <11-20> direction, with <0001> as the rotation axis, that is, in the <1-100> direction. A fourth seed crystal having four tilt directions and exposing a plane inclined at an inclination angle of 3 ° from the {0001} plane as a fourth growth plane was prepared in the same manner as the third seed crystal. The thickness of the fourth seed crystal at this time was 2 mm. Then, the fourth seed crystal was grown in the same manner as the first to third seed crystals to produce a fourth growth crystal.
The fourth growth crystal had very few micropipe defects, dislocations, etc., and was as high as or better than the third growth crystal.
[0061]
(Example 5)
In this example, an example of producing an SiC wafer with an epitaxial film is shown.
As shown in FIG. 8, the manufacturing method of the SiC wafer 4 with an epitaxial film in this example produces an SiC wafer 3 that exposes a film formation surface 35 from an SiC single crystal, and the SiC wafer 3 is formed on the film formation surface 35 of the SiC wafer 3. An epitaxial film 30 is formed.
[0062]
First, the high-quality SiC single crystal 20 obtained in Example 3 was prepared. Three types of SiC, in which a surface inclined by 5 ° from the {0001} plane of the SiC single crystal 20 in the <11-20> direction, a {1-100} plane, and a {11-20} plane are exposed as film formation planes A wafer was produced. The SiC wafer was subjected to surface treatment such as processing, polishing, chemical cleaning, RIE, sacrificial oxidation, and the like, similar to the production of the first seed crystal in Example 1 above.
[0063]
Then, as shown in FIG. 8, the epitaxial film 30 was formed on the film formation surface 35 of the SiC wafer 3 by chemical vapor deposition, and the SiC wafer 4 with the epitaxial film was manufactured. Specifically, SiH as the source gasFourGas and CThreeH8Gas at 5 ml / min and H as carrier gas2Gas was introduced into the reaction tube at a rate of 10 liters / minute, and film formation was performed with the temperature of the susceptor holding the SiC wafer being 1550 ° C. and the atmospheric pressure being 10 kPa.
[0064]
The defect density of micropipe defects, dislocations, inclusions, etc. in the epitaxial film 30 in this example was very small, and a high-quality SiC wafer 4 with an epitaxial film could be obtained.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing the plane orientation of a first growth surface according to Examples 1 to 5. FIG.
FIG. 2 is an explanatory diagram showing the growth direction and dislocation direction of a first growth crystal according to Examples 1 to 5.
FIG. 3 is an explanatory diagram showing a relationship between a first inclination direction and a second inclination direction according to Examples 1 to 5;
FIG. 4 is an explanatory diagram showing a plane orientation of a second growth surface according to Examples 1 to 5.
FIG. 5 is an explanatory diagram showing the growth direction of a second growth crystal according to Examples 1 to 5.
FIG. 6 is an explanatory view showing a method for growing a SiC single crystal by sublimation reprecipitation method according to Examples 1 to 5.
7 is an explanatory diagram showing main plane orientations of a SiC single crystal according to Example 1. FIG.
8 is an explanatory diagram of an SiC wafer with an epitaxial film according to Example 5. FIG.
[Explanation of symbols]
1. . . First crystal,
15. . . First growth surface,
151. . . Normal vector (first growth step),
153. . . First tilt direction,
10. . . First grown crystal,
2. . . The second seed crystal,
25. . . Second growth surface,
251. . . Normal vector (second growth process),
253. . . Second tilt direction,
20. . . Second grown crystal,
3. . . SiC wafer,
35. . . Deposition surface,
30. . . Epitaxial film,
4). . . SiC wafer with epitaxial film,

Claims (7)

