JP2003321298A - SiC SINGLE CRYSTAL AND METHOD FOR PRODUCING THE SAME, SiC WAFER WITH EPITAXIAL FILM AND METHOD FOR PRODUCING THE SAME, AND SiC ELECTRONIC DEVICE - Google Patents

SiC SINGLE CRYSTAL AND METHOD FOR PRODUCING THE SAME, SiC WAFER WITH EPITAXIAL FILM AND METHOD FOR PRODUCING THE SAME, AND SiC ELECTRONIC DEVICE

Info

Publication number
JP2003321298A
JP2003321298A JP2002128725A JP2002128725A JP2003321298A JP 2003321298 A JP2003321298 A JP 2003321298A JP 2002128725 A JP2002128725 A JP 2002128725A JP 2002128725 A JP2002128725 A JP 2002128725A JP 2003321298 A JP2003321298 A JP 2003321298A
Authority
JP
Japan
Prior art keywords
sic
plane
crystal
single crystal
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002128725A
Other languages
Japanese (ja)
Other versions
JP3776374B2 (en
Inventor
Daisuke Nakamura
大輔 中村
Hiroyuki Kondo
宏行 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Central R&D Labs Inc
Original Assignee
Denso Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Toyota Central R&D Labs Inc filed Critical Denso Corp
Priority to JP2002128725A priority Critical patent/JP3776374B2/en
Priority to DE10247017A priority patent/DE10247017B4/en
Priority to SE0202992A priority patent/SE523917C2/en
Priority to US10/268,103 priority patent/US6890600B2/en
Publication of JP2003321298A publication Critical patent/JP2003321298A/en
Application granted granted Critical
Publication of JP3776374B2 publication Critical patent/JP3776374B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a high-quality SiC single crystal containing substantially no dislocation and defects and to provide a method for producing the same; to obtain an SiC wafer with an epitaxial film containing substantially no defects and dislocation in the epitaxial film and to provide a method for producing the same; and to provide an SiC device showing substantially no occurrence of leak current and reduction of withstand voltage. <P>SOLUTION: A first seed crystal is prepared in which the plane inclined 1°-90° from the [0001] plane is exposed as a first growing plane. An n-th seed crystal is prepared which has an n-th inclined direction at a location 45°-135° rotated from an (n-1)-th inclined direction about <0001> as a rotation axis and in which the plane inclined 1°-90° from the [0001] plane is exposed as an n-th growing plane. An n-th growing crystal is prepared by growing the SiC single crystal on the n-th growing plane of the n-th seed crystal. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【技術分野】本発明は,結晶中に転位及び欠陥をほとん
ど含有しないSiC単結晶及びその製造方法,並びにエ
ピタキシャル膜付きSiCウエハ及びその製造方法,並
びに該エピタキシャル膜付きSiCウエハを用いたSi
C電子デバイスに関する。
TECHNICAL FIELD The present invention relates to an SiC single crystal containing almost no dislocations and defects in the crystal, a method for producing the same, an SiC wafer with an epitaxial film and a method for producing the same, and Si using the SiC wafer with the epitaxial film.
C electronic device.

【0002】[0002]

【従来技術】従来より,SiC単結晶を利用するSiC
半導体は,Si半導体に代わる次世代パワーデバイスの
候補材料として期待されている。高性能なSiCパワー
デバイスを実現するためには,上記SiC半導体に生じ
るリーク電流を低減すること,及び耐圧低下を抑制する
ことが必須条件である。これまでの研究報告によれば,
上記SiC単結晶に生じるマイクロパイプ欠陥,螺旋転
位,刃状転位,積層欠陥等の欠陥が,SiC半導体のリ
ーク電流や耐圧低下等の原因となっていると考えられて
いる。また,上記パワーデバイスの用途には,特にエピ
タキシャル膜を有するSiCウエハが用いられる。その
ため,SiC単結晶中のみならず,エピタキシャル膜中
にも上記欠陥を含まないエピタキシャル膜付きSiCウ
エハの開発が望まれている。
2. Description of the Related Art Conventionally, SiC using a SiC single crystal
Semiconductors are expected as candidate materials for next-generation power devices to replace Si semiconductors. In order to realize a high-performance SiC power device, it is indispensable to reduce the leak current generated in the SiC semiconductor and to suppress the breakdown voltage reduction. According to previous research reports,
It is considered that defects such as micropipe defects, screw dislocations, edge dislocations, and stacking faults that occur in the above-mentioned SiC single crystal are the cause of leakage current and reduction of breakdown voltage of the SiC semiconductor. In addition, a SiC wafer having an epitaxial film is used for the purpose of the power device. Therefore, it is desired to develop a SiC wafer with an epitaxial film that does not contain the above defects not only in the SiC single crystal but also in the epitaxial film.

【0003】図7に示すごとく,SiC単結晶は主要な
面方位として{0001}面(c面)と,{0001}
面に垂直な{1−100}面(a面)及び{11−2
0}面(a面)とを有している。従来より上記SiC単
結晶を得る方法としては,まず,六方晶の{0001}
面(c面)又は{0001}面からオフセット角度10
°以内の面を種結晶面として露出するSiC種結晶を用
いて,昇華再析出法等により種結晶面上にSiC単結晶
を成長させる,いわゆるc面成長を行う方法が用いられ
てきた。
As shown in FIG. 7, a SiC single crystal has a {0001} plane (c-plane) and a {0001} plane as major plane orientations.
{1-100} plane (a plane) perpendicular to the plane and {11-2
0} surface (a surface). As a conventional method for obtaining the above-mentioned SiC single crystal, first, hexagonal {0001}
Offset angle 10 from plane (c-plane) or {0001} plane
A method of performing so-called c-plane growth has been used, in which a SiC single crystal is exposed by using a SiC seed crystal whose surface within ° is exposed as a seed crystal surface, and a SiC single crystal is grown on the seed crystal surface by a sublimation reprecipitation method.

【0004】しかし,上記のように{0001}面を種
結晶面とし,<0001>方向に成長させてなるSiC
バルク単結晶(c面成長結晶)中には,<0001>方
向に略平行にマイクロパイプ欠陥,螺旋転位,刃状転位
がそれぞれ100〜103cm -2,103〜104cm-2
104〜105cm-2程度含まれるという問題があった。
さらに,このc面成長結晶からSiCウエハを作製して
エピタキシャル膜を成膜すると,該エピタキシャル膜中
にはSiCウエハの表面に露出する欠陥及び転位が継承
される。これにより,上記エピタキシャル膜中にもSi
Cウエハと略同密度の転位が存在し,各種デバイス特性
に悪影響を及ぼすという問題があった。
However, as described above, the {0001} plane is seeded.
SiC formed as a crystal plane and grown in the <0001> direction
In the bulk single crystal (c-plane grown crystal), the <0001> direction
Micropipe defects, screw dislocations, and edge dislocations that are substantially parallel to the direction
10 each0-103cm -2, 103-10Fourcm-2
10Four-10Fivecm-2There was a problem that it was included to some extent.
Furthermore, a SiC wafer was prepared from this c-plane grown crystal.
When an epitaxial film is formed,
Inherits defects and dislocations exposed on the surface of the SiC wafer
To be done. This allows Si in the epitaxial film as well.
There are dislocations of approximately the same density as the C wafer, and various device characteristics
There was a problem that it adversely affected the.

【0005】一方,特開平5−262599号公報に
は,SiC単結晶の{0001}面からの傾きが60〜
120°(好ましくは90°)の面を種結晶面として,
この種結晶をa面成長させて,成長結晶(a面成長結
晶)を得る方法が開示されている。そして,このa面成
長結晶中には,マイクロパイプ欠陥や螺旋転位が含まれ
ないことを明らかにした。
On the other hand, in Japanese Unexamined Patent Publication No. 262599/1993, the inclination of the SiC single crystal from the {0001} plane is 60 to
The plane of 120 ° (preferably 90 °) is used as the seed crystal plane,
A method of growing a seed crystal by a-plane growth to obtain a grown crystal (a-plane grown crystal) is disclosed. It was also clarified that the a-plane grown crystal does not contain micropipe defects or screw dislocations.

【0006】[0006]

【解決しようとする課題】しかしながら,上記a面成長
結晶中には,積層欠陥が{0001}面内であって成長
方向と略平行に102〜104cm-1という高密度で含ま
れる。また,<0001>方向に平行及び直交なバーガ
ースベクトルを持つ刃状転位が成長方向に略平行に高密
度に含まれる。そして,このa面成長結晶からSiCウ
エハを作製しエピタキシャル膜を成膜すると,該エピタ
キシャル膜中にa面成長結晶に含まれる高密度の刃状転
位及び積層欠陥から転位及び積層欠陥が継承される。こ
のようにSiC単結晶及びエピタキシャル膜中に転位及
び積層欠陥を高密度に含有するSiC単結晶は,オン抵
抗が高くなり,また,逆方向リーク電流を生じるため,
デバイス動作に悪影響を及ぼすおそれがある。
However, in the a-plane grown crystal, stacking faults are contained in the {0001} plane at a high density of 10 2 to 10 4 cm -1 substantially parallel to the growth direction. In addition, edge dislocations having Burgers vectors parallel and orthogonal to the <0001> direction are included at a high density in a direction substantially parallel to the growth direction. When a SiC wafer is prepared from this a-plane grown crystal and an epitaxial film is formed, the dislocations and stacking faults are inherited from the high density edge dislocations and stacking faults contained in the a-plane grown crystal in the epitaxial film. . Thus, the SiC single crystal and the SiC single crystal containing dislocations and stacking faults in the epitaxial film at a high density have a high on-resistance and a reverse leakage current.
May adversely affect device operation.

【0007】本発明は,かかる従来の問題点に鑑みてな
されたもので,転位及び欠陥をほとんど含まず高品質な
SiC単結晶及びその製造方法,並びにSiC単結晶及
びエピタキシャル膜中に欠陥及び転位をほとんど含有し
ないエピタキシャル膜付きSiCウエハ及びその製造方
法,並びにリーク電流及び耐圧低下の発生がほとんどな
いSiC電子デバイスを提供しようとするものである。
The present invention has been made in view of the above conventional problems, and is a high-quality SiC single crystal containing few dislocations and defects, a method for manufacturing the same, and defects and dislocations in the SiC single crystal and the epitaxial film. It is intended to provide a SiC wafer with an epitaxial film containing almost no hydrogen, a method for manufacturing the same, and a SiC electronic device with almost no occurrence of leak current and reduction in breakdown voltage.

【0008】[0008]

【課題の解決手段】第1の発明は,六方晶のSiC単結
晶よりなるSiC種結晶上にSiC単結晶を成長させて
バルク状のSiC単結晶を製造する製造方法において,
該製造方法はN回(NはN≧2の自然数)の成長工程を
含み,各成長工程を第n成長工程(nは自然数であって
1から始まりNで終わる序数)として表した場合,n=
1である第1成長工程においては,{0001}面から
傾斜角度1°〜90°傾いた面を第1成長面として露出
させた第1種結晶を作製して,該第1種結晶の上記第1
成長面上にSiC単結晶を成長させ第1成長結晶を作製
し,n=2,3,...,Nである連続成長工程におい
ては,第n成長面の法線ベクトルを{0001}面に投
影したベクトルの方向を第n傾斜方向とした場合に,第
(n−1)傾斜方向から<0001>を回転軸として4
5°〜135°回転したところに第n傾斜方向を有し,
かつ{0001}面から傾斜角度1°〜90°傾いた面
を第n成長面として露出させた第n種結晶を第(nー
1)成長結晶から作製して,該第n種結晶の上記第n成
長面上にSiC単結晶を成長させ第n成長結晶を作製す
ることを特徴とするSiC単結晶の製造方法にある(請
求項1)。
According to a first aspect of the present invention, there is provided a manufacturing method for producing a bulk SiC single crystal by growing a SiC single crystal on a SiC seed crystal made of a hexagonal SiC single crystal.
The manufacturing method includes N times of growth steps (N is a natural number of N ≧ 2), and each growth step is represented by an n-th growth step (n is a natural number and an ordinal number starting from 1 and ending with N). =
In the first growth step of No. 1, a first seed crystal in which a surface inclined at an inclination angle of 1 ° to 90 ° from the {0001} plane is exposed as a first growth surface is prepared, and First
A SiC single crystal is grown on the growth surface to prepare a first grown crystal, and n = 2, 3 ,. . . , N in the continuous growth step, if the direction of the vector obtained by projecting the normal vector of the n-th growth surface onto the {0001} plane is the n-th tilt direction, then from the (n-1) -th tilt direction, <0001 > As the axis of rotation 4
It has the n-th tilt direction at the position rotated by 5 ° to 135 °,
An n-th seed crystal in which a surface inclined at an inclination angle of 1 ° to 90 ° from the {0001} plane is exposed as the n-th growth surface is prepared from the (n-1) -th grown crystal, and A method for producing a SiC single crystal is characterized in that a SiC single crystal is grown on an nth growth surface to produce an nth growth crystal (claim 1).

