JPH06340490A - Apparatus for production of silicon single crystal - Google Patents

Apparatus for production of silicon single crystal

Info

Publication number
JPH06340490A
JPH06340490A JP12914093A JP12914093A JPH06340490A JP H06340490 A JPH06340490 A JP H06340490A JP 12914093 A JP12914093 A JP 12914093A JP 12914093 A JP12914093 A JP 12914093A JP H06340490 A JPH06340490 A JP H06340490A
Authority
JP
Japan
Prior art keywords
shielding member
insulating material
heat insulating
single crystal
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12914093A
Other languages
Japanese (ja)
Inventor
Yasuhiro Ooto
保浩 大音
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Sitix Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Sitix Corp filed Critical Sumitomo Sitix Corp
Priority to JP12914093A priority Critical patent/JPH06340490A/en
Publication of JPH06340490A publication Critical patent/JPH06340490A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To provide the apparatus for production of a silicon single crystal having the excellent pressure resistance of an oxidized film which improves a heat history by adjusting the temp. gradient of the silicon single crystal during pulling up. CONSTITUTION:This apparatus for production of the silicon single crystal has an inverted circular cone-shaped shielding member 8 which is disposed around a single crystal pulling-up region above the melt 7 in a crucible and is reduced in diameter toward the lower side from the upper side and a cylindrical shielding member 10 which is in tight contact with the top end of this member 8, has the bore nearly coinciding with the outside diameter thereof and is disposed coaxially with the member 8. Further, a heat insulating material 9 is sealed into the member 8 and the outer periphery of the member 10 is coated with a heat insulating material 11. The member 8 and member 10 are made of graphite. The heat insulating material 9 and heat insulating material 11 are made of carbon fibers. The thickness of the heat insulating material 9 is preferably <=10mm and the thickness of the heat insulating material 11 >=10mm. The thickness of the latter is preferably <=10mm and the thickness of the heat insulating material 11 >=10mm. The thickness of the latter is preferably >=2.0 times the thickness of the former.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、シリコン単結晶の製造
装置に関し、より詳しくは、酸化膜耐圧特性に優れたシ
リコン単結晶の製造装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for producing a silicon single crystal, and more particularly to an apparatus for producing a silicon single crystal having excellent oxide film withstand voltage characteristics.

【0002】[0002]

【従来の技術】単結晶の製造方法は種々あるが、なかで
も、シリコン単結晶の製造に関し、工業的に量産が可能
な方式で広く利用されているものとしてチョクラルスキ
ー法がある。
2. Description of the Related Art There are various methods for producing a single crystal. Among them, the Czochralski method is widely used as a method for industrially mass-producing a silicon single crystal.

【0003】図5は、このチョクラルスキー法の実施状
態を示す縦断面図であり、同図中2は坩堝である。坩堝
2の外側には加熱ヒーター3および保温材4が配設され
ており、坩堝2内にはこの加熱ヒーターにより溶融され
た結晶形成用材料、つまり原料の溶融液7が収容されて
いる。その溶融液7の表面に引上げ棒又はワイヤの先に
取り付けた種結晶5の下端を接触させ、この種結晶5を
上方へ引き上げることによって、その下端に溶融液7が
凝固した単結晶6を成長させていく。これらの部品、部
材は水冷式の金属チャンバー1内に収納され、全体とし
てシリコン単結晶製造装置を構成している。
FIG. 5 is a vertical cross-sectional view showing an implementation state of the Czochralski method, in which 2 is a crucible. A heating heater 3 and a heat insulating material 4 are provided outside the crucible 2, and the crucible 2 contains a crystal forming material melted by the heating heater, that is, a raw material melt 7. The lower end of a seed crystal 5 attached to the tip of a pulling rod or a wire is brought into contact with the surface of the melt 7 and the seed crystal 5 is pulled upward to grow a single crystal 6 in which the melt 7 is solidified. I will let you. These parts and members are housed in a water-cooled metal chamber 1 and constitute a silicon single crystal manufacturing apparatus as a whole.

【0004】単結晶の量産化にあたり、引上げ速度は結
晶の引上げ方向における温度勾配に大きく依存してい
る。ここで、温度勾配は引上げ結晶が冷却される速度で
あって、結晶の単位長さ(1cm)当たりの冷却される温
度差(℃)を示し、結晶の凝固後であって特定の温度域
における冷却開始から冷却終了までの平均温度勾配(℃
/cm)として表される。従って、引上げ速度を速くするに
は、冷却速度、即ち、結晶の温度勾配を大きくする必要
がある。しかし、図5に示した装置では単結晶6の周囲
には坩堝2、加熱ヒーター3および溶融液7等の輻射熱
源があり、これらから受ける輻射熱が大きいため、結晶
の引上げ方向における温度勾配が小さくなり、引上げ速
度を速くできなかった。
In mass production of a single crystal, the pulling rate largely depends on the temperature gradient in the pulling direction of the crystal. Here, the temperature gradient is a rate at which the pulled crystal is cooled, and represents a temperature difference (° C.) at which the crystal is cooled per unit length (1 cm) of the crystal. Average temperature gradient from the start of cooling to the end of cooling (° C
/ cm). Therefore, in order to increase the pulling rate, it is necessary to increase the cooling rate, that is, the temperature gradient of the crystal. However, in the apparatus shown in FIG. 5, there are radiant heat sources such as the crucible 2, the heater 3 and the melt 7 around the single crystal 6, and the radiant heat received from these is large, so the temperature gradient in the pulling direction of the crystal is small. I was unable to increase the pulling speed.

【0005】また、単結晶6の引上げ中は金属チャンバ
ー1内に常時高純度のアルゴンガスを流している。これ
はシリコン溶融液7の表面から蒸発する一酸化珪素(Si
O) を伴って、下方の図示しない排出口から排出するた
めである。ところが、金属チャンバー1内のアルゴンガ
スの流れは複雑な乱流であり、局部的には滞留も生じて
いるため、一酸化珪素の析出物が金属チャンバー1の天
井部に層状または塊状に付着し、しばしば、一酸化珪素
の微粉または塊が溶融液5の表面上に落下する。
Further, during the pulling of the single crystal 6, a high-purity argon gas is constantly supplied into the metal chamber 1. This is silicon monoxide (Si) that evaporates from the surface of the silicon melt 7.
This is because the gas is discharged together with O) from a discharge port (not shown) below. However, the flow of the argon gas in the metal chamber 1 is a complicated turbulent flow, and since the residence also locally occurs, the deposits of silicon monoxide adhere to the ceiling of the metal chamber 1 in a layered or lumpy manner. Often, fine particles or lumps of silicon monoxide fall on the surface of the melt 5.