六方晶のSiC単結晶よりなるSiC種結晶上にSiC単結晶を成長させてバルク状のSiC単結晶を製造する製造方法において,該製造方法はN回(NはN≧2の自然数)の成長工程を含み,各成長工程を第n成長工程(nは自然数であって1から始まりNで終わる序数)として表した場合,
n=1である第1成長工程においては,{0001}面から傾斜角度60°〜90°傾いた面を第1成長面として露出させた第1種結晶を作製して,該第1種結晶の上記第1成長面上にSiC単結晶を成長させ第1成長結晶を作製し,
n=2,3,...,Nである連続成長工程においては,第n成長面の法線ベクトルを{0001}面に投影したベクトルの方向を第n傾斜方向とした場合に,第(n−1)傾斜方向から<0001>を回転軸として45°〜135°回転したところに第n傾斜方向を有し,かつ{0001}面から傾斜角度10°〜90°(ただし,10°を除く)傾いた面を第n成長面として露出させた第n種結晶を第(n1)成長結晶から作製して,該第n種結晶の上記第n成長面上にSiC単結晶を成長させ第n成長結晶を作製し,
上記連続成長工程の第n成長工程においては,上記第n成長面と{0001}面との傾斜角度が60°〜90°である成長工程を1回以上有することを特徴とするSiC単結晶の製造方法。
In a manufacturing method for manufacturing a bulk SiC single crystal by growing a SiC single crystal on a SiC seed crystal composed of a hexagonal SiC single crystal, the manufacturing method is N times (N is a natural number of N ≧ 2). When each growth process is represented as an nth growth process (n is a natural number and starts with 1 and ends with N),
In the first growth step where n = 1, a first seed crystal is produced by exposing a surface inclined at an inclination angle of 60 ° to 90 ° from the {0001} plane as the first growth surface. A SiC single crystal is grown on the first growth surface of the first to produce a first growth crystal,
n = 2, 3,. . . , N in the continuous growth step, when the normal vector of the n-th growth surface is projected onto the {0001} plane and the direction of the vector is the n-th inclination direction, <0001 from the (n−1) -th inclination direction. > Is the nth growth direction with the nth inclination direction at 45 ° to 135 ° rotation and the inclination angle of 10 ° to 90 ° (excluding 10 °) from the {0001} plane. An n-th seed crystal exposed as a surface is produced from an (n - 1) -th growth crystal, and a SiC single crystal is grown on the n-th growth surface of the n-th seed crystal to produce an n-th growth crystal ;
In the n-th growth step of the continuous growth step, the SiC single crystal is characterized by having at least one growth step in which the inclination angle between the n-th growth surface and the {0001} plane is 60 ° to 90 ° . Production method.
請求項1において,上記第n成長面(n=1,2,...,N)と{0001}面との傾斜角度は,70°未満であることを特徴とするSiC単結晶の製造方法。  2. The method for producing a SiC single crystal according to claim 1, wherein an inclination angle between the n-th growth surface (n = 1, 2,..., N) and a {0001} plane is less than 70 °. . 請求項1において,n=N(ただし,N=2を除く)である第N成長工程においては,上記第N成長面と{0001}面との傾斜角度が20°以下であることを特徴とするSiC単結晶の製造方法。 2. The N-th growth step in which n = N (excluding N = 2) according to claim 1, wherein an inclination angle between the N-th growth surface and the {0001} plane is 20 ° or less. A method for producing a SiC single crystal. 請求項1〜3のいずれか1項において,上記各種結晶上でのSiC単結晶の成長には昇華再析出法を用いることを特徴とするSiC単結晶の製造方法 The method for producing a SiC single crystal according to any one of claims 1 to 3, wherein a sublimation reprecipitation method is used for the growth of the SiC single crystal on the various crystals . 請求項1〜4のいずれか1項において,上記各種結晶の厚みは,1mm以上であることを特徴とするSiC単結晶の製造方法 The method for producing a SiC single crystal according to any one of claims 1 to 4, wherein the thickness of each of the various crystals is 1 mm or more . 請求項3に記載の製造方法により作製されたSiC単結晶より成膜面を露出するSiCウエハを作製し,該SiCウエハの上記成膜面上にエピタキシャル膜を成膜することを特徴とするエピタキシャル膜付きSiCウエハの製造方法 An SiC wafer in which a film formation surface is exposed from the SiC single crystal produced by the manufacturing method according to claim 3 is produced, and an epitaxial film is formed on the film formation surface of the SiC wafer. Manufacturing method of SiC wafer with film . 請求項6において,上記成膜面は,{0001}面からオフセット角度0.5°〜20°の面,{1−100}面からオフセット角度20°以下の面,又は{11−20}面からオフセット角度20°以下の面であることを特徴とするエピタキシャル膜付きSiCウエハの製造方法 7. The film formation surface according to claim 6, wherein the film formation surface is a surface having an offset angle of 0.5 ° to 20 ° from the {0001} surface, a surface having an offset angle of 20 ° or less from the {1-100} surface, or a {11-20} surface. A method for producing a SiC wafer with an epitaxial film, characterized in that the surface has an offset angle of 20 ° or less .
JP2002128725A 2001-10-12 2002-04-30 Method for producing SiC single crystal and method for producing SiC wafer with epitaxial film Expired - Lifetime JP3776374B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002128725A JP3776374B2 (en) 2002-04-30 2002-04-30 Method for producing SiC single crystal and method for producing SiC wafer with epitaxial film
DE10247017A DE10247017B4 (en) 2001-10-12 2002-10-09 SiC single crystal, a method of producing a SiC single crystal, SiC wafers with an epitaxial film, and a method of producing a SiC wafer having an epitaxial film
SE0202992A SE523917C2 (en) 2001-10-12 2002-10-10 Single crystal of SiC, method of producing a single crystal of SiC, SiC disc with epitaxial layer, method of producing SiC disc with epitaxial layer and electronic device based on SiC
US10/268,103 US6890600B2 (en) 2001-10-12 2002-10-10 SiC single crystal, method for manufacturing SiC single crystal, SiC wafer having an epitaxial film, method for manufacturing SiC wafer having an epitaxial film, and SiC electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002128725A JP3776374B2 (en) 2002-04-30 2002-04-30 Method for producing SiC single crystal and method for producing SiC wafer with epitaxial film