【0009】次に,本発明の作用効果につき説明する。
本発明の上記第1成長工程においては,{0001}面
から傾斜角度1°〜90°傾いた面を第1成長面として
露出させた第1種結晶を作製して,該第1種結晶の上記
第1成長面上にSiC単結晶を成長させ第1成長結晶を
作製する。そのため,上記第1成長結晶中には主として
上記第1成長面の表面から継承される転位が多数存在す
る。ここで,該転位の発生源は主として第1成長面に露
出した欠陥(転位,マイクロパイプ欠陥)である。上記
第1成長工程においては,上記転位の方向の大部分を第
1成長面の法線ベクトルを{0001}面に投影したベ
クトルの方向である第1傾斜方向に略平行にそろえるこ
とができる。
Next, the function and effect of the present invention will be described.
In the first growth step of the present invention, a first seed crystal in which a surface inclined at an inclination angle of 1 ° to 90 ° from the {0001} plane is exposed as a first growth surface is prepared, and the first seed crystal of the first seed crystal is formed. A SiC single crystal is grown on the first growth surface to prepare a first grown crystal. Therefore, a large number of dislocations inherited mainly from the surface of the first growth surface are present in the first growth crystal. Here, the generation sources of the dislocations are mainly the defects (dislocations and micropipe defects) exposed on the first growth surface. In the first growth step, most of the dislocation directions can be aligned substantially parallel to the first tilt direction, which is the direction of the vector obtained by projecting the normal vector of the first growth surface onto the {0001} plane.

【0010】次に,上記連続成長工程においては,第
(n−1)傾斜方向から<0001>を回転軸として4
5°〜135°回転したところに第n傾斜方向を有し,
かつ{0001}面から傾斜角度1°〜90°傾いた面
を第n成長面として露出させた第n種結晶を第(nー
1)成長結晶から作製して,該第n種結晶の上記第n成
長面上にSiC単結晶を成長させ第n成長結晶作製す
る。そのため,上記第n成長面には,第(n−1)成長
結晶中に存在する転位はほとんど露出されない。第(n
−1)成長結晶中の転位の多くは{0001}面内の第
(n−1)傾斜方向に平行に存在しており,該転位が上
記第n成長面に露出する確立は小さくなるからである。
それ故,上記第n成長結晶中には第n成長面から転位が
継承されることはほとんどなく,転位及び欠陥はほとん
ど発生しない。また,上記連続成長工程は,1回(N=
2のとき),又は複数回繰り返して行うことができる。
そして,連続成長工程の回数を増やす毎に,得られる成
長結晶のいわゆる転位密度を指数関数的に減少させるこ
とができる。
Next, in the above continuous growth step, from the (n-1) th tilt direction, <0001>
It has the n-th tilt direction at the position rotated by 5 ° to 135 °,
An n-th seed crystal in which a surface inclined at an inclination angle of 1 ° to 90 ° from the {0001} plane is exposed as the n-th growth surface is prepared from the (n-1) -th grown crystal, and A SiC single crystal is grown on the nth growth surface to produce an nth growth crystal. Therefore, dislocations existing in the (n-1) th grown crystal are hardly exposed on the nth growth surface. The (n
-1) Most of the dislocations in the grown crystal are parallel to the (n-1) th tilt direction in the {0001} plane, and the probability of exposing the dislocations to the nth growth plane is small. is there.
Therefore, dislocations are hardly inherited from the n-th growth surface in the n-th growth crystal, and dislocations and defects are hardly generated. In addition, the continuous growth step is performed once (N =
2) or repeated several times.
The so-called dislocation density of the obtained grown crystal can be exponentially decreased each time the number of continuous growth steps is increased.

【0011】このように,本発明によれば,マイクロパ
イプ欠陥,螺旋転位,刃状転位,及び積層欠陥をほとん
ど含まず,高品質なSiC単結晶の製造方法を提供する
ことができる。
As described above, according to the present invention, it is possible to provide a method for producing a high-quality SiC single crystal which hardly contains micropipe defects, screw dislocations, edge dislocations, and stacking faults.

【0012】次に,第2の発明は,第1の発明の製造方
法により作製されたことを特徴とするSiC単結晶にあ
る(請求項8)。
Next, a second invention is a SiC single crystal produced by the manufacturing method of the first invention (claim 8).

【0013】本発明のSiC単結晶は,上記第1の発明
の製造方法によって作製されたものである。そのため,
上記SiC単結晶は,マイクロパイプ欠陥,螺旋転位,
刃状転位,及び積層欠陥をほとんど含まず高品質であ
る。それ故,高性能なパワーデバイスとして利用するこ
とができる。
The SiC single crystal of the present invention is manufactured by the manufacturing method of the first invention. for that reason,
The SiC single crystal has micropipe defects, screw dislocations,
High quality with almost no edge dislocations and stacking faults. Therefore, it can be used as a high performance power device.

【0014】次に,第3の発明は,第1の発明の製造方
法により作製されたSiC単結晶より成膜面を露出する
SiCウエハを作製し,該SiCウエハの上記成膜面上
にエピタキシャル膜を成膜することを特徴とするエピタ
キシャル膜付きSiCウエハの製造方法にある(請求項
9)。
Next, a third aspect of the present invention is to manufacture an SiC wafer having a film-forming surface exposed from the SiC single crystal produced by the manufacturing method of the first invention, and epitaxially deposit the SiC wafer on the film-forming surface. A method for manufacturing a SiC wafer with an epitaxial film is characterized in that a film is formed (claim 9).

【0015】第1の発明の製造方法により製造されたS
iC単結晶は,上述のごとくマイクロパイプ欠陥,螺旋
転位,刃状転位,及び積層欠陥をほとんど含まず,高品
質である。そのため,上記SiCウエハの成膜面には上
記欠陥及び転位はほとんど露出せず,エピタキシャル膜
中へも転位が継承されることはほとんどない。それ故,
転位及び欠陥の少ない高品質なエピタキシャル膜付きS
iCウエハを作製することができる。
S manufactured by the manufacturing method of the first invention
As described above, the iC single crystal is of high quality, containing almost no micropipe defects, screw dislocations, edge dislocations, and stacking faults. Therefore, the defects and dislocations are barely exposed on the film formation surface of the SiC wafer, and dislocations are hardly inherited in the epitaxial film. Therefore,
S with high quality epitaxial film with few dislocations and defects
An iC wafer can be produced.

【0016】次に,第4の発明は,第3の発明の製造方
法により作製されたことを特徴とするエピタキシャル膜
付きSiCウエハにある(請求項11)。
Next, a fourth invention is an SiC wafer with an epitaxial film, which is manufactured by the manufacturing method of the third invention (claim 11).

【0017】上記エピタキシャル膜付きSiCウエハ
は,第3の発明の製造方法によって製造される。そのた
め,上記エピタキシャル膜付きSiCウエハは,SiC
単結晶及びエピタキシャル膜中に転位や欠陥をほとんど
含んでいない。それ故,高性能なSiC電子デバイスに
利用することができる。
The SiC wafer with the epitaxial film is manufactured by the manufacturing method of the third invention. Therefore, the SiC wafer with the epitaxial film is
Almost no dislocations or defects are contained in the single crystal and the epitaxial film. Therefore, it can be used for a high-performance SiC electronic device.

【0018】次に,第5の発明は,第4の発明のエピタ
キシャル膜付きSiCウエハを用いたことを特徴とする
SiC電子デバイスにある(請求項12)。
Next, a fifth invention is a SiC electronic device characterized by using the SiC wafer with an epitaxial film of the fourth invention (claim 12).

【0019】本発明のSiC電子デバイスは,第4の発
明のエピタキシャル膜付きSiCウエハを用いており,
上述したように,該エピタキシャル膜付きSiCウエハ
は,転位及び欠陥が少なく高品質である。そのため,上
記SiC電子デバイスはオン抵抗が低く,またリーク電
流の発生もなく優れている。
The SiC electronic device of the present invention uses the SiC wafer with the epitaxial film of the fourth invention,
As described above, the SiC wafer with the epitaxial film has high quality with few dislocations and defects. Therefore, the above-mentioned SiC electronic device has a low on-resistance and is excellent in that no leak current occurs.

【0020】[0020]

【発明の実施の形態】上記第1の発明(請求項1)にお
いては,上記第1成長面と{0001}との傾斜角度は
1°〜90°である。1°未満の場合には,傾斜角度が
小さすぎて,上記第n成長結晶は,いわゆるc面成長結
晶と同等のものとなり,マイクロパイプ欠陥,螺旋転
位,刃状転位等が高密度で発生する。また,上記第n傾
斜方向は,上記第(n−1)傾斜方向から<0001>
を回転軸として45°〜135°回転したところにあ
る。45°未満の場合には,第(n−1)成長結晶が第
n成長面に露出する確率が高くなり,上記連続成長工程
を繰り返しても,第n成長結晶に含まれる転位はほとん
ど減少しない。そのため,より好ましくは60°以上が
よい。また,135°を超える場合も同様で,より好ま
しくは120°以下がよい。
BEST MODE FOR CARRYING OUT THE INVENTION In the first invention (claim 1), the inclination angle between the first growth surface and {0001} is 1 ° to 90 °. If it is less than 1 °, the tilt angle is too small, and the n-th grown crystal becomes equivalent to a so-called c-plane grown crystal, and micropipe defects, screw dislocations, edge dislocations, etc. occur at high density. . Also, the n-th tilt direction is <0001> from the (n-1) -th tilt direction.
Is about 45 ° to 135 ° about the rotation axis. When the angle is less than 45 °, the probability that the (n-1) th growth crystal is exposed to the nth growth surface is high, and even if the above continuous growth step is repeated, the dislocations contained in the nth growth crystal are hardly reduced. . Therefore, it is more preferably 60 ° or more. The same applies when the angle exceeds 135 °, more preferably 120 ° or less.

【0021】また,上記連続成長工程において,上記第
n傾斜方向を,<0001>を回転軸として第(n−
1)傾斜方向から90°回転させたところとする成長工
程を1回以上含むことが好ましい。この場合には,転位
が第n成長面上に露出する確率が非常に小さくなり,第
n成長結晶に転位及び欠陥が生じるおそれが少なくな
る。なお,成長工程回数を増やすごとに成長結晶中の転
位密度は小さくなる。
In the continuous growth step, the n-th tilt direction is the (n-th) axis with <0001> as the rotation axis.
1) It is preferable to include at least one growth step in which the film is rotated by 90 ° from the tilt direction. In this case, the probability of dislocations being exposed on the n-th growth surface is very small, and the possibility of dislocations and defects occurring in the n-th growth crystal is reduced. The dislocation density in the grown crystal decreases as the number of growth steps increases.