【0006】これが結晶成長界面に取り込まれ、無転位
結晶が有転位化し、単結晶が不良になる場合がある。
This may be taken into the crystal growth interface, causing dislocation-free crystals to have dislocations, resulting in a defective single crystal.

【0007】引上げ速度を速め、無転位結晶を成長させ
る対策として、従来より下記の装置が提案されている。
As a measure for increasing the pulling rate and growing dislocation-free crystals, the following device has been conventionally proposed.

【0008】図2は特公昭57-40119号公報によって提案
されている装置である。この装置は、坩堝の縁から突出
している上部の平たい環状リム8aと、この環状リム8aに
取り付けられ、内側の縁から下方に傾斜して円錐状に先
細りになっている連結部8bとからなり、この連結部8bの
内部高さが坩堝1の深さの 0.2〜1.2 倍である部材を設
けることを特徴としている。
FIG. 2 shows an apparatus proposed by Japanese Examined Patent Publication No. 57-40119. This device consists of an upper flat annular rim 8a projecting from the crucible edge and a connecting part 8b attached to this annular rim 8a and conically tapering downward from the inner edge. It is characterized in that a member whose internal height of the connecting portion 8b is 0.2 to 1.2 times the depth of the crucible 1 is provided.

【0009】図3は特開昭63-256593 号公報に開示され
ている装置であり、上側から下側に向かうに従って縮径
された筒状の金属製遮蔽部材8と、この金属製遮蔽部材
8に付設された冷却手段8aと、金属製遮蔽部材8の外周
面を溶融液からの蒸発物および輻射熱源から遮蔽すべく
外側に所要の間隙を隔てて配設された筒状の遮蔽部材9
とを具備することを特徴としている。
FIG. 3 shows an apparatus disclosed in Japanese Patent Laid-Open No. 63-256593, which is a cylindrical metal shielding member 8 whose diameter is reduced from the upper side to the lower side, and the metal shielding member 8 And a cylindrical shielding member 9 disposed outside the metal shielding member 8 with a required gap to shield the outer peripheral surface of the metallic shielding member 8 from the evaporation material from the molten liquid and the radiant heat source.
It is characterized by having and.

【0010】前述した従来の装置は、一酸化珪素微粉の
シリコン溶融液への落下防止、および輻射熱遮蔽効果に
よる結晶引上げ速度の向上には一定の効果を奏する。
The above-mentioned conventional apparatus has a certain effect in preventing the dropping of fine particles of silicon monoxide into the silicon melt and improving the crystal pulling rate by the radiation heat shielding effect.

【0011】[0011]

【発明が解決しようとする課題】近年、MOSデバイス
集積度の増大に伴い、単結晶引上げ後加工されるシリコ
ンウエーハに種々の特性が要求されている。特に、DR
AMの集積回路の微細化に伴いゲート酸化膜の薄膜化が
進み、電源電圧が定圧単一のもとでは、ゲート酸化膜に
ストレスとして加わる印加電界強度が高くなっているた
め、ゲート酸化膜の信頼性が強く望まれている。酸化膜
耐圧はその信頼性を決定する重要な材料特性の一つであ
るため、酸化膜耐圧特性に優れた単結晶およびその製造
技術の開発が急務となっている。しかし、前述した従来
の装置には、この酸化膜耐圧特性に優れた単結晶の製造
に関しては問題があった。
In recent years, as the integration density of MOS devices has increased, various characteristics have been required for a silicon wafer processed after pulling a single crystal. Especially DR
As the integrated circuit of AM becomes finer, the gate oxide film becomes thinner, and under a constant power supply voltage, the applied electric field strength applied as stress to the gate oxide film is high. Reliability is strongly desired. Since the oxide film breakdown voltage is one of the important material properties that determine its reliability, there is an urgent need to develop a single crystal having excellent oxide film breakdown voltage characteristics and a manufacturing technique therefor. However, the above-mentioned conventional device has a problem in manufacturing a single crystal having excellent oxide film withstand voltage characteristics.

【0012】酸化膜耐圧特性を劣化させる欠陥の形成機
構の詳細は未だ不明である。しかし、酸化膜耐圧特性は
結晶成長速度に強く依存するものの、結晶引上げ速度自
体ではなく、結果的に変化する結晶成長時の熱履歴に起
因するものである。即ち、引上げによる結晶成長時、結
晶中には酸化膜耐圧特性の不良要因となる欠陥核が発生
するが、この欠陥核は高温領域(1250 ℃以上) では収縮
し、低温領域(1100 ℃以下) では成長するとの報告があ
る(第39回春季応用物理学会予稿集、30P-ZD-17 参
照) 。
The details of the mechanism of forming a defect that deteriorates the oxide film withstand voltage characteristic are still unknown. However, although the oxide film breakdown voltage characteristic strongly depends on the crystal growth rate, it is due not to the crystal pulling rate itself but to the resulting thermal history during crystal growth. That is, during crystal growth due to pulling, defect nuclei that cause defects in the oxide film breakdown voltage characteristics are generated in the crystal, but these defect nuclei shrink in the high temperature region (1250 ° C or higher) and in the low temperature region (1100 ° C or lower). There is a report that it will grow (see the 39th Spring Applied Physics Society Proceedings, 30P-ZD-17).

【0013】図2に示す装置では、引上げ結晶の周囲に
配設した円錐台形筒状の連結部8bの内部高さが坩堝の深
さの 0.2〜1.2 倍と低いことから、引上げ過程の結晶は
連結部8bを超えたときから、低温に保たれている金属チ
ャンバー内の雰囲気に直接曝されるため、引上げ結晶の
冷却効果が大きくなり未だ高温領域にある中に急冷さ
れ、欠陥核が収縮されることなく単結晶が成長するた
め、酸化膜耐圧特性が低下してしまうことになる。
In the apparatus shown in FIG. 2, since the internal height of the frustoconical cylindrical connecting portion 8b arranged around the pulled crystal is as low as 0.2 to 1.2 times the depth of the crucible, the crystal in the pulling process is Since it is exposed directly to the atmosphere inside the metal chamber that is kept at a low temperature from the time when it exceeds the connecting portion 8b, the cooling effect of the pulled crystal is increased and it is rapidly cooled while it is still in the high temperature region, and the defect nucleus is contracted. Since the single crystal grows without causing the breakdown voltage characteristic of the oxide film to deteriorate.