Publications (2)

Publication Number Publication Date
JP2003321298A JP2003321298A (en) 2003-11-11
JP3776374B2 true JP3776374B2 (en) 2006-05-17

Family

ID=29542383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002128725A Expired - Lifetime JP3776374B2 (en) 2001-10-12 2002-04-30 Method for producing SiC single crystal and method for producing SiC wafer with epitaxial film

Country Status (1)

Country Link
JP (1) JP3776374B2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006013005A (en) * 2004-06-23 2006-01-12 Denso Corp Silicon carbide semiconductor substrate and manufacturing method therefor
US7314520B2 (en) 2004-10-04 2008-01-01 Cree, Inc. Low 1c screw dislocation 3 inch silicon carbide wafer
JP4603386B2 (en) * 2005-02-21 2010-12-22 新日本製鐵株式会社 Method for producing silicon carbide single crystal
EP1855312B1 (en) * 2005-02-22 2014-04-09 Hitachi Metals, Ltd. PROCESS FOR PRODUCING SiC SINGLE-CRYSTAL SUBSTRATE
JP5504597B2 (en) * 2007-12-11 2014-05-28 住友電気工業株式会社 Silicon carbide semiconductor device and manufacturing method thereof
JP2010076967A (en) * 2008-09-25 2010-04-08 Sumitomo Electric Ind Ltd Production method of silicon carbide substrate, and silicon carbide substrate
JP2010111540A (en) * 2008-11-06 2010-05-20 Showa Denko Kk Method for growing silicon carbide single crystal, seed crystal, and silicon carbide single crystal
JP5276068B2 (en) * 2010-08-26 2013-08-28 株式会社豊田中央研究所 Method for producing SiC single crystal
JP6039888B2 (en) * 2011-06-05 2016-12-07 株式会社豊田中央研究所 Method for producing SiC single crystal
JP5750363B2 (en) * 2011-12-02 2015-07-22 株式会社豊田中央研究所 SiC single crystal, SiC wafer and semiconductor device
WO2014034081A1 (en) * 2012-08-26 2014-03-06 国立大学法人名古屋大学 Crystal production device, production method for sic single crystals, and sic single crystal
JP2014108916A (en) * 2012-12-04 2014-06-12 Sumitomo Electric Ind Ltd Production method of silicon carbide substrate
JP2014162649A (en) * 2013-02-21 2014-09-08 Mitsubishi Electric Corp SiC SUBSTRATE, PRODUCTION METHOD OF SiC SUBSTRATE, AND SiC EPITAXIAL SUBSTRATE
JP6133127B2 (en) * 2013-05-23 2017-05-24 株式会社豊田中央研究所 SiC single crystal and method for producing the same
JP6768491B2 (en) 2016-12-26 2020-10-14 昭和電工株式会社 SiC wafer and method of manufacturing SiC wafer
JP7352058B2 (en) * 2017-11-01 2023-09-28 セントラル硝子株式会社 Method for manufacturing silicon carbide single crystal
US20220333270A1 (en) 2019-08-06 2022-10-20 Kwansei Gakuin Educational Foundation SiC SEED CRYSTAL AND METHOD FOR PRODUCING SAME, SiC INGOT PRODUCED BY GROWING SAID SiC SEED CRYSTAL AND METHOD FOR PRODUCING SAME, AND SiC WAFER PRODUCED FROM SAID SiC INGOT AND SiC WAFER WITH EPITAXIAL FILM AND METHODS RESPECTIVELY FOR PRODUCING SAID SiC WAFER AND SAID SiC WAFER WITH EPITAXIAL FILM