【0022】また,上記各成長面の上にSiC単結晶を
成長させる前には,各成長面の表面の付着物や加工変質
層を除去しておくことが好ましい。この場合には,上記
付着物や加工変質層に起因する各成長面から各成長結晶
に継承される転位を防ぐことができる。なお,上記付着
物や加工変質層を除去する方法としては,例えば研磨,
化学洗浄,Reactive Ion Etching
(RIE),犠牲酸化等がある。
Before growing the SiC single crystal on each growth surface, it is preferable to remove the deposits and work-affected layers on the surface of each growth surface. In this case, it is possible to prevent dislocations that are inherited by the grown crystals from the growth surfaces due to the deposits and work-affected layers. As a method for removing the above-mentioned deposits and work-affected layers, for example, polishing,
Chemical cleaning, Reactive Ion Etching
(RIE), sacrificial oxidation, etc.

【0023】次に,上記第n成長面(n=1,
2,...,N)と{0001}面との傾斜角度は,7
0°未満であることが好ましい(請求項2)。この場合
には,結晶を高く成長させる必要がなく,コストダウン
を図ることができる。70°以上の場合には,結晶を高
く成長させる必要があり,製造コストが高くなるおそれ
がある。
Next, the nth growth surface (n = 1,
2 ,. . . , N) and the tilt angle between the {0001} plane is 7
It is preferably less than 0 ° (claim 2). In this case, it is not necessary to grow the crystal high, and the cost can be reduced. In the case of 70 ° or more, it is necessary to grow the crystal high, which may increase the manufacturing cost.

【0024】次に,上記第n成長面(n=1,
2,...,N)と{0001}面との傾斜角度は,1
0°以上であることが好ましい(請求項3)。この場合
には,マイクロパイプ欠陥,螺旋転位及び刃状転位等の
貫通欠陥を減少させることができる。10°未満の場合
には,これら貫通欠陥が高密度で発生するおそれがあ
る。
Next, the n-th growth surface (n = 1,
2 ,. . . , N) and the tilt angle between the {0001} plane is 1
It is preferably 0 ° or more (claim 3). In this case, threading defects such as micropipe defects, screw dislocations and edge dislocations can be reduced. If it is less than 10 °, these penetrating defects may occur at a high density.

【0025】次に,n=Nである第N成長工程において
は,上記第N成長面と{0001}面との傾斜角度が2
0°以下であることが好ましい(請求項4)。この場合
には,上記SiC単結晶は最終的に略c面成長方向に成
長し,現在デバイス作製用として広く用いられている,
いわゆるc面成長結晶となる。そのため,上記SiC単
結晶をSiC電子デバイス作製上有効なものとすること
ができる。
Next, in the Nth growth step where n = N, the inclination angle between the Nth growth surface and the {0001} plane is 2
It is preferably 0 ° or less (claim 4). In this case, the SiC single crystal finally grows in the substantially c-plane growth direction, and is widely used at present for device fabrication.
This is a so-called c-plane grown crystal. Therefore, the above-mentioned SiC single crystal can be made effective in producing a SiC electronic device.

【0026】次に,第n成長工程(但し,n≠N)にお
いては,上記第n成長面と{0001}面との傾斜角度
が60°〜90°である成長工程を1回以上有すること
が好ましい(請求項5)。この場合には,結晶中の転位
を効率よく減らすことができる。一般に,{0001}
面より1°〜90°の傾斜角度をもった成長面上に結晶
を成長させると,成長結晶中に生じる転位の方向は傾斜
方向に略平行になる場合が多い。この成長面と{000
1}面との傾斜角度が60°を超えると該転位のほとん
ど全てが傾斜方向に略平行となる。そのため,上記第n
成長面と{0001}面との傾斜角度傾斜角度を60°
〜90°とした場合には,ほとんど全ての転位を傾斜方
向に平行にすることことができ,次工程の種結晶の成長
面に転位がほとんど露出しないようにすることが容易に
なる。上記第n成長面と{0001}面との傾斜角度が
60°未満の場合には,傾斜方向と平行でない転位が次
工程の種結晶の成長面に露出し,成長結晶に転位や欠陥
を生じるおそれがある。
Next, in the nth growth step (where n ≠ N), at least one growth step in which the inclination angle between the nth growth surface and the {0001} plane is 60 ° to 90 ° is performed. Is preferred (Claim 5). In this case, dislocations in the crystal can be efficiently reduced. Generally, {0001}
When a crystal is grown on a growth surface having an inclination angle of 1 ° to 90 ° with respect to the plane, the direction of dislocation generated in the grown crystal is almost parallel to the inclination direction in many cases. This growth surface and {000
When the tilt angle with respect to the 1} plane exceeds 60 °, almost all of the dislocations are substantially parallel to the tilt direction. Therefore, the above nth
Inclination angle between growth plane and {0001} plane is 60 °
When it is set to 90 °, almost all dislocations can be made parallel to the tilt direction, and it becomes easy to prevent dislocations from being barely exposed on the growth surface of the seed crystal in the next step. When the tilt angle between the n-th growth plane and the {0001} plane is less than 60 °, dislocations not parallel to the tilt direction are exposed on the growth surface of the seed crystal in the next step, causing dislocations or defects in the grown crystal. There is a risk.

【0027】また,上記第n成長面と{0001}面と
の傾斜角度が60°〜90°である成長工程は,少なく
とも1回以上行うことができるが,結晶中の転位が充分
に低減された後の成長工程においては,もはや傾斜角度
を大きくする必要はなく,例えば1〜20°という小さ
い傾斜角度でも充分に高品質な結晶を再現性良く作製す
ることができる。また,上記第n成長面と{0001}
面との傾斜角度を小さくすると結晶の高さを高くする必
要がなくなるため,コストダウンを図ることができる。
The growth step in which the inclination angle between the n-th growth plane and the {0001} plane is 60 ° to 90 ° can be performed at least once, but dislocations in the crystal are sufficiently reduced. In the subsequent growth step, it is no longer necessary to increase the tilt angle, and a sufficiently high quality crystal can be produced with good reproducibility even with a small tilt angle of, for example, 1 to 20 °. In addition, the above nth growth plane and {0001}
If the tilt angle with respect to the plane is reduced, it is not necessary to increase the height of the crystal, and the cost can be reduced.

【0028】上記各種結晶上でのSiC単結晶の成長に
は昇華再析出法を用いることが好ましい(請求項6) この場合には十分な成長高さが得られるため大口径のS
iC単結晶を作製することができると共に,再現性よ
く,且つ生産性よく高品質のSiC単結晶を作製するこ
とができる。なお,本発明において使用できるSiC単
結晶成長手法は昇華再析出法に限らず,十分な成長高さ
のバルク状単結晶を成長できる手法であれば全て適用で
きる。例えば,Mater. Sci. Eng. B V
ol.61−62(1999)113−120に示され
ているような2000℃を越える温度域での化学気相堆
積法も用いることができる。
It is preferable to use the sublimation reprecipitation method for growing the SiC single crystal on the above various crystals (Claim 6). In this case, since a sufficient growth height can be obtained, S having a large diameter is used.
It is possible to manufacture an iC single crystal, and it is possible to manufacture a high-quality SiC single crystal with good reproducibility and productivity. The SiC single crystal growth method that can be used in the present invention is not limited to the sublimation reprecipitation method, and any method that can grow a bulk single crystal with a sufficient growth height can be applied. For example, Mater. Sci. Eng. B V
ol. 61-62 (1999) 113-120, the chemical vapor deposition method in the temperature range over 2000 degreeC can also be used.

【0029】上記各種結晶の厚みは,1mm以上である
ことが好ましい(請求項7)。この場合には,上記種結
晶と種結晶を固定している物体との熱膨張差による応力
によって成長結晶に生じる転位及び積層欠陥を防止する
ことができる。即ち,上記種結晶の厚みを充分大きくす
ることにより,上記応力が種結晶を構成する格子を歪め
て,成長結晶に転位及び積層欠陥が発生することを防止
することができる。また,特に,上記種結晶の成長面の
面積Aが500mm2を越える場合には,上記種結晶の
厚みを1mmよりさらに大きくする必要がある。このと
きの必要最低限の厚みをtseedとすると,tsee
d=A1/2×2/πの式が与えられる。なお,上記種結
晶及び成長結晶とは,本発明におけるすべての種結晶及
びすべての成長結晶を含む概念である。
The thickness of each of the various crystals is preferably 1 mm or more (claim 7). In this case, it is possible to prevent dislocations and stacking faults that occur in the grown crystal due to the stress due to the difference in thermal expansion between the seed crystal and the object fixing the seed crystal. That is, by sufficiently increasing the thickness of the seed crystal, it is possible to prevent the stress from distorting the lattice constituting the seed crystal and causing dislocations and stacking faults in the grown crystal. Further, especially when the area A of the growth surface of the seed crystal exceeds 500 mm 2 , the thickness of the seed crystal needs to be made larger than 1 mm. If the minimum necessary thickness at this time is tseed, then tsee
The formula of d = A 1/2 × 2 / π is given. The seed crystal and the grown crystal are concepts including all seed crystals and all grown crystals in the present invention.

【0030】また,第3の発明において,上記成膜面
は,{0001}面からオフセット角度0.5°〜20
°の面,{1−100}面からオフセット角度20°以
下の面,又は{11−20}面からオフセット角度20
°以下の面であることが好ましい(請求項10)。この
場合には,上記エピタキシャル膜中へのマイクロパイプ
欠陥,螺旋転位,刃状転位の発生をほとんど抑制するこ
とができる。なお,{0001}面からオフセット角度
0.5°未満の面を成膜面とした場合には,上記エピタ
キシャル膜の成膜が困難になるおそれがある。
In the third invention, the film-forming surface has an offset angle of 0.5 ° to 20 ° from the {0001} surface.
Plane of 0 °, a plane with an offset angle of 20 ° or less from the {1-100} plane, or a plane of 20 ° from the {11-20} plane
It is preferably a surface of not more than ° (claim 10). In this case, generation of micropipe defects, screw dislocations and edge dislocations in the epitaxial film can be almost suppressed. In addition, when the face having an offset angle of less than 0.5 ° from the {0001} face is used as a film-forming face, it may be difficult to form the epitaxial film.

【0031】また,{1−100}面からオフセット角
度20°以下の面,又は{11−20}面からオフセッ
ト角度20°以下の面を上記成膜面として上記エピタキ
シャル膜付きSiCウエハを作製した場合には,該エピ
タキシャル膜付きSiCウエハは,その酸化膜とSiC
単結晶との間の界面に発生する界面準位が著しく低減さ
れ,MOSFET(Metal-Oxide-Semiconductor Field
Effect Transistor)デバイスを作製する上で有効であ
る。なお,上記{1−100}面又は{11−20}面
からオフセット角度20°以下の面は,それぞれ{1−
100}面,又は{11−20}面を含む概念である。
Further, the SiC wafer with the epitaxial film was prepared by using the surface having an offset angle of 20 ° or less from the {1-100} plane or the surface having an offset angle of 20 ° or less from the {11-20} plane as the film formation surface. In this case, the SiC wafer with the epitaxial film is
The interface state generated at the interface with the single crystal is significantly reduced, and MOSFET (Metal-Oxide-Semiconductor Field)
Effect Transistor) This is effective in manufacturing devices. It should be noted that the planes having an offset angle of 20 ° or less from the {1-100} plane or the {11-20} plane are {1-
This is a concept including the 100} plane or the {11-20} plane.