【0014】一方、図3に示す装置では、金属製遮蔽部
材8に冷却水管の如き冷却手段8aを付設しているため、
結晶の温度勾配は大きくなり、引上げ速度は一層速くな
るが、引上げ結晶は高温領域で急冷され、酸化膜耐圧特
性が悪化することになる。
On the other hand, in the apparatus shown in FIG. 3, since the metallic shielding member 8 is provided with the cooling means 8a such as the cooling water pipe,
Although the temperature gradient of the crystal becomes large and the pulling rate becomes faster, the pulled crystal is rapidly cooled in a high temperature region, and the oxide film withstand voltage characteristic deteriorates.

【0015】従って、従来の単結晶製造装置は、前記の
ようにMOSデバイス集積度の増大に伴い要求される酸
化膜耐圧特性に優れたシリコン単結晶の製造に適用しえ
ないという問題を有していた。本発明はこの問題に鑑
み、結晶の温度勾配を調整し、シリコン単結晶が受ける
熱履歴を改善することにより、酸化膜耐圧特性に優れた
シリコン単結晶を製造する装置を提供することを目的と
する。
Therefore, the conventional single crystal production apparatus has a problem that it cannot be applied to the production of a silicon single crystal excellent in the oxide film withstand voltage characteristic required as the MOS device integration degree increases as described above. Was there. In view of this problem, the present invention aims to provide an apparatus for manufacturing a silicon single crystal having excellent oxide film withstand voltage characteristics by adjusting the temperature gradient of the crystal and improving the thermal history of the silicon single crystal. To do.

【0016】[0016]

【課題を解決するための手段】本発明は、例えば図1に
示すような下記のシリコン単結晶製造装置を要旨とす
る。
DISCLOSURE OF THE INVENTION The gist of the present invention is, for example, the following silicon single crystal manufacturing apparatus as shown in FIG.

【0017】成長させるべき単結晶の溶融液を収容する
坩堝2と、溶融液を加熱する手段3と、坩堝内の溶融液
の表面に種結晶を接触させて単結晶を成長させる引上げ
手段5と、前記各部材を収納する金属チャンバー1とを
具備する単結晶製造装置であって、 坩堝内の溶融液7の上方の単結晶引上げ域の周囲に配
設された上方から下方に向かうに従って縮径された逆円
錐状遮蔽部材8と、 上記逆円錐状遮蔽部材8の上端に密接し、その外径と
ほぼ一致する内径を持ち、逆円錐状遮蔽部材8と同軸に
配設される円筒状遮蔽部材10とを有し、 さらに上記逆円錐状遮蔽部材8の内部には断熱材9が
封入され、 上記円筒状遮蔽部材10の外周には断熱材11が被覆され
ていることを特徴とするシリコン単結晶製造装置。
A crucible 2 for containing a melt of a single crystal to be grown, a means 3 for heating the melt, and a pulling means 5 for growing a single crystal by bringing a seed crystal into contact with the surface of the melt in the crucible. A single crystal manufacturing apparatus comprising a metal chamber 1 for accommodating the above-mentioned members, wherein the diameter is reduced from the upper side to the lower side provided around the single crystal pulling region above the melt 7 in the crucible. The inverted conical shielding member 8 and a cylindrical shield that is in close contact with the upper end of the inverse conical shielding member 8 and has an inner diameter that substantially matches the outer diameter of the conical shielding member 8 and is coaxially arranged with the inverse conical shielding member 8. And a heat insulating material 9 is enclosed inside the inverted conical shielding member 8 and a heat insulating material 11 is coated on the outer periphery of the cylindrical shielding member 10. Single crystal manufacturing equipment.

【0018】上記の逆円錐状遮蔽部材8および円筒状遮
蔽部材10は黒鉛製とし、この逆円錐状遮蔽部材に封入さ
れる断熱材9および円筒状遮蔽部材の外周に被覆される
断熱材11を炭素繊維製とするのが望ましい。また、前者
の断熱材9の厚さは10mm以下、後者の断熱材11の厚さが
10mm以上で、かつ後者の断熱材は前者の 2.0倍以上の厚
さであることが望ましい。
The inverse conical shielding member 8 and the cylindrical shielding member 10 are made of graphite, and the heat insulating material 9 enclosed in the inverse conical shielding member and the heat insulating material 11 coated on the outer periphery of the cylindrical shielding member are provided. It is preferably made of carbon fiber. In addition, the thickness of the former heat insulating material 9 is 10 mm or less, and the thickness of the latter heat insulating material 11 is
It is desirable that the thickness of the heat insulating material of 10 mm or more and the latter is 2.0 times or more the thickness of the former.

【0019】[0019]

【作用】本発明者は、酸化膜耐圧特性に優れたシリコン
単結晶の製造装置を完成させるため、結晶引上げによる
結晶成長時の単結晶の熱履歴や温度勾配の調整手段につ
いて詳細に検討を行った結果、次の知見を得た。
In order to complete a silicon single crystal manufacturing apparatus having excellent oxide film withstand voltage characteristics, the present inventor has studied in detail the means for adjusting the thermal history and temperature gradient of the single crystal during crystal growth by pulling the crystal. As a result, we obtained the following findings.

【0020】 欠陥核が収縮、消滅する高温領域で徐
冷するという熱履歴を与えることは、結晶が凝固温度か
ら冷却されるときの高温領域(1250℃以上) での温度勾
配を小さくするように調整すれば可能である。
Providing a thermal history of gradual cooling in the high temperature region where the defect nuclei shrink and disappear reduces the temperature gradient in the high temperature region (1250 ° C. or higher) when the crystal is cooled from the solidification temperature. It is possible if adjusted.