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3532978B2 (en) * 1994-11-21 2004-05-31 新日本製鐵株式会社 Method for growing SiC single crystal
JPH10182297A (en) * 1996-12-24 1998-07-07 Sumitomo Metal Mining Co Ltd Method for growing sic single crystal
JP4450122B2 (en) * 1999-11-17 2010-04-14 株式会社デンソー Silicon carbide semiconductor device
JP4253974B2 (en) * 1999-12-22 2009-04-15 住友電気工業株式会社 SiC single crystal and growth method thereof
JP3750622B2 (en) * 2002-03-22 2006-03-01 株式会社デンソー SiC wafer with epitaxial film, manufacturing method thereof, and SiC electronic device
JP4160770B2 (en) * 2002-04-04 2008-10-08 新日本製鐵株式会社 4H type silicon carbide single crystal epitaxial substrate

Also Published As

Publication number Publication date
JP2003321298A (en) 2003-11-11

Similar Documents

Publication Publication Date Title
US6890600B2 (en) SiC single crystal, method for manufacturing SiC single crystal, SiC wafer having an epitaxial film, method for manufacturing SiC wafer having an epitaxial film, and SiC electronic device
JP3776374B2 (en) Method for producing SiC single crystal and method for producing SiC wafer with epitaxial film
JP4850960B2 (en) Epitaxial silicon carbide single crystal substrate manufacturing method
EP1751329B1 (en) Method of sic single crystal growth and sic single crystal
US9903046B2 (en) Reduction of carrot defects in silicon carbide epitaxy
JP4603386B2 (en) Method for producing silicon carbide single crystal
JP3745668B2 (en) Method for producing SiC single crystal and method for producing SiC seed crystal
US5915194A (en) Method for growth of crystal surfaces and growth of heteroepitaxial single crystal films thereon
US5248385A (en) Process for the homoepitaxial growth of single-crystal silicon carbide films on silicon carbide wafers
JP3750622B2 (en) SiC wafer with epitaxial film, manufacturing method thereof, and SiC electronic device
US8221546B2 (en) Epitaxial growth on low degree off-axis SiC substrates and semiconductor devices made thereby
KR20050088437A (en) Growth of planar, non-polar a-plane gallium nitride by hydride vapor phase epitaxy
JP7290135B2 (en) Semiconductor substrate manufacturing method and SOI wafer manufacturing method
JP2006032655A (en) Manufacturing method of silicon carbide substrate
JP2010076967A (en) Production method of silicon carbide substrate, and silicon carbide substrate
JP4664464B2 (en) Silicon carbide single crystal wafer with small mosaic
JP4408247B2 (en) Seed crystal for growing silicon carbide single crystal and method for producing silicon carbide single crystal using the same
JP4157326B2 (en) 4H type silicon carbide single crystal ingot and wafer
JP4236121B2 (en) Manufacturing method of semiconductor substrate
JP2006001836A (en) SiC SINGLE CRYSTAL AND SiC SEED CRYSTAL
JP4160769B2 (en) Silicon carbide single crystal ingot and wafer
JP7326759B2 (en) GaN single crystal manufacturing method
JPH0897142A (en) Semiconductor substrate and its manufacture
WO2011111647A1 (en) Method for producing nitride compound semiconductor substrate, nitride compound semiconductor substrate and self-supporting nitride compound semiconductor substrate
Hiramatsu Effects of buffer layers and advanced technologies on heteroepitaxy of GaN

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040723

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20050615

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20050706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060222

R151 Written notification of patent or utility model registration

Ref document number: 3776374

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090303

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100303

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100303

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100303

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100303

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110303

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110303

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120303

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120303

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120303

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120303

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130303

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130303

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140303

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term