【0032】ここで,{1−100},{11−20}
及び{0001}は,いわゆる結晶面の面指数を表して
いる。上記面指数において,「−」記号は通常数字の上
に付されるが,本明細書及び図面においては書類作成の
便宜上のため数字の左側に付した。また,<0001
>,<11−20>,及び<1−100>は,結晶内の
方向を表し,「−」記号の取り扱いについては,上記面
指数と同様である。
Here, {1-100}, {11-20}
And {0001} represent so-called crystal plane index. In the above surface index, the "-" symbol is usually added above the number, but in this specification and the drawings, it is added to the left side of the number for convenience of document preparation. Also, <0001
>, <11-20>, and <1-100> represent directions in the crystal, and the handling of the “−” symbol is the same as the above-mentioned plane index.

【0033】また,上記エピタキシャル膜の成膜には,
CVD法,PVE法,又はLPE法を用いることができ
る。ここで上記CVD法は,Chemical Vap
orDeposition(化学気相堆積法)法,上記
PVE法は,Physical Vapor Epit
axy(昇華エピタキシー)法,上記LPE法は,Li
quid Phase Epitaxy(液相エピタキ
シー)法をいう。この場合には,デバイス作製上重要な
設計パラメータである膜厚及び膜中の不純物濃度を容易
に制御することができる。
Further, in forming the epitaxial film,
A CVD method, a PVE method, or an LPE method can be used. Here, the above-mentioned CVD method is a chemical vapor
or Deposition (Chemical Vapor Deposition) method, the PVE method is Physical Vapor Epit
The axy (sublimation epitaxy) method, the LPE method is Li
It refers to a liquid phase epitaxy method. In this case, the film thickness and the impurity concentration in the film, which are important design parameters in device fabrication, can be easily controlled.

【0034】また,上記エピタキシャル膜に1×1013
〜1×1020/cm3の不純物を含有させることができ
る。この場合には,上記不純物がドナーやアクセプタ等
の役割を果たし,上記エピタキシャル膜付きSiCウエ
ハを半導体デバイス等として用いることができる。上記
不純物の含有量が1×1013/cm3未満の場合には,
上記不純物は充分な量のキャリアを供給することができ
ず,上記エピタキシャル膜付きSiCウエハのデバイス
特性が低下するおそれがある。一方,1×1020/cm
3を越える場合には,上記不純物が凝集し,その結果上
記エピタキシャル膜中に転位や積層欠陥が発生するおそ
れがある。
Further, 1 × 10 13 is formed on the above epitaxial film.
Impurities of up to 1 × 10 20 / cm 3 can be included. In this case, the impurities play a role of donors or acceptors, and the SiC wafer with the epitaxial film can be used as a semiconductor device or the like. When the content of the above impurities is less than 1 × 10 13 / cm 3 ,
The impurities cannot supply a sufficient amount of carriers, and the device characteristics of the SiC wafer with the epitaxial film may deteriorate. On the other hand, 1 × 10 20 / cm
If it exceeds 3 , the impurities may aggregate, and as a result, dislocations or stacking faults may occur in the epitaxial film.

【0035】また,上記不純物はその構成元素として,
窒素,ホウ素又はアルミニウムの1種以上を含有するこ
とができる。この場合には,上記エピタキシャル膜をp
又はn型半導体とすることができる。そのため,上記エ
ピタキシャル膜付きSiCウエハをダイオード及びトラ
ンジスタ等の半導体デバイスとして利用することができ
る。
Further, the above-mentioned impurities are constituent elements thereof,
It may contain one or more of nitrogen, boron or aluminum. In this case, the epitaxial film is
Alternatively, it can be an n-type semiconductor. Therefore, the SiC wafer with the epitaxial film can be used as a semiconductor device such as a diode and a transistor.

【0036】[0036]

【実施例】(実施例1)本発明の実施例にかかるSiC
単結晶及びその製造方法につき説明する。本発明のSi
C単結晶の製造方法は,図1〜図5に示すごとく,六方
晶のSiC単結晶よりなるSiC種結晶上にSiC単結
晶を成長させてバルク状のSiC単結晶を製造する製造
方法である。該製造方法はN回(本例ではN=2)の成
長工程を含み,各成長工程を第n成長工程(nは自然数
であって1から始まりNで終わる序数)として表す。
EXAMPLES Example 1 SiC according to an example of the present invention
The single crystal and the manufacturing method thereof will be described. Si of the present invention
As shown in FIGS. 1 to 5, the method for producing a C single crystal is a method for producing a bulk SiC single crystal by growing the SiC single crystal on a SiC seed crystal made of a hexagonal SiC single crystal. . The manufacturing method includes N times (N = 2 in this example) of growth steps, and each growth step is represented as an nth growth step (n is a natural number and an ordinal number starting from 1 and ending with N).

【0037】図1に示すごとく,n=1である第1成長
工程においては,{0001}面から<11−20>方
向である第1傾斜方向153へ傾斜角度α(本例ではα
=60°)傾いた面を第1成長面15として露出させた
第1種結晶1を作製する。そして,図2に示すごとく該
第1種結晶1の上記第1成長面15上にSiC単結晶を
成長させ第1成長結晶10を作製する(第1成長工
程)。
As shown in FIG. 1, in the first growth step with n = 1, the inclination angle α (α in this example, from the {0001} plane to the first inclination direction 153, which is the <11-20> direction.
= 60 °) The first seed crystal 1 in which the tilted surface is exposed as the first growth surface 15 is produced. Then, as shown in FIG. 2, a SiC single crystal is grown on the first growth surface 15 of the first seed crystal 1 to produce a first grown crystal 10 (first growing step).

【0038】次に,図3及び図4に示すごとく,n=2
である連続成長工程においては,第2成長面25の法線
ベクトル251を{0001}面に投影したベクトルの
方向を第2傾斜方向253とした場合に,<11−20
>方向である第1傾斜方向153から<0001>を回
転軸としてβ(本例ではβ=90°)回転したところ,
即ち<1−100>方向に第2傾斜方向253を有し,
かつ{0001}面から傾斜角度γ(本例ではγ=60
°)傾いた面を第2成長面25として露出させた第2種
結晶2を第1成長結晶10から作製する。そして,図5
に示すごとく該第2種結晶2の上記第2成長面25上に
SiC単結晶を成長させ第2成長結晶20を作製し,最
終的なSiC単結晶とする(連続成長工程)。
Next, as shown in FIGS. 3 and 4, n = 2
In the continuous growth step of <11-20, when the direction of the vector obtained by projecting the normal vector 251 of the second growth surface 25 onto the {0001} plane is the second tilt direction 253, <11-20
When rotated by β (β = 90 ° in this example) from the first inclination direction 153, which is the> direction, with <0001> as the rotation axis,
That is, having a second tilt direction 253 in the <1-100> direction,
And the inclination angle γ from the {0001} plane (γ = 60 in this example)
°) The second seed crystal 2 in which the inclined surface is exposed as the second growth surface 25 is produced from the first growth crystal 10. And FIG.
As shown in (1), a SiC single crystal is grown on the second growth surface 25 of the second seed crystal 2 to produce a second grown crystal 20, which is a final SiC single crystal (continuous growth step).

【0039】以下,本例につき詳細に説明する。本例
は,図1〜図7に示すごとく,SiC単結晶よりなる種
結晶上に昇華再析出法によりSiC単結晶を成長させ
て,SiC単結晶を製造する例である。また,本例は上
記のごとくN=2,即ち2回の成長工程を含む例であ
る。
Hereinafter, this example will be described in detail. In this example, as shown in FIGS. 1 to 7, a SiC single crystal is grown on a seed crystal made of a SiC single crystal by a sublimation reprecipitation method to produce a SiC single crystal. Further, this example is an example including N = 2, that is, two growth steps as described above.

【0040】まず,昇華再析出法により成長したSiC
単結晶を準備した。図7に示すごとく,SiC単結晶
は,主要な面方位として{0001}面と,{000
1}面に垂直な{1−100}面及び{11−20}面
とを有している。また,{0001}面に垂直な方向が
<0001>方向,{1−100}面に垂直な方向が<
1−100>方向,{11−20}面に垂直な方向が<
11−20>である。
First, SiC grown by the sublimation reprecipitation method
A single crystal was prepared. As shown in FIG. 7, the SiC single crystal has {0001} planes and {000} planes as main plane orientations.
It has a {1-100} plane and a {11-20} plane perpendicular to the 1} plane. In addition, the direction perpendicular to the {0001} plane is the <0001> direction, and the direction perpendicular to the {1-100} plane is the <0001> direction.
1-100> direction, the direction perpendicular to the {11-20} plane is <
11-20>.

【0041】図1に示すごとく,上記SiC単結晶の
{0001}面から<11−20>方向である第1傾斜
方向153へ傾斜角度α(α=60°)傾いた面を第1
成長面15として露出するように上記SiC単結晶を切
断し,さらにこの第1成長面15を加工,研磨した。ま
た,第1成長面15の表面を化学洗浄して付着物を除去
し,RIE(Reactive Ion Etchin
g),犠牲酸化により,切断・研磨に伴う加工変質層を
除去し,これを第1種結晶1とした。なお,第1種結晶
1の厚みは2mmである。
As shown in FIG. 1, a surface inclined by an inclination angle α (α = 60 °) from the {0001} plane of the SiC single crystal in the first inclination direction 153 which is the <11-20> direction is first
The SiC single crystal was cut so as to be exposed as the growth surface 15, and the first growth surface 15 was further processed and polished. Further, the surface of the first growth surface 15 is chemically cleaned to remove deposits, and RIE (Reactive Ion Etchin) is performed.
g) By sacrificial oxidation, the work-affected layer due to cutting and polishing was removed, and this was designated as the first seed crystal 1. The thickness of the first seed crystal 1 is 2 mm.

【0042】次に,図6に示すごとく,上記第1種結晶
1とSiC原料粉末75とをこれらが対向するように坩
堝6内に配置した。このとき,上記第1種結晶1は坩堝
6の蓋体65の内側面に接着剤を介して固定した。そし
て上記坩堝6を減圧不活性雰囲気中で2100〜240
0℃に加熱した。このとき,SiC原料粉末75側の温
度を第1種結晶1側の温度より20〜200℃高く設定
した。これにより,坩堝6内のSiC原料粉末75が加
熱により昇華し,該SiC原料粉末75より低温の第1
種結晶1上に堆積し,第1成長結晶10を得た(第1成
長工程)。
Next, as shown in FIG. 6, the first seed crystal 1 and the SiC raw material powder 75 were placed in the crucible 6 such that they face each other. At this time, the first seed crystal 1 was fixed to the inner surface of the lid 65 of the crucible 6 with an adhesive. Then, the crucible 6 is set to 2100 to 240 in a reduced pressure inert atmosphere.
Heated to 0 ° C. At this time, the temperature of the SiC raw material powder 75 side was set to 20 to 200 ° C. higher than the temperature of the first seed crystal 1 side. As a result, the SiC raw material powder 75 in the crucible 6 is sublimated by heating, and the first raw material at a temperature lower than that of the SiC raw material powder 75
A first grown crystal 10 was obtained by depositing on the seed crystal 1 (first growing step).

【0043】図2に示すごとく,上記第1成長結晶中1
0には,<0001>方向に平行及び直交するバーガー
スベクトルをもつ転位105が多数存在する。該転位は
第1種結晶1の第1成長面15に露出していた欠陥が上
記第1成長結晶10中に継承された結果生じたものであ
る。そして該転位105の方向はほとんど全てが第1傾
斜方向153に平行になっている。
As shown in FIG. 2, 1 in the first grown crystal
At 0, there are many dislocations 105 having Burgers vectors parallel and orthogonal to the <0001> direction. The dislocations are caused as a result of the defects exposed on the first growth surface 15 of the first seed crystal 1 being inherited in the first growth crystal 10. Almost all of the dislocations 105 are parallel to the first tilt direction 153.