【0021】 結晶の引上げ方向における温度勾配
は、逆円錐状遮蔽部材の表面温度と密接な関係がある。
即ち、逆円錐状遮蔽部材の表面温度が低ければ、結晶の
温度勾配は大きくなり、逆円錐状遮蔽部材の表面温度が
高ければ、結晶の温度勾配は小さくなる。
The temperature gradient in the crystal pulling direction is closely related to the surface temperature of the inverted conical shielding member.
That is, if the surface temperature of the inverted conical shielding member is low, the temperature gradient of the crystal is large, and if the surface temperature of the inverse conical shielding member is high, the temperature gradient of the crystal is small.

【0022】 逆円錐状遮蔽部材の表面温度を高温に
保持するには、逆円錐状遮蔽部材を外周から囲撓する円
筒状遮蔽部材を設けることが有効である。これは円筒状
遮蔽部材によって、水冷式金属チャンバーへの輻射伝熱
による熱放出を少なくできるからである。
In order to keep the surface temperature of the inverted conical shielding member at a high temperature, it is effective to provide a cylindrical shielding member that surrounds the inverted conical shielding member from the outer circumference. This is because the cylindrical shielding member can reduce heat emission due to radiant heat transfer to the water-cooled metal chamber.

【0023】 更に、輻射伝熱による熱放出を減少さ
せるには、円筒状遮蔽部材の外周を断熱材で被覆するこ
とが、一層有効である。この場合、逆円錐状遮蔽部材の
表面温度は高温に保持されるが、例えば、熱伝導率が大
きな黒鉛製逆円錐状遮蔽部材を使用した場合、その温度
は著しく高温になり、必要以上に引上げ速度を低下させ
てしまうことになる。このため、所定の引上げ速度を保
ちつつ結晶の温度勾配を調整するには、逆円錐状遮蔽部
材に断熱材を挿入することが効果的である。
Further, in order to reduce the heat release due to the radiant heat transfer, it is more effective to coat the outer circumference of the cylindrical shielding member with a heat insulating material. In this case, the surface temperature of the inverted conical shielding member is maintained at a high temperature.For example, when a graphite inverted conical shielding member with high thermal conductivity is used, the temperature becomes extremely high, and the temperature is raised more than necessary. It will slow down. Therefore, in order to adjust the temperature gradient of the crystal while maintaining a predetermined pulling rate, it is effective to insert a heat insulating material into the inverted conical shielding member.

【0024】 また、逆円錐状遮蔽部材の表面温度を
高温に保持するすることにより、シリコン溶融液から蒸
発する一酸化珪素が逆円錐状遮蔽部材の外周表面に析出
することを抑制し、一酸化珪素の析出物である微粉また
は塊が溶融液の表面に落下することを防止できる。
Further, by keeping the surface temperature of the inverted conical shielding member at a high temperature, it is possible to suppress the deposition of silicon monoxide vaporized from the silicon melt on the outer peripheral surface of the inverted conical shielding member, and It is possible to prevent fine powder or lumps that are precipitates of silicon from falling onto the surface of the melt.

【0025】本発明は以上の知見に基づき完成されたも
のである。以下、図面によって本発明のシリコン単結晶
製造装置を詳しく説明する。
The present invention has been completed based on the above findings. Hereinafter, the silicon single crystal production apparatus of the present invention will be described in detail with reference to the drawings.

【0026】図1は本発明の装置を示す縦断面図であ
る。図中2は坩堝であり、坩堝支持軸2a上に設置され
る。この坩堝支持軸2aは坩堝の回転のみでなく、坩堝の
昇降も行うことができるようになっている。
FIG. 1 is a vertical sectional view showing the device of the present invention. In the figure, 2 is a crucible, which is installed on the crucible support shaft 2a. The crucible support shaft 2a is adapted not only to rotate the crucible but also to elevate and lower the crucible.

【0027】図中1は水冷式の金属チャンバーを示して
いる。金属チャンバー1は単結晶の引上げ軸を中心とし
た円筒状の真空容器であり、その中央位置に坩堝2が配
設されている。坩堝2の外周にはこれを囲んで加熱ヒー
ター3および保温材4が配設されている。一方、坩堝2
の上方には、金属チャンバー1の天井部中央から引上げ
軸が回転および昇降可能に垂設されており、その下端に
は種結晶5が装着されている。種結晶5は引上げ軸の回
転につれて回転しつつ上昇し、溶融液7との接触面であ
る下端部に引上げ結晶6が成長して行くようになってい
る。
In the figure, reference numeral 1 shows a water-cooled metal chamber. The metal chamber 1 is a cylindrical vacuum container centered on a pulling axis of a single crystal, and a crucible 2 is arranged at the center position thereof. A heater 3 and a heat insulating material 4 are provided around the outer periphery of the crucible 2 so as to surround it. On the other hand, crucible 2
A pulling shaft is hung from above the center of the ceiling of the metal chamber 1 so as to be rotatable and movable up and down, and a seed crystal 5 is attached to the lower end of the pulling shaft. The seed crystal 5 rises while rotating as the pulling shaft rotates, and the pulling crystal 6 grows at the lower end portion which is a contact surface with the melt 7.

【0028】本発明装置の一つの特徴は、引上げ軸と同
軸に逆円錐状遮蔽部材8が、坩堝2内の溶融液7の上方
の単結晶6の引上げ域の周囲に配設されていることであ
る。
One of the features of the device of the present invention is that an inverted conical shielding member 8 is arranged coaxially with the pulling shaft around the pulling region of the single crystal 6 above the melt 7 in the crucible 2. Is.

【0029】この形状は上方から下方に向かうに従って
縮径された逆円錐状の筒である。更に、本発明装置の他
の特徴は、この逆円錐状遮蔽部材8の上端に密接し、そ
の外径とほぼ一致する内径を持つ円筒状遮蔽部材10が、
逆円錐状遮蔽部材8と同軸に設けられていることであ
る。この円筒状遮蔽部材10の厚さは、およそ10mm程度で
よい。
This shape is an inverted conical cylinder whose diameter is reduced from the upper side to the lower side. Further, another feature of the device of the present invention is that the cylindrical shielding member 10 which is in close contact with the upper end of the inverted conical shielding member 8 and has an inner diameter substantially matching the outer diameter thereof is
That is, it is provided coaxially with the inverted conical shielding member 8. The thickness of the cylindrical shielding member 10 may be about 10 mm.