【0044】次に,図3及び図4に示すごとく,<11
−20>方向である第1傾斜方向153から<0001
>を回転軸として>β(本例ではβ=90°)回転した
ところ,即ち<1−100>方向に第2傾斜方向253
を有し,かつ{0001}面から傾斜角度γ(本例では
γ=60°)傾いた面を第2成長面25として露出させ
た第2種結晶2を第1種結晶1と同様にして作製した。
なお,このときの第2種結晶の厚みは2mmとした。
Next, as shown in FIGS. 3 and 4, <11
From the first tilt direction 153, which is the −20> direction, to <0001
When> β (β = 90 ° in this example) is rotated about> as the rotation axis, that is, the second tilt direction 253 in the <1-100> direction.
And a second seed crystal 2 exposed as a second growth surface 25 having a tilt angle γ (γ = 60 ° in this example) from the {0001} plane as in the first seed crystal 1. It was made.
The thickness of the second seed crystal at this time was 2 mm.

【0045】次に,図6に示すごとく,この第2種結晶
2とSiC原料粉末75とをこれらが対向するように坩
堝6内に配置した。このとき,上記第2種結晶2は坩堝
6の蓋体65の内側面に接着剤を介して固定した。そし
て,上記坩堝6を減圧不活性雰囲気中で2100〜24
00℃に加熱した。このとき,SiC原料粉末75側の
温度を第2種結晶2側の温度より20〜200℃高く設
定した。これにより,坩堝6内のSiC原料粉末75が
加熱により昇華し,該SiC原料粉末75より低温の第
2種結晶2上に堆積し,第2成長結晶20を得た(連続
成長工程)。図6に示すごとく,上記第2成長結晶20
は,表面に欠陥をほとんど露出していない第2成長面2
5上に上記のようにして結晶を成長させたものである。
そのため,第2成長結晶20中にも転位及び欠陥はほと
んど継承されず,高品質であった。
Next, as shown in FIG. 6, the second seed crystal 2 and the SiC raw material powder 75 were placed in the crucible 6 so that they face each other. At this time, the second seed crystal 2 was fixed to the inner surface of the lid 65 of the crucible 6 via an adhesive. Then, the crucible 6 is set to 2100-24 in a reduced pressure inert atmosphere.
Heated to 00 ° C. At this time, the temperature of the SiC raw material powder 75 side was set to 20 to 200 ° C. higher than the temperature of the second seed crystal 2 side. As a result, the SiC raw material powder 75 in the crucible 6 was sublimated by heating and deposited on the second seed crystal 2 at a temperature lower than that of the SiC raw material powder 75 to obtain the second grown crystal 20 (continuous growth step). As shown in FIG. 6, the second grown crystal 20
Is the second growth surface 2 with almost no defects exposed on the surface.
The crystal was grown on the No. 5 as described above.
Therefore, dislocations and defects were hardly inherited in the second grown crystal 20, and the quality was high.

【0046】次に,上記のようにして作製したSiC単
結晶中に含まれる欠陥密度を調べるために,上記SiC
単結晶から作製したC面基板にKOHエッチングを施
し,これによって生じたエッチピット数を測定した。そ
の結果,転位に対応するエッチピット数は,5×102
〜1×103/cm2であり,非常に少なかった。
Next, in order to investigate the defect density contained in the SiC single crystal produced as described above, the above SiC
The C-plane substrate made of a single crystal was subjected to KOH etching, and the number of etch pits generated by this was measured. As a result, the number of etch pits corresponding to dislocations is 5 × 10 2.
It was 1 × 10 3 / cm 2 , which was very small.

【0047】以下,本例の作用効果につき説明する。本
例の第1成長工程においては,{0001}面から,<
11−20>方向へ傾斜角度60°傾いた面を第1成長
面15として露出させた第1種結晶1を作製して,該第
1種結晶1の上記第1成長面15上にSiC単結晶を成
長させ第1成長結晶10を作製している。そのため,上
記第1成長結晶10中には第1成長面15の表面から継
承される転位105が多数存在するが,該転位105の
方向の大部分を第1成長面15の法線ベクトル151を
{0001}面に投影したベクトルの方向である第1傾
斜方向153に略平行な方向にそろえることができる。
The operation and effect of this example will be described below. In the first growth step of this example, from the {0001} plane,
11-20> The first seed crystal 1 in which a surface inclined at an inclination angle of 60 ° is exposed as the first growth surface 15 is prepared, and a SiC single crystal is formed on the first growth surface 15 of the first seed crystal 1. The crystal is grown to produce the first grown crystal 10. Therefore, a large number of dislocations 105 inherited from the surface of the first growth surface 15 exist in the first growth crystal 10, but most of the dislocations 105 in the direction of the dislocations 105 are defined by the normal vector 151 of the first growth surface 15. It is possible to align in a direction substantially parallel to the first tilt direction 153, which is the direction of the vector projected on the {0001} plane.

【0048】次に,第2成長工程においては,<11−
20>方向である第1傾斜方向153から<0001>
を回転軸として90°回転したところに第2傾斜方向2
53,即ち<1−100>方向を有し,かつ{000
1}面から傾斜角度60°傾いた面を第2成長面25と
して露出させた第2種結晶2を第1種結晶1と同様にし
て作製した。そのため,上記のように第1成長結晶10
から第2傾斜方向253に{0001}面より傾斜角度
60°傾いた面を第2成長面25として露出させたと
き,この第2成長面の表面には,第(n−1)成長結晶
中に存在する転位はほとんど露出しない。上述したごと
く,上記第1成長結晶10中の転位105の大部分は
{0001}面内の第1傾斜方向153に平行に存在し
ており,上記転位105が第2成長面25に露出する確
率は小さいからである。
Next, in the second growth step, <11-
20> direction from the first tilt direction 153 to <0001>
The second tilt direction 2
53, ie, <1-100> direction, and {000
A second seed crystal 2 in which a surface inclined at an inclination angle of 60 ° from the 1} plane was exposed as a second growth surface 25 was prepared in the same manner as the first seed crystal 1. Therefore, as described above, the first grown crystal 10
When a surface inclined at an inclination angle of 60 ° from the {0001} plane in the second inclination direction 253 is exposed as the second growth surface 25, the surface of this second growth surface is Almost no dislocations existing in are exposed. As described above, most of the dislocations 105 in the first grown crystal 10 exist in parallel to the first tilt direction 153 in the {0001} plane, and the probability that the dislocations 105 are exposed on the second growth surface 25. Because is small.

【0049】続いて,この第2種結晶2を上記第1種結
晶と同様にして成長させ,図5に示すごとく該第2種結
晶2の上記第2成長面25上にSiC単結晶を成長させ
第2成長結晶20を作製し,最終的なSiC単結晶とし
た。上述したごとく,上記第2成長面25の表面には転
位及び欠陥はほとんど露出していないため,第2成長結
晶10中には第2成長面25から転位が継承されること
はほとんどなく,転位及び欠陥はほとんど発生せず,高
品質である。
Subsequently, the second seed crystal 2 is grown in the same manner as the first seed crystal, and a SiC single crystal is grown on the second growth surface 25 of the second seed crystal 2 as shown in FIG. Then, the second grown crystal 20 was produced to be a final SiC single crystal. As described above, since the dislocations and defects are barely exposed on the surface of the second growth surface 25, the dislocations are rarely inherited from the second growth surface 25 in the second growth crystal 10, and the dislocations are hardly inherited. In addition, there are almost no defects and the quality is high.

【0050】また,本例においては,上記第1成長面1
5及び第2成長面25上にSiC単結晶を成長させる前
に,付着物や加工変質層を取り除いている。そのため,
上記付着物や加工変質層に起因し各成長面15,25か
ら各成長結晶10,20に継承される転位を防ぐことが
できる。
In this example, the first growth surface 1
The deposits and work-affected layers are removed before the SiC single crystal is grown on the No. 5 and second growth surface 25. for that reason,
It is possible to prevent dislocations that are inherited from the growth surfaces 15 and 25 to the grown crystals 10 and 20 due to the deposits and work-affected layers.

【0051】また,上記各種結晶の厚みを1mm以上に
している。そのため,上記各種結晶1,2と種結晶が接
触している蓋体65との熱膨張差による応力によって成
長結晶10,20に生じる転位及び積層欠陥を防止する
ことができる。
Further, the thickness of each of the various crystals is set to 1 mm or more. Therefore, it is possible to prevent dislocations and stacking faults occurring in the grown crystals 10 and 20 due to the stress due to the difference in thermal expansion between the various crystals 1 and 2 and the lid 65 in contact with the seed crystal.

【0052】このように,本例によれば,欠陥及び転位
をほとんど含有せず,高品質なSiC単結晶及びその製
造方法を提供することができる。
As described above, according to this example, it is possible to provide a high-quality SiC single crystal containing few defects and dislocations and a method for producing the same.

【0053】(実施例2)本例では,実施例1の第2成
長工程における傾斜角度γを90°に変更してSiC単
結晶を作製した例を示す。まず,実施例1と同様のSi
C単結晶を準備した。このSiC単結晶から実施例1と
同様にして第1種結晶1を作製した。なお,第1種結晶
1の厚みは2mmである。そして,さらに実施例1と同
様にして第1成長結晶10を得た(第1成長工程)。
(Embodiment 2) This embodiment shows an example in which the tilt angle γ in the second growth step of Embodiment 1 is changed to 90 ° to produce a SiC single crystal. First, the same Si as in the first embodiment
A C single crystal was prepared. A first seed crystal 1 was produced from this SiC single crystal in the same manner as in Example 1. The thickness of the first seed crystal 1 is 2 mm. Then, the first grown crystal 10 was obtained in the same manner as in Example 1 (first growth step).

【0054】次に,図3及び図4に示すごとく,<11
−20>方向である第1傾斜方向153から<0001
>を回転軸としてβ(本例ではβ=90°)回転したと
ころ,即ち<1−100>方向に第2傾斜方向253を
有し,かつ{0001}面から傾斜角度γ(本例ではγ
=90°)傾いた面を第2成長面25として露出させた
第2種結晶2を第1種結晶1と同様にして作製した。そ
して,この第2種結晶2を上記第1種結晶と同様にして
成長させ,図5に示すごとく該第2種結晶2の上記第2
成長面25上にSiC単結晶を成長させ第2成長結晶2
0を作製し,最終的なSiC単結晶とした(連続成長工
程)。本例においても,実施例1と同様にマイクロパイ
プ欠陥,転位等が非常に少なく,高品質のSiC単結晶
を得ることができた。
Next, as shown in FIGS. 3 and 4, <11
From the first tilt direction 153, which is the −20> direction, to <0001
Is rotated by β (β = 90 ° in this example), that is, it has a second inclination direction 253 in the <1-100> direction, and an inclination angle γ (γ in this example) from the {0001} plane.
= 90 °) A second seed crystal 2 having a tilted surface exposed as a second growth surface 25 was prepared in the same manner as the first seed crystal 1. Then, the second seed crystal 2 is grown in the same manner as the first seed crystal, and the second seed crystal 2 of the second seed crystal 2 is grown as shown in FIG.
The second growth crystal 2 is formed by growing a SiC single crystal on the growth surface 25.
0 was produced as the final SiC single crystal (continuous growth step). Also in this example, similar to Example 1, micropipe defects, dislocations, etc. were very small, and a high-quality SiC single crystal could be obtained.