【0030】これらの逆円錐状遮蔽部材8および円筒状
遮蔽部材10は、黒鉛製であることが望ましい。引上げ域
の温度が輻射熱により最高1500℃程度の高温になるの
で、高温強度が高く、かつ高純度で、含有する重金属に
よる引上げ結晶の汚染のおそれのない黒鉛が望ましいの
である。
It is desirable that the inverted conical shielding member 8 and the cylindrical shielding member 10 are made of graphite. Since the temperature of the pulling region becomes a high temperature of about 1500 ° C. due to radiant heat, it is desirable to use graphite that has high high-temperature strength, high purity, and is free from the risk of contamination of the pulling crystals by the contained heavy metal.

【0031】前記の逆円錐状遮蔽部材8は二重構造で、
全体の厚みは5mm〜20mm程度のものであり、内部に逆円
錐状遮蔽部材8とほぼ同形の断熱材9が封入されてい
る。断熱材9を封入するのは、結晶の温度勾配を適切に
調整するためである。断熱材9を封入しない逆円錐状遮
蔽部材8の表面温度は高温となり、結晶の温度勾配は著
しく小さくなる。発明者の実験によれば、引上げ速度を
確保するとともに、酸化膜耐圧特性の優れた単結晶を成
長させるには、断熱材9の厚みは2mm〜10mmの範囲が望
ましい。
The inverted conical shielding member 8 has a double structure,
The entire thickness is about 5 mm to 20 mm, and a heat insulating material 9 having substantially the same shape as the inverted conical shielding member 8 is enclosed inside. The heat insulating material 9 is enclosed in order to properly adjust the temperature gradient of the crystal. The surface temperature of the inverted conical shielding member 8 that does not enclose the heat insulating material 9 becomes high, and the temperature gradient of the crystal becomes extremely small. According to the experiment conducted by the inventor, the thickness of the heat insulating material 9 is preferably in the range of 2 mm to 10 mm in order to secure the pulling rate and to grow a single crystal having an excellent oxide film withstand voltage characteristic.

【0032】更に、前記の円筒状遮蔽部材10の外周は断
熱材11によって被覆されている。断熱材11の厚さは、水
冷式金属チャンバーへの輻射伝熱による熱放出を削減す
るため、厚く被覆するほど有効であるが、実用上は10mm
〜 100mmで十分である。更に、断熱材11の厚さは、断熱
材9の厚さの 2.0倍以上であるのが望ましい。その理由
について未だ理論的根拠は見出し得ないが、実験結果に
よれば、断熱材11の厚さが断熱材9の厚さの 2.0倍以下
であると、高温領域および低温領域での温度勾配が大き
くなるためである。
Further, the outer circumference of the cylindrical shielding member 10 is covered with a heat insulating material 11. The thickness of the heat insulating material 11 is more effective as it is thicker in order to reduce heat emission due to radiative heat transfer to the water-cooled metal chamber, but it is practically 10 mm.
~ 100 mm is sufficient. Further, the thickness of the heat insulating material 11 is preferably 2.0 times or more the thickness of the heat insulating material 9. Although the theoretical basis for this reason cannot be found yet, according to the experimental results, when the thickness of the heat insulating material 11 is 2.0 times or less than the thickness of the heat insulating material 9, the temperature gradient in the high temperature region and the low temperature region becomes large. This is because it becomes larger.

【0033】また、断熱材9および断熱材11は炭素繊維
製であることが好ましいが、これは炭素繊維は熱伝導率
が十分に小さく、高純度材の製造が可能であるため、断
熱効果を確保しつつ、引上げ結晶を重金属汚染から防ぐ
ことができるからである。
Further, it is preferable that the heat insulating material 9 and the heat insulating material 11 are made of carbon fiber. This is because carbon fiber has a sufficiently small thermal conductivity and a high-purity material can be manufactured. This is because the pulled crystal can be prevented from being contaminated with heavy metals while being ensured.

【0034】[0034]

【実施例】以下、本発明のシリコン単結晶製造装置の一
実施例を、図面に基づいて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the silicon single crystal production apparatus of the present invention will be described below with reference to the drawings.

【0035】図1に示す本発明の製造装置において、逆
円錐状遮蔽部材8の寸法を厚さ10mm、高さ 380mmとし、
上端部内径 400mm、下端部内径 200mmとし、これに封入
する断熱材9の厚さは5mmとした。円筒状遮蔽部材10
は、その厚さを10mmとし、逆円錐状遮蔽部材8の上端部
外径で密接し、その内径は逆円錐状遮蔽部材8の上端部
外径と一致させている。円筒状遮蔽部材10を被覆する断
熱材11の厚さは10mmとし、この断熱材11の厚さと前記断
熱材9の厚さの比 (断熱材11の厚さ/ 断熱材9の厚さ)
を 2.0としている。
In the manufacturing apparatus of the present invention shown in FIG. 1, the inverted conical shielding member 8 has dimensions of 10 mm in thickness and 380 mm in height,
The inner diameter of the upper end was 400 mm and the inner diameter of the lower end was 200 mm, and the thickness of the heat insulating material 9 enclosed in this was 5 mm. Cylindrical shielding member 10
Has a thickness of 10 mm and is in close contact with the outer diameter of the upper end portion of the inverted conical shielding member 8, and its inner diameter matches the outer diameter of the upper end portion of the inverted conical shielding member 8. The thickness of the heat insulating material 11 covering the cylindrical shielding member 10 is set to 10 mm, and the ratio of the thickness of this heat insulating material 11 to the thickness of the heat insulating material 9 (thickness of the heat insulating material 11 / thickness of the heat insulating material 9)
Is set to 2.0.

【0036】引き上げられる単結晶6は直径6インチの
シリコン単結晶であって、坩堝2は内径 457mm(18イン
チ)のものを使用し、坩堝2内に結晶形成用の固体原料
である塊状、チップ状または顆粒状の多結晶シリコンを
50Kg充填した。金属チャンバー1内に流入するアルゴン
ガス流量は60リットル/minとし、引上げ速度は 1.0mm/m
in、引上げ長さは1000mmとした。
The single crystal 6 to be pulled is a silicon single crystal having a diameter of 6 inches, the crucible 2 has an inner diameter of 457 mm (18 inches), and the crucible 2 is a solid raw material for crystal formation. -Shaped or granular polycrystalline silicon
It was filled with 50 kg. The flow rate of argon gas flowing into the metal chamber 1 was 60 liters / min, and the pulling rate was 1.0 mm / m.
in, the pulling length was 1000 mm.

【0037】更に、本発明の実施例として、断熱材11の
厚さと断熱材9の厚さの比( 断熱材11の厚さ/ 断熱材9
の厚さ) を 4.0および1.25とした条件で引上げを行うと
ともに、本発明の実施例と比較のため、比較例4〜6と
して表1に纏めた条件で引上げを実施した。
Further, as an embodiment of the present invention, the ratio of the thickness of the heat insulating material 11 to the thickness of the heat insulating material 9 (the thickness of the heat insulating material 11 / the heat insulating material 9
Thickness) was set to 4.0 and 1.25, and for comparison with the examples of the present invention, the pulling was performed under the conditions summarized in Table 1 as Comparative Examples 4 to 6.

【0038】図4は、単結晶6に熱電対12を挿入した図
である。引上げ中の結晶の温度勾配は、この熱電対12に
よって実測した。その時の高温領域(1300 ℃近傍) およ
び低温領域(1100 ℃近傍) の温度勾配の測定結果を表1
に示す。
FIG. 4 is a view in which the thermocouple 12 is inserted in the single crystal 6. The temperature gradient of the crystal during pulling was measured by this thermocouple 12. Table 1 shows the measurement results of the temperature gradient in the high temperature region (around 1300 ° C) and the low temperature region (around 1100 ° C) at that time.
Shown in.

【0039】[0039]

【表1】 [Table 1]

【0040】表1から、本発明例の遮蔽部材および断熱
材の条件で引上げられた単結晶の温度勾配は、比較例の
ものに比べ、特に高温領域において小さい値となってい
る。
From Table 1, the temperature gradient of the single crystal pulled under the conditions of the shielding member and the heat insulating material of the present invention is smaller than that of the comparative example, especially in a high temperature region.

【0041】しかし、断熱材11の厚さと断熱材9の厚さ
の比が 2.0以下になると、単結晶の温度勾配は若干大き
くなる。
However, when the ratio of the thickness of the heat insulating material 11 to the thickness of the heat insulating material 9 is 2.0 or less, the temperature gradient of the single crystal becomes slightly large.

【0042】本製造装置によって引き上げられた6イン
チのシリコン単結晶に、スライス、ポリッシングなど通
常シリコンウエーハを工業的に製造するために必要な処
理を施し、更に、酸化膜耐圧特性を評価するために、シ
リコンウエーハの表面に酸化膜を被覆した後、ゲート電
極を構成した。酸化膜の被覆は酸化性雰囲気で熱処理す
る熱酸化による方法であり、膜厚25nmのドライ酸化膜と
した。また、ゲート電極は燐(P)ドープの多結晶シリ
コンで構成し、その面積は8mm2としている。
In order to evaluate the oxide film breakdown voltage characteristics, the 6-inch silicon single crystal pulled up by the present manufacturing apparatus was subjected to processing necessary for industrially manufacturing a normal silicon wafer such as slicing and polishing. After covering the surface of the silicon wafer with an oxide film, a gate electrode was formed. The oxide film was coated by a thermal oxidation method in which a heat treatment was performed in an oxidizing atmosphere, and a dry oxide film having a film thickness of 25 nm was used. The gate electrode is made of phosphorus (P) -doped polycrystalline silicon and has an area of 8 mm 2 .

【0043】このシリコンウエーハの酸化膜耐圧特性の
評価は、酸化膜の電気的評価法である電圧ランピング法
によっている。この方法は、ゲート電極を構成したシリ
コンウエーハに、1vステップ毎に印加電圧を増加し、
リーク電流を測定するものである。
The evaluation of the oxide film breakdown voltage characteristic of this silicon wafer is based on the voltage ramping method which is an electrical evaluation method of the oxide film. In this method, the applied voltage is increased in every 1v step on the silicon wafer forming the gate electrode,
The leak current is measured.

【0044】シリコンウエーハ面内に通常 100〜 150箇
所の測定点を設けて、個々の酸化膜の絶縁破壊判定とシ
リコンウエーハの良否判定とで評価を行う。酸化膜の絶
縁破壊判定ではリーク電流密度12.5μA/cm2 以上を測定
すると絶縁破壊と判定する。
Usually, 100 to 150 measurement points are provided on the surface of the silicon wafer, and the evaluation is performed by the dielectric breakdown judgment of each oxide film and the quality judgment of the silicon wafer. In the dielectric breakdown judgment of the oxide film, the dielectric breakdown is judged when the leak current density of 12.5 μA / cm 2 or more is measured.

【0045】また、シリコンウエーハの良否判定は平均
電界8Mv/cm以下で絶縁破壊した測定点は不良と判定
することとし、ウエーハ面内の良品箇所の比率で良品率
を表している。一般に、酸化膜耐圧特性の評価はシリコ
ンウエーハの良品率に依っている。
Further, the quality of the silicon wafer is judged to be defective at the measurement point where the dielectric breakdown occurs at an average electric field of 8 Mv / cm or less, and the ratio of non-defective parts on the wafer surface represents the non-defective product rate. In general, the evaluation of oxide film withstand voltage characteristics depends on the yield rate of silicon wafers.

【0046】以上のシリコンウエーハの良品率の測定結
果を表2に示すが、測定結果の比較を明確にするため、
本発明の装置であって、断熱材11の厚さと断熱材9の厚
さの比を 2.0とした本発明例1の条件で製造した単結晶
のシリコンウエーハの良品率を1.0 として表している。
The measurement results of the yield rate of the above silicon wafers are shown in Table 2. In order to clarify the comparison of the measurement results,
In the apparatus of the present invention, the non-defective rate of the single crystal silicon wafer manufactured under the conditions of Inventive Example 1 in which the thickness ratio of the heat insulating material 11 and the thickness of the heat insulating material 9 is 2.0 is represented as 1.0.

【0047】[0047]

【表2】 [Table 2]

【0048】表2から、比較例ではいずれも良品率は低
くなっているが、本発明例の遮蔽部材および断熱材の条
件で引上げられた単結晶では良品率が高くなっている。
だが、本発明例のなかでもNo3は、若干低い良品率とな
っている。従って、円筒状遮蔽部材の外周に被覆される
断熱材の厚さが、逆円錐状遮蔽部材に封入される断熱材
の厚さの 2.0倍以上であることが望ましといえる。
From Table 2, the non-defective rate is low in each of the comparative examples, but the non-defective rate is high in the single crystal pulled under the conditions of the shielding member and the heat insulating material of the present invention example.
However, among the examples of the present invention, No. 3 has a slightly low yield rate. Therefore, it is desirable that the thickness of the heat insulating material coated on the outer periphery of the cylindrical shielding member is 2.0 times or more the thickness of the heat insulating material enclosed in the inverted conical shielding member.