【0055】(実施例3)本例では,実施例1の第1成
長工程及び第2成長工程における傾斜角度α及びγを共
に90°としてSiC単結晶を作製した例を示す。ま
ず,実施例1と同様のSiC単結晶を準備した。そし
て,上記SiC単結晶の{0001}面から<11−2
0>方向である第1傾斜方向153へ傾斜角度α(α=
90°)傾いた面を第1成長面15として露出するよう
に上記SiC単結晶を切断し,さらにこの第1成長面1
5を加工,研磨した。また,実施例1と同様にして第1
成長面15の表面を化学洗浄して付着物を除去し,RI
E(Reactive Ion Etching),犠
牲酸化により,切断・研磨に伴う加工変質層を除去し,
これを第1種結晶1とした。なお,第1種結晶1の厚み
は2mmである。続いて,さらに実施例1と同様にして
第1成長結晶10を得た(第1成長工程)。
(Embodiment 3) This embodiment shows an example in which a SiC single crystal is produced with the inclination angles α and γ in the first and second growth steps of Embodiment 1 being both 90 °. First, the same SiC single crystal as in Example 1 was prepared. From the {0001} plane of the above SiC single crystal, <11-2
Inclination angle α (α =
The SiC single crystal is cut so that the surface inclined at 90 °) is exposed as the first growth surface 15, and the first growth surface 1 is cut.
5 was processed and polished. In addition, in the same manner as in Example 1, the first
The surface of the growth surface 15 is chemically cleaned to remove deposits, and RI
E (Reactive Ion Etching), sacrificial oxidation to remove the work-affected layer due to cutting and polishing,
This was designated as a first seed crystal 1. The thickness of the first seed crystal 1 is 2 mm. Subsequently, the first grown crystal 10 was obtained in the same manner as in Example 1 (first growth step).

【0056】次に,図3及び図4に示すごとく,<11
−20>方向である第1傾斜方向153から<0001
>を回転軸としてβ(本例ではβ=90°)回転したと
ころ,即ち<1−100>方向に第2傾斜方向253を
有し,かつ{0001}面から傾斜角度γ(本例ではγ
=90°)傾いた面を第2成長面25として露出させた
第2種結晶2を第1種結晶1と同様にして作製した。そ
して,この第2種結晶2を上記第1種結晶と同様にして
成長させ,図5に示すごとく該第2種結晶2の上記第2
成長面25上にSiC単結晶を成長させ第2成長結晶2
0を作製し,最終的なSiC単結晶とした(連続成長工
程)。本例においても,実施例1及び2と同様にマイク
ロパイプ欠陥,転位等が非常に少なく,高品質のSiC
単結晶を得ることができた。
Next, as shown in FIGS. 3 and 4, <11
From the first tilt direction 153, which is the −20> direction, to <0001
Is rotated by β (β = 90 ° in this example), that is, it has a second inclination direction 253 in the <1-100> direction, and an inclination angle γ (γ in this example) from the {0001} plane.
= 90 °) A second seed crystal 2 having a tilted surface exposed as a second growth surface 25 was prepared in the same manner as the first seed crystal 1. Then, the second seed crystal 2 is grown in the same manner as the first seed crystal, and the second seed crystal 2 of the second seed crystal 2 is grown as shown in FIG.
The second growth crystal 2 is formed by growing a SiC single crystal on the growth surface 25.
0 was produced as the final SiC single crystal (continuous growth step). Also in this example, similar to Examples 1 and 2, micropipe defects, dislocations, etc. are very small and high quality SiC is obtained.
A single crystal could be obtained.

【0057】(実施例4)本例においては,N=4,即
ち成長工程を4回行ってSiC単結晶を作製した例を示
す。まず,実施例1と同様のSiC単結晶を準備した。
第1成長工程においては,実施例1〜3と同様にして上
記SiC単結晶より{0001}面から<11−20>
方向である第1傾斜方向153へ傾斜角度α(本例では
α=90°)傾いた面を第1成長面15として露出させ
た第1種結晶1を作製し,該第1種結晶1の第1成長面
15上にSiC単結晶を成長させて第1成長結晶10を
得た。
(Embodiment 4) In this embodiment, an example in which N = 4, that is, a growth step is performed four times to produce a SiC single crystal is shown. First, the same SiC single crystal as in Example 1 was prepared.
In the first growth step, similarly to the first to third embodiments, from the SiC single crystal, from the {0001} plane, <11-20>
The first seed crystal 1 in which the surface inclined at the inclination angle α (α = 90 ° in this example) in the first inclination direction 153, which is the direction, is exposed as the first growth surface 15 is prepared. A SiC single crystal was grown on the first growth surface 15 to obtain a first grown crystal 10.

【0058】次に,n=2である第2成長工程において
は,実施例1〜3と同様に,<11−20>方向である
第1傾斜方向153から<0001>を回転軸としてβ
(本例ではβ=90°)回転したところ,即ち<1−1
00>方向に第2傾斜方向253を有し,かつ{000
1}面から傾斜角度γ(本例ではγ=90°)傾いた面
を第2成長面25として露出させた第2種結晶2を第1
成長結晶10から作製する。そして,該第2種結晶2の
第2成長面25上にSiC単結晶を成長させて第1成長
結晶20を得た。
Next, in the second growth step with n = 2, as in the first to third embodiments, β is set from the first tilt direction 153, which is the <11-20> direction, to the rotation axis from <0001>.
When rotated (β = 90 ° in this example), that is, <1-1
00> direction has a second inclination direction 253, and {000
The second seed crystal 2 exposed as a second growth surface 25 is a surface inclined at an inclination angle γ (γ = 90 ° in this example) from the 1} plane.
It is made from the grown crystal 10. Then, a SiC single crystal was grown on the second growth surface 25 of the second seed crystal 2 to obtain the first grown crystal 20.

【0059】次に,n=3である第3成長工程において
は,<1−100>方向である第2傾斜方向153から
<0001>を回転軸として90°回転したところ,即
ち<11−20>方向に第3傾斜方向を有し,かつ{0
001}面から傾斜角度3°傾いた面を第3成長面とし
て露出させた第3種結晶を第2種結晶2と同様にして作
製した。なお,このときの第3種結晶の厚みは2mmと
した。そして,この第3種結晶を上記第1及び第2種結
晶と同様に成長させ,第3成長結晶を作製した。第3成
長結晶は,マイクロパイプ欠陥,転位等が非常に少な
く,高品質であった。
Next, in the third growth step in which n = 3, a 90 ° rotation about <0001> from the second tilt direction 153, which is the <1-100> direction, ie, <11-20. Has a third tilt direction in the> direction and {0
A third seed crystal in which a surface inclined at an inclination angle of 3 ° from the 001} plane was exposed as a third growth surface was prepared in the same manner as the second seed crystal 2. The thickness of the third seed crystal at this time was 2 mm. Then, this third seed crystal was grown in the same manner as the first and second seed crystals to produce a third grown crystal. The third grown crystal was of high quality with very few micropipe defects and dislocations.

【0060】次に,n=4である第4成長工程において
は,<11−20>方向である第3傾斜方向から<00
01>を回転軸として90°回転したところ,即ち<1
−100>方向に第4傾斜方向を有し,かつ{000
1}面から傾斜角度3°傾いた面を第4成長面として露
出させた第4種結晶を第3種結晶と同様にして作製し
た。なお,このときの第4種結晶の厚みは2mmとし
た。そして,この第4種結晶を上記第1〜第3種結晶と
同様に成長させ,第4成長結晶を作製した。第4成長結
晶は,マイクロパイプ欠陥,転位等が非常に少なく,第
3成長結晶と同等以上に高品質であった。
Next, in the fourth growth step in which n = 4, <00 from the third tilt direction which is the <11-20> direction.
When rotated by 90 ° with 01> as the axis of rotation, that is <1
Has a fourth tilt direction in the −100> direction, and {000
A fourth seed crystal in which a surface inclined at an inclination angle of 3 ° from the 1} plane was exposed as a fourth growth surface was prepared in the same manner as the third seed crystal. The thickness of the fourth seed crystal at this time was 2 mm. Then, this fourth seed crystal was grown in the same manner as the first to third seed crystals to produce a fourth grown crystal. The fourth grown crystal had very few micropipe defects, dislocations, etc., and was of the same or higher quality as the third grown crystal.

【0061】(実施例5)本例では,エピタキシャル膜
付きSiCウエハを作製する例を示す。本例のエピタキ
シャル膜付きSiCウエハ4の製造方法は,図8に示す
ごとく,SiC単結晶より成膜面35を露出するSiC
ウエハ3を作製し,該SiCウエハ3の上記成膜面35
上にエピタキシャル膜30を成膜する。
(Embodiment 5) In this embodiment, an example of producing a SiC wafer with an epitaxial film is shown. As shown in FIG. 8, the method of manufacturing the SiC wafer 4 with the epitaxial film of the present example is performed by exposing the film formation surface 35 from the SiC single crystal.
A wafer 3 is manufactured, and the film formation surface 35 of the SiC wafer 3 is formed.
An epitaxial film 30 is formed on top.

【0062】まず,実施例3で得られた高品質のSiC
単結晶20を準備した。このSiC単結晶20の{00
01}面から<11−20>方向へ5°傾いた面,{1
−100}面,及び{11−20}面を成膜面として露
出した,3種類のSiCウエハを作製した。このSiC
ウエハの成膜面に,上記実施例1における第1種結晶の
作製時と同様に加工,研磨,化学洗浄,RIE,犠牲酸
化等の表面処理を施した。
First, the high-quality SiC obtained in Example 3 was used.
A single crystal 20 was prepared. {00 of this SiC single crystal 20
A plane inclined 5 ° from the 01} plane in the <11-20> direction, {1
Three types of SiC wafers were prepared, in which the −100} plane and the {11-20} plane were exposed as film formation surfaces. This SiC
The film-forming surface of the wafer was subjected to surface treatments such as processing, polishing, chemical cleaning, RIE, and sacrificial oxidation in the same manner as in the production of the first seed crystal in Example 1 above.

【0063】そして,図8にしめすごとく,化学気相堆
積法により上記SiCウエハ3の成膜面35上にエピタ
キシャル膜30を成膜し,エピタキシャル膜付きSiC
ウエハ4を作製した。具体的には,原料ガスとしてSi
4ガス及びC38ガスを5ミリリットル/分にて,ま
たキャリアガスとしてH2ガスを10リットル/分にて
それぞれ反応管に導入し,SiCウエハを保持している
サセプタの温度を1550℃,雰囲気圧を10kPaと
して成膜を行った。
Then, as shown in FIG. 8, the epitaxial film 30 is formed on the film forming surface 35 of the SiC wafer 3 by the chemical vapor deposition method, and the SiC with the epitaxial film is formed.
Wafer 4 was produced. Specifically, Si is used as a source gas.
H 4 gas and C 3 H 8 gas were introduced into the reaction tube at 5 ml / min and H 2 gas as a carrier gas at 10 l / min, respectively, and the temperature of the susceptor holding the SiC wafer was set at 1550. The film was formed at a temperature of 10 ° C. and an atmospheric pressure of 10 kPa.

【0064】本例におけるエピタキシャル膜30中のマ
イクロパイプ欠陥,転位,インクルージョン等の欠陥密
度は非常に小さく,高品質のエピタキシャル膜付きSi
Cウエハ4を得ることができた。
The defect density of micropipe defects, dislocations, inclusions, etc. in the epitaxial film 30 in this example is very small, and high quality Si with an epitaxial film is provided.
C wafer 4 could be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1〜5にかかる,第1成長面の面方位を
示す説明図。
FIG. 1 is an explanatory view showing a plane orientation of a first growth surface according to Examples 1 to 5.

【図2】実施例1〜5にかかる,第1成長結晶の成長方
向及び転位の方向を示す説明図。
FIG. 2 is an explanatory diagram showing a growth direction and a dislocation direction of a first grown crystal according to Examples 1 to 5.

【図3】実施例1〜5にかかる,第1傾斜方向と第2傾
斜方向の関係を示す説明図。
FIG. 3 is an explanatory diagram showing a relationship between a first tilt direction and a second tilt direction according to Examples 1 to 5.