【0049】また、本発明の製造装置で引上げられた何
れの単結晶において、一酸化珪素の析出物による有転位
化の問題は生じなかった。
Further, in any of the single crystals pulled by the production apparatus of the present invention, the problem of dislocation generation due to the precipitate of silicon monoxide did not occur.

【0050】[0050]

【発明の効果】本発明の単結晶製造装置は、構造が簡単
で取扱いが容易であり、且つ単結晶の引上げ方向の温度
勾配を適切に制御することができる。本発明装置によれ
ば、単結晶の生産性を低下させることなく、単結晶基板
の酸化膜耐圧特性の向上および一酸化珪素の析出物によ
る有転位化の防止が可能となる。
The single crystal production apparatus of the present invention has a simple structure and is easy to handle, and can appropriately control the temperature gradient in the pulling direction of the single crystal. According to the device of the present invention, it is possible to improve the withstand voltage characteristic of an oxide film of a single crystal substrate and prevent dislocation due to a precipitate of silicon monoxide without lowering the productivity of the single crystal.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のシリコン単結晶製造装置を示す縦断面
図である。
FIG. 1 is a vertical sectional view showing a silicon single crystal production apparatus of the present invention.

【図2】従来の単結晶製造装置の1例を示す縦断面図で
ある。
FIG. 2 is a vertical sectional view showing an example of a conventional single crystal manufacturing apparatus.

【図3】従来の単結晶製造装置の他の例を示す縦断面図
である。
FIG. 3 is a vertical cross-sectional view showing another example of a conventional single crystal manufacturing apparatus.

【図4】引上げ中の結晶の温度勾配を実測するため、単
結晶に熱電対を挿入した図である。
FIG. 4 is a diagram in which a thermocouple is inserted in a single crystal in order to measure the temperature gradient of the crystal during pulling.

【図5】チョクラルスキー法の実施状態を示す縦断面図
である。
FIG. 5 is a vertical cross-sectional view showing an implementation state of the Czochralski method.

【符号の説明】[Explanation of symbols]

1…金属チャンバー、2…坩堝、 2a…坩堝支持軸、3
…加熱ヒーター 4…保温材、5…種結晶、6…単結晶、7…溶融液、8
…逆円錐状遮蔽部材 9、11…断熱材、10…円筒状遮蔽部材、12…熱電対
1 ... Metal chamber, 2 ... Crucible, 2a ... Crucible support shaft, 3
... Heater 4 ... Insulating material, 5 ... Seed crystal, 6 ... Single crystal, 7 ... Melt liquid, 8
... Inverse conical shielding member 9, 11 ... Insulating material, 10 ... Cylindrical shielding member, 12 ... Thermocouple

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】成長させるべき単結晶の溶融液を収容する
坩堝と、溶融液を加熱する手段と、坩堝内の溶融液の表
面に種結晶を接触させて単結晶を成長させる引上げ手段
と、前記各部材を収納する金属チャンバーとを具備する
単結晶製造装置であって、 坩堝内の溶融液の上方の単結晶引上げ域の周囲に配設
された上方から下方に向かうに従って縮径された逆円錐
状遮蔽部材と、 上記逆円錐状遮蔽部材の上端に密接し、その外径とほ
ぼ一致する内径を持ち、逆円錐状遮蔽部材と同軸に配設
される円筒状遮蔽部材とを有し、 さらに上記逆円錐状遮蔽部材の内部には断熱材が封入
され、 上記円筒状遮蔽部材の外周には断熱材が被覆されてい
ることを特徴とするシリコン単結晶製造装置。
1. A crucible for containing a melt of a single crystal to be grown, a means for heating the melt, and a pulling means for bringing a seed crystal into contact with the surface of the melt in the crucible to grow the single crystal. A single crystal manufacturing apparatus comprising a metal chamber that accommodates each of the above-mentioned members, wherein the diameter of the melt is reduced in the reverse direction from the upper side to the lower side, which is arranged around the single crystal pulling region above the melt in the crucible. A conical shielding member, and a cylindrical shielding member that is in close contact with the upper end of the inverted conical shielding member, has an inner diameter that substantially matches its outer diameter, and is arranged coaxially with the inverse conical shielding member, Further, a heat insulating material is enclosed in the inside of the inverted conical shielding member, and an outer periphery of the cylindrical shielding member is covered with a heat insulating material.
【請求項2】前記逆円錐状遮蔽部材および円筒状遮蔽部
材が黒鉛製であり、前記逆円錐状遮蔽部材に封入される
断熱材が炭素繊維製であって、その厚さが10mm以下であ
り、前記円筒状遮蔽部材の外周に被覆される断熱材が同
じく炭素繊維製であって、その厚さが10mm以上、かつ前
記逆円錐状遮蔽部材に封入される断熱材の厚さの 2.0倍
以上の厚さを持つものであることを特徴とする請求項1
記載のシリコン単結晶製造装置。
2. The inverted conical shielding member and the cylindrical shielding member are made of graphite, and the heat insulating material enclosed in the inverse conical shielding member is made of carbon fiber, and the thickness thereof is 10 mm or less. The heat insulating material coated on the outer periphery of the cylindrical shielding member is also made of carbon fiber and has a thickness of 10 mm or more, and at least 2.0 times the thickness of the heat insulating material enclosed in the inverted conical shielding member. 2. It has a thickness of 1.
The described silicon single crystal manufacturing apparatus.
JP12914093A 1993-05-31 1993-05-31 Apparatus for production of silicon single crystal Pending JPH06340490A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12914093A JPH06340490A (en) 1993-05-31 1993-05-31 Apparatus for production of silicon single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12914093A JPH06340490A (en) 1993-05-31 1993-05-31 Apparatus for production of silicon single crystal

Publications (1)

Publication Number Publication Date
JPH06340490A true JPH06340490A (en) 1994-12-13