【図4】実施例1〜5にかかる,第2成長面の面方位を
示す説明図。
FIG. 4 is an explanatory view showing a plane orientation of a second growth surface according to Examples 1 to 5.

【図5】実施例1〜5にかかる,第2成長結晶の成長方
向を示す説明図。
FIG. 5 is an explanatory diagram showing a growth direction of a second grown crystal according to Examples 1 to 5.

【図6】実施例1〜5にかかる,昇華再析出法によるS
iC単結晶の成長方法を示す説明図。
FIG. 6 is a diagram illustrating an example of S by sublimation reprecipitation method according to Examples 1 to 5.
Explanatory drawing which shows the growth method of iC single crystal.

【図7】実施例1にかかる,SiC単結晶の主要な面方
位を示す説明図。
FIG. 7 is an explanatory diagram showing main plane orientations of a SiC single crystal according to Example 1.

【図8】実施例5にかかる,エピタキシャル膜付きSi
Cウエハの説明図。
FIG. 8: Si with an epitaxial film according to Example 5
Explanatory drawing of C wafer.

【符号の説明】[Explanation of symbols]

1...第1種結晶, 15...第1成長面, 151...法線ベクトル(第1成長工程), 153...第1傾斜方向, 10...第1成長結晶, 2...第2種結晶, 25...第2成長面, 251...法線ベクトル(第2成長工程), 253...第2傾斜方向, 20...第2成長結晶, 3...SiCウエハ, 35...成膜面, 30...エピタキシャル膜, 4...エピタキシャル膜付きSiCウエハ, 1. . . First seed crystal, 15. . . First growth plane, 151. . . Normal vector (first growth step), 153. . . First tilt direction, 10. . . First grown crystal, 2. . . Second seed crystal, 25. . . Second growth plane, 251. . . Normal vector (second growth step), 253. . . Second tilt direction, 20. . . Second grown crystal, 3. . . SiC wafer, 35. . . Deposition surface, 30. . . Epitaxial film, 4. . . SiC wafer with epitaxial film,

───────────────────────────────────────────────────── フロントページの続き (72)発明者 近藤 宏行 愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内 Fターム(参考) 4G077 AA02 BE08 DA02 DB04 DB07 EA02 ED05 HA12 SA04 5F045 AA03 AB06 AC01 AC07 AD18 AE23 AF02 AF13 BB12 HA03   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Hiroyuki Kondo             1-1, Showa-cho, Kariya city, Aichi stock market             Inside the company DENSO F term (reference) 4G077 AA02 BE08 DA02 DB04 DB07                       EA02 ED05 HA12 SA04                 5F045 AA03 AB06 AC01 AC07 AD18                       AE23 AF02 AF13 BB12 HA03

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 六方晶のSiC単結晶よりなるSiC種
結晶上にSiC単結晶を成長させてバルク状のSiC単
結晶を製造する製造方法において,該製造方法はN回
(NはN≧2の自然数)の成長工程を含み,各成長工程
を第n成長工程(nは自然数であって1から始まりNで
終わる序数)として表した場合,n=1である第1成長
工程においては,{0001}面から傾斜角度1°〜9
0°傾いた面を第1成長面として露出させた第1種結晶
を作製して,該第1種結晶の上記第1成長面上にSiC
単結晶を成長させ第1成長結晶を作製し,n=2,
3,...,Nである連続成長工程においては,第n成
長面の法線ベクトルを{0001}面に投影したベクト
ルの方向を第n傾斜方向とした場合に,第(n−1)傾
斜方向から<0001>を回転軸として45°〜135
°回転したところに第n傾斜方向を有し,かつ{000
1}面から傾斜角度1°〜90°傾いた面を第n成長面
として露出させた第n種結晶を第(nー1)成長結晶か
ら作製して,該第n種結晶の上記第n成長面上にSiC
単結晶を成長させ第n成長結晶を作製することを特徴と
するSiC単結晶の製造方法。
1. A manufacturing method for manufacturing a bulk SiC single crystal by growing an SiC single crystal on a SiC seed crystal composed of a hexagonal SiC single crystal, wherein the manufacturing method is N times (N is N ≧ 2). (N is a natural number), and each growth step is represented as an nth growth step (n is a natural number and an ordinal number starting from 1 and ending with N), in the first growth step where n = 1, { Inclination angle 1 ° to 9 from the 0001} plane
A first seed crystal having a surface inclined by 0 ° exposed as a first growth surface is prepared, and SiC is formed on the first growth surface of the first seed crystal.
A single crystal is grown to make a first grown crystal, and n = 2.
3 ,. . . , N in the continuous growth step, if the direction of the vector obtained by projecting the normal vector of the n-th growth surface onto the {0001} plane is the n-th tilt direction, then from the (n-1) -th tilt direction, <0001 > As the rotation axis 45 ° to 135
It has the n-th tilting direction when rotated by
The n-th seed crystal in which a surface tilted at an inclination angle of 1 ° to 90 ° from the 1} plane is exposed as the n-th growth surface is prepared from the (n-1) -th grown crystal, and SiC on the growth surface
A method for producing a SiC single crystal, which comprises growing a single crystal to produce an nth grown crystal.
【請求項2】 請求項1において,上記第n成長面(n
=1,2,...,N)と{0001}面との傾斜角度
は,70°未満であることを特徴とするSiC単結晶の
製造方法。
2. The n-th growth surface (n
= 1, 2 ,. . . , N) and the tilt angle between the {0001} plane and the {0001} plane is less than 70 °.
【請求項3】 請求項1又は2において,上記第n成長
面(n=1,2,...,N)と{0001}面との傾
斜角度は,10°以上であることを特徴とするSiC単
結晶の製造方法。
3. The tilt angle between the nth growth plane (n = 1, 2, ..., N) and the {0001} plane is 10 ° or more according to claim 1 or 2. A method for producing a SiC single crystal.
【請求項4】 請求項1において,n=Nである第N成
長工程においては,上記第N成長面と{0001}面と
の傾斜角度が20°以下であることを特徴とするSiC
単結晶の製造方法。
4. The SiC according to claim 1, wherein in the Nth growth step where n = N, the inclination angle between the Nth growth plane and the {0001} plane is 20 ° or less.
Method for producing single crystal.
【請求項5】 請求項1又は4において,第n成長工程
(但し,n≠N)においては,上記第n成長面と{00
01}面との傾斜角度が60°〜90°である成長工程
を1回以上有することを特徴とするSiC単結晶の製造
方法。
5. The n-th growth step (where n ≠ N) according to claim 1 or 4, wherein the n-th growth surface and {00
A method for producing a SiC single crystal, comprising one or more growth steps having an inclination angle of 60 ° to 90 ° with respect to the 01} plane.
【請求項6】 請求項1〜5のいずれか1項において,
上記各種結晶上でのSiC単結晶の成長には昇華再析出
法を用いることを特徴とするSiC単結晶の製造方法。
6. The method according to any one of claims 1 to 5,
A method for producing a SiC single crystal, characterized in that a sublimation reprecipitation method is used for growing the SiC single crystal on the above various crystals.
【請求項7】 請求項1〜6のいずれか1項において,
上記各種結晶の厚みは,1mm以上であることを特徴と
するSiC単結晶の製造方法。
7. The method according to any one of claims 1 to 6,
The method for producing a SiC single crystal, wherein the thickness of each of the various crystals is 1 mm or more.
【請求項8】 請求項1〜7のいずれか1項に記載の製
造方法により作製されたことを特徴とするSiC単結
晶。
8. A SiC single crystal manufactured by the manufacturing method according to claim 1.
【請求項9】 請求項1〜7のいずれか1項に記載の製
造方法により作製されたSiC単結晶より成膜面を露出
するSiCウエハを作製し,該SiCウエハの上記成膜
面上にエピタキシャル膜を成膜することを特徴とするエ
ピタキシャル膜付きSiCウエハの製造方法。
9. A SiC wafer having a film-forming surface exposed from the SiC single crystal produced by the manufacturing method according to claim 1, is formed, and is formed on the film-forming surface of the SiC wafer. A method for manufacturing an SiC wafer with an epitaxial film, which comprises forming an epitaxial film.
【請求項10】 請求項9において,上記成膜面は,
{0001}面からオフセット角度0.5°〜20°の
面,{1−100}面からオフセット角度20°以下の
面,又は{11−20}面からオフセット角度20°以
下の面であることを特徴とするエピタキシャル膜付きS
iCウエハの製造方法。
10. The film-forming surface according to claim 9,
A surface having an offset angle of 0.5 ° to 20 ° from the {0001} plane, a surface having an offset angle of 20 ° or less from the {1-100} plane, or a surface having an offset angle of 20 ° or less from the {11-20} plane. S with an epitaxial film
iC wafer manufacturing method.
【請求項11】 請求項9又は10に記載の製造方法に
より作製されたことを特徴とするエピタキシャル膜付き
SiCウエハ。
11. A SiC wafer with an epitaxial film, which is manufactured by the manufacturing method according to claim 9.
【請求項12】 請求項11に記載のエピタキシャル膜
付きSiCウエハを用いたことを特徴とするSiC電子
デバイス。
12. A SiC electronic device using the SiC wafer with an epitaxial film according to claim 11.
JP2002128725A 2001-10-12 2002-04-30 Method for producing SiC single crystal and method for producing SiC wafer with epitaxial film Expired - Lifetime JP3776374B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002128725A JP3776374B2 (en) 2002-04-30 2002-04-30 Method for producing SiC single crystal and method for producing SiC wafer with epitaxial film
DE10247017A DE10247017B4 (en) 2001-10-12 2002-10-09 SiC single crystal, a method of producing a SiC single crystal, SiC wafers with an epitaxial film, and a method of producing a SiC wafer having an epitaxial film
SE0202992A SE523917C2 (en) 2001-10-12 2002-10-10 Single crystal of SiC, method of producing a single crystal of SiC, SiC disc with epitaxial layer, method of producing SiC disc with epitaxial layer and electronic device based on SiC
US10/268,103 US6890600B2 (en) 2001-10-12 2002-10-10 SiC single crystal, method for manufacturing SiC single crystal, SiC wafer having an epitaxial film, method for manufacturing SiC wafer having an epitaxial film, and SiC electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002128725A JP3776374B2 (en) 2002-04-30 2002-04-30 Method for producing SiC single crystal and method for producing SiC wafer with epitaxial film

Publications (2)

Publication Number Publication Date
JP2003321298A true JP2003321298A (en) 2003-11-11
JP3776374B2 JP3776374B2 (en) 2006-05-17

Family

ID=29542383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002128725A Expired - Lifetime JP3776374B2 (en) 2001-10-12 2002-04-30 Method for producing SiC single crystal and method for producing SiC wafer with epitaxial film

Country Status (1)

Country Link
JP (1) JP3776374B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006013005A (en) * 2004-06-23 2006-01-12 Denso Corp Silicon carbide semiconductor substrate and manufacturing method therefor
WO2006090432A1 (en) * 2005-02-22 2006-08-31 Neomax Co., Ltd. PROCESS FOR PRODUCING SiC SINGLE-CRYSTAL SUBSTRATE
JP2006225232A (en) * 2005-02-21 2006-08-31 Nippon Steel Corp Method for producing silicon carbide single crystal, silicon carbide single crystal ingot, silicon carbide single crystal substrate, silicon carbide epitaxial wafer and thin film epitaxial wafer
JP2008515748A (en) * 2004-10-04 2008-05-15 クリー インコーポレイテッド Low 1c screw dislocation 3 inch silicon carbide wafer
JP2009164571A (en) * 2007-12-11 2009-07-23 Sumitomo Electric Ind Ltd Silicon carbide semiconductor device and method of manufacturing the same
JP2010076967A (en) * 2008-09-25 2010-04-08 Sumitomo Electric Ind Ltd Production method of silicon carbide substrate, and silicon carbide substrate
JP2010111540A (en) * 2008-11-06 2010-05-20 Showa Denko Kk Method for growing silicon carbide single crystal, seed crystal, and silicon carbide single crystal
JP2012046377A (en) * 2010-08-26 2012-03-08 Toyota Central R&D Labs Inc METHOD FOR MANUFACTURING SiC SINGLE CRYSTAL
WO2012169465A1 (en) * 2011-06-05 2012-12-13 株式会社豊田中央研究所 SiC SINGLE CRYSTAL AND METHOD FOR MANUFACTURING SAME, SiC WAFER, AND SEMICONDUCTOR DEVICE
WO2013081164A1 (en) * 2011-12-02 2013-06-06 株式会社豊田中央研究所 SiC SINGLE CRYSTAL, SiC WAFER, AND SEMICONDUCTOR DEVICE
WO2014034081A1 (en) * 2012-08-26 2014-03-06 国立大学法人名古屋大学 Crystal production device, production method for sic single crystals, and sic single crystal
JP2014108916A (en) * 2012-12-04 2014-06-12 Sumitomo Electric Ind Ltd Production method of silicon carbide substrate
JP2014162649A (en) * 2013-02-21 2014-09-08 Mitsubishi Electric Corp SiC SUBSTRATE, PRODUCTION METHOD OF SiC SUBSTRATE, AND SiC EPITAXIAL SUBSTRATE
JP2014227319A (en) * 2013-05-23 2014-12-08 株式会社豊田中央研究所 Sic single crystal and method for manufacturing the same
WO2019088221A1 (en) * 2017-11-01 2019-05-09 セントラル硝子株式会社 Method for producing silicon carbide single crystal
DE112017006543T5 (en) 2016-12-26 2019-09-26 Denso Corporation SiC wafer and method for producing the SiC wafer
WO2021025084A1 (en) 2019-08-06 2021-02-11 学校法人関西学院 SiC SEED CRYSTAL AND METHOD FOR PRODUCING SAME, SiC INGOT PRODUCED BY GROWING SAID SiC SEED CRYSTAL AND METHOD FOR PRODUCING SAME, AND SiC WAFER PRODUCED FROM SAID SiC INGOT AND SiC WAFER WITH EPITAXIAL FILM AND METHODS RESPECTIVELY FOR PRODUCING SAID SiC WAFER AND SAID SiC WAFER WITH EPITAXIAL FILM

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08143396A (en) * 1994-11-21 1996-06-04 Nippon Steel Corp Method for growing silicon carbide single crystal
JPH10182297A (en) * 1996-12-24 1998-07-07 Sumitomo Metal Mining Co Ltd Method for growing sic single crystal
JP2001144292A (en) * 1999-11-17 2001-05-25 Denso Corp Silicon carbide semiconductor device
JP2001181095A (en) * 1999-12-22 2001-07-03 Shikusuon:Kk Silicon carbide single crystal and its growing method
JP2003277193A (en) * 2002-03-22 2003-10-02 Toyota Central Res & Dev Lab Inc SiC WAFER WITH EPITAXIAL FILM, METHOD FOR PRODUCING THE SAME, AND SiC ELECTRONIC DEVICE
JP2003300797A (en) * 2002-04-04 2003-10-21 Nippon Steel Corp Silicon carbide single crystal substrate, silicon carbide single crystal epitaxial substrate and method for manufacturing the epitaxial substrate

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08143396A (en) * 1994-11-21 1996-06-04 Nippon Steel Corp Method for growing silicon carbide single crystal
JPH10182297A (en) * 1996-12-24 1998-07-07 Sumitomo Metal Mining Co Ltd Method for growing sic single crystal
JP2001144292A (en) * 1999-11-17 2001-05-25 Denso Corp Silicon carbide semiconductor device
JP2001181095A (en) * 1999-12-22 2001-07-03 Shikusuon:Kk Silicon carbide single crystal and its growing method
JP2003277193A (en) * 2002-03-22 2003-10-02 Toyota Central Res & Dev Lab Inc SiC WAFER WITH EPITAXIAL FILM, METHOD FOR PRODUCING THE SAME, AND SiC ELECTRONIC DEVICE
JP2003300797A (en) * 2002-04-04 2003-10-21 Nippon Steel Corp Silicon carbide single crystal substrate, silicon carbide single crystal epitaxial substrate and method for manufacturing the epitaxial substrate

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006013005A (en) * 2004-06-23 2006-01-12 Denso Corp Silicon carbide semiconductor substrate and manufacturing method therefor
JP2012214379A (en) * 2004-10-04 2012-11-08 Cree Inc LOW 1c SCREW DISLOCATION 3 INCH SILICON CARBIDE WAFER
US8785946B2 (en) 2004-10-04 2014-07-22 Cree, Inc. Low 1C screw dislocation 3 inch silicon carbide wafer
JP2008515748A (en) * 2004-10-04 2008-05-15 クリー インコーポレイテッド Low 1c screw dislocation 3 inch silicon carbide wafer
US8384090B2 (en) 2004-10-04 2013-02-26 Cree, Inc. Low 1C screw dislocation 3 inch silicon carbide wafer
JP2006225232A (en) * 2005-02-21 2006-08-31 Nippon Steel Corp Method for producing silicon carbide single crystal, silicon carbide single crystal ingot, silicon carbide single crystal substrate, silicon carbide epitaxial wafer and thin film epitaxial wafer
JP4603386B2 (en) * 2005-02-21 2010-12-22 新日本製鐵株式会社 Method for producing silicon carbide single crystal
WO2006090432A1 (en) * 2005-02-22 2006-08-31 Neomax Co., Ltd. PROCESS FOR PRODUCING SiC SINGLE-CRYSTAL SUBSTRATE
JP2009164571A (en) * 2007-12-11 2009-07-23 Sumitomo Electric Ind Ltd Silicon carbide semiconductor device and method of manufacturing the same
JP2010076967A (en) * 2008-09-25 2010-04-08 Sumitomo Electric Ind Ltd Production method of silicon carbide substrate, and silicon carbide substrate
JP2010111540A (en) * 2008-11-06 2010-05-20 Showa Denko Kk Method for growing silicon carbide single crystal, seed crystal, and silicon carbide single crystal
JP2012046377A (en) * 2010-08-26 2012-03-08 Toyota Central R&D Labs Inc METHOD FOR MANUFACTURING SiC SINGLE CRYSTAL
WO2012169465A1 (en) * 2011-06-05 2012-12-13 株式会社豊田中央研究所 SiC SINGLE CRYSTAL AND METHOD FOR MANUFACTURING SAME, SiC WAFER, AND SEMICONDUCTOR DEVICE
CN103582723A (en) * 2011-06-05 2014-02-12 株式会社丰田中央研究所 SiC single crystal and method for manufacturing same, SiC wafer, and semiconductor device
US9096947B2 (en) 2011-06-05 2015-08-04 Kabushiki Kaisha Toyota Chuo Kenkyusho SiC single crystal, production method therefor, SiC wafer and semiconductor device
WO2013081164A1 (en) * 2011-12-02 2013-06-06 株式会社豊田中央研究所 SiC SINGLE CRYSTAL, SiC WAFER, AND SEMICONDUCTOR DEVICE
WO2014034081A1 (en) * 2012-08-26 2014-03-06 国立大学法人名古屋大学 Crystal production device, production method for sic single crystals, and sic single crystal
JP2014108916A (en) * 2012-12-04 2014-06-12 Sumitomo Electric Ind Ltd Production method of silicon carbide substrate
JP2014162649A (en) * 2013-02-21 2014-09-08 Mitsubishi Electric Corp SiC SUBSTRATE, PRODUCTION METHOD OF SiC SUBSTRATE, AND SiC EPITAXIAL SUBSTRATE
JP2014227319A (en) * 2013-05-23 2014-12-08 株式会社豊田中央研究所 Sic single crystal and method for manufacturing the same
DE112017006543T5 (en) 2016-12-26 2019-09-26 Denso Corporation SiC wafer and method for producing the SiC wafer
WO2019088221A1 (en) * 2017-11-01 2019-05-09 セントラル硝子株式会社 Method for producing silicon carbide single crystal
JP2019085328A (en) * 2017-11-01 2019-06-06 セントラル硝子株式会社 Production method for silicon carbide single crystal
JP7352058B2 (en) 2017-11-01 2023-09-28 セントラル硝子株式会社 Method for manufacturing silicon carbide single crystal
WO2021025084A1 (en) 2019-08-06 2021-02-11 学校法人関西学院 SiC SEED CRYSTAL AND METHOD FOR PRODUCING SAME, SiC INGOT PRODUCED BY GROWING SAID SiC SEED CRYSTAL AND METHOD FOR PRODUCING SAME, AND SiC WAFER PRODUCED FROM SAID SiC INGOT AND SiC WAFER WITH EPITAXIAL FILM AND METHODS RESPECTIVELY FOR PRODUCING SAID SiC WAFER AND SAID SiC WAFER WITH EPITAXIAL FILM

Also Published As

Publication number Publication date
JP3776374B2 (en) 2006-05-17

Similar Documents

Publication Publication Date Title
US6890600B2 (en) SiC single crystal, method for manufacturing SiC single crystal, SiC wafer having an epitaxial film, method for manufacturing SiC wafer having an epitaxial film, and SiC electronic device
EP1751329B1 (en) Method of sic single crystal growth and sic single crystal
US9903046B2 (en) Reduction of carrot defects in silicon carbide epitaxy
JP6067801B2 (en) Finely graded gallium nitride substrate for high quality homoepitaxy
JP4741506B2 (en) Large area and uniform low dislocation density GaN substrate and its manufacturing process
JP4603386B2 (en) Method for producing silicon carbide single crystal
JP3776374B2 (en) Method for producing SiC single crystal and method for producing SiC wafer with epitaxial film
JP4691911B2 (en) III-V nitride semiconductor free-standing substrate manufacturing method
JP3750622B2 (en) SiC wafer with epitaxial film, manufacturing method thereof, and SiC electronic device
JP2003119097A (en) SiC SINGLE CRYSTAL, METHOD OF PRODUCING THE SAME, SiC SEED CRYSTAL AND METHOD OF PRODUCING THE SAME
JP2009218575A (en) Method of manufacturing semiconductor substrate
JP2006032655A (en) Manufacturing method of silicon carbide substrate
WO2023013696A1 (en) Semiconductor substrate, semiconductor wafer, and method for manufacturing semiconductor wafer
JP5120285B2 (en) III-V nitride semiconductor free-standing substrate manufacturing method
JP2017536325A (en) Group III nitride crystals, methods for their production, and methods for producing bulk Group III nitride crystals in supercritical ammonia
JP2007223821A (en) Seed crystal for growing silicon carbide single crystal, silicon carbide single crystal ingot, and production methods therefor
JP2006062931A (en) Sapphire substrate and its heat treatment method, and method of crystal growth
JP2006052097A (en) Seed crystal for growing silicon carbide single crystal, silicon carbide single crystal ingot and method for manufacturing the ingot
JP4157326B2 (en) 4H type silicon carbide single crystal ingot and wafer
JP5173441B2 (en) Compound semiconductor growth substrate and epitaxial growth method
JP4236121B2 (en) Manufacturing method of semiconductor substrate
JP2007019048A (en) Epitaxial growth method and substrate for epitaxial growth
WO2011111647A1 (en) Method for producing nitride compound semiconductor substrate, nitride compound semiconductor substrate and self-supporting nitride compound semiconductor substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040723

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20050615

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20050706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060222

R151 Written notification of patent or utility model registration

Ref document number: 3776374

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090303

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100303

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100303

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100303

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100303

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110303

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110303

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120303

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120303

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120303

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120303

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130303

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130303

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140303

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term