Family

ID=15002114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12914093A Pending JPH06340490A (en) 1993-05-31 1993-05-31 Apparatus for production of silicon single crystal

Country Status (1)

Country Link
JP (1) JPH06340490A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6251184B1 (en) 1997-02-13 2001-06-26 Samsung Electronics Co., Ltd. Insulating-containing ring-shaped heat shields for czochralski pullers
US6340392B1 (en) 1997-10-24 2002-01-22 Samsung Electronics Co., Ltd. Pulling methods for manufacturing monocrystalline silicone ingots by controlling temperature at the center and edge of an ingot-melt interface
JP2002538064A (en) * 1999-02-26 2002-11-12 エムイーエムシー・エレクトロニック・マテリアルズ・インコーポレイテッド Heat shield device for crystal pulling device
US6485807B1 (en) 1997-02-13 2002-11-26 Samsung Electronics Co., Ltd. Silicon wafers having controlled distribution of defects, and methods of preparing the same
US6503594B2 (en) 1997-02-13 2003-01-07 Samsung Electronics Co., Ltd. Silicon wafers having controlled distribution of defects and slip
JP2010501466A (en) * 2006-09-01 2010-01-21 オクメティック オサケユフティオ ユルキネン Crystal production
WO2012031417A1 (en) * 2010-09-08 2012-03-15 有研半导体材料股份有限公司 Method for controlling defects in czochralski silicon single crystal rod
KR20150060690A (en) 2012-10-03 2015-06-03 신에쯔 한도타이 가부시키가이샤 Silicon single crystal growing apparatus and silicon single crystal growing method
JP2016141581A (en) * 2015-01-30 2016-08-08 イビデン株式会社 Fluid flow-rectification member
JP2016141582A (en) * 2015-01-30 2016-08-08 イビデン株式会社 Fluid flow-rectification member

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6251184B1 (en) 1997-02-13 2001-06-26 Samsung Electronics Co., Ltd. Insulating-containing ring-shaped heat shields for czochralski pullers
US6472040B1 (en) 1997-02-13 2002-10-29 Samsung Electronics Co., Ltd. Semi-pure and pure monocrystalline silicon ingots and wafers
US6485807B1 (en) 1997-02-13 2002-11-26 Samsung Electronics Co., Ltd. Silicon wafers having controlled distribution of defects, and methods of preparing the same
US6503594B2 (en) 1997-02-13 2003-01-07 Samsung Electronics Co., Ltd. Silicon wafers having controlled distribution of defects and slip
US6676753B2 (en) 1997-02-13 2004-01-13 Samsung Electronics Co., Ltd. Czochralski pullers for manufacturing monocrystalline silicon ingots, including heat shield having sloped portions
US6780238B2 (en) 1997-02-13 2004-08-24 Samsung Electronics Co., Ltd. Argon/ammonia rapid thermal annealing for silicon wafers
US6340392B1 (en) 1997-10-24 2002-01-22 Samsung Electronics Co., Ltd. Pulling methods for manufacturing monocrystalline silicone ingots by controlling temperature at the center and edge of an ingot-melt interface
JP2002538064A (en) * 1999-02-26 2002-11-12 エムイーエムシー・エレクトロニック・マテリアルズ・インコーポレイテッド Heat shield device for crystal pulling device
JP2010501466A (en) * 2006-09-01 2010-01-21 オクメティック オサケユフティオ ユルキネン Crystal production
WO2012031417A1 (en) * 2010-09-08 2012-03-15 有研半导体材料股份有限公司 Method for controlling defects in czochralski silicon single crystal rod
CN102400210A (en) * 2010-09-08 2012-04-04 北京有色金属研究总院 Method for adjusting defects in Czochralski silicon single crystal
KR20150060690A (en) 2012-10-03 2015-06-03 신에쯔 한도타이 가부시키가이샤 Silicon single crystal growing apparatus and silicon single crystal growing method
US9783912B2 (en) 2012-10-03 2017-10-10 Shin-Etsu Handotai Co., Ltd. Silicon single crystal growing apparatus and method for growing silicon single crystal
DE112013004069B4 (en) 2012-10-03 2023-02-02 Shin-Etsu Handotai Co., Ltd. Apparatus for growing a silicon single crystal and method for growing a silicon single crystal
JP2016141581A (en) * 2015-01-30 2016-08-08 イビデン株式会社 Fluid flow-rectification member
JP2016141582A (en) * 2015-01-30 2016-08-08 イビデン株式会社 Fluid flow-rectification member

Similar Documents

Publication Publication Date Title
JP4147599B2 (en) Silicon single crystal and manufacturing method thereof
EP2824222A1 (en) Silicon single crystal and method for manufacture thereof
JP2686223B2 (en) Single crystal manufacturing equipment
JPH06340490A (en) Apparatus for production of silicon single crystal
JPH0639351B2 (en) Apparatus and method for manufacturing single crystal ingot
JP2619611B2 (en) Single crystal manufacturing apparatus and manufacturing method
KR100504423B1 (en) Crystal growth method
EP1717355B1 (en) Production apparatus and process for producing silicon single crystal and silicon wafer
US20060191468A1 (en) Process for producing single crystal
JP2937109B2 (en) Single crystal manufacturing apparatus and manufacturing method
JPH07267776A (en) Growth method of single crystal
JP3207573B2 (en) Method and apparatus for producing single crystal
US6764548B2 (en) Apparatus and method for producing silicon semiconductor single crystal
WO1999037833A1 (en) Single crystal pull-up apparatus
JP4080657B2 (en) Method for producing silicon single crystal ingot
US5683505A (en) Process for producing single crystals
CN114929951A (en) Single crystal manufacturing apparatus
JPH07157391A (en) Production of silicon single crystal excellent in oxidized film pressure resistance and device thereof
JP2007210820A (en) Method of manufacturing silicon single crystal
JP2004521056A (en) Method and apparatus for producing single crystal silicon having a low iron concentration substantially free of aggregated intrinsic point defects
JPH06199590A (en) Device for producing semiconductor single crystal rod
JP2755452B2 (en) Silicon single crystal pulling equipment
JP3900816B2 (en) Silicon wafer manufacturing method
JP3079991B2 (en) Single crystal manufacturing apparatus and manufacturing method
JP2001220285A (en) Method for determining temperature gradient for silicon single crystal, thermosensor and method for growing silicon single crystal using the same