JP2005343722A - METHOD FOR GROWING AlN CRYSTAL, AlN CRYSTAL SUBSTRATE AND SEMICONDUCTOR DEVICE - Google Patents

METHOD FOR GROWING AlN CRYSTAL, AlN CRYSTAL SUBSTRATE AND SEMICONDUCTOR DEVICE Download PDF

Info

Publication number
JP2005343722A
JP2005343722A JP2004163500A JP2004163500A JP2005343722A JP 2005343722 A JP2005343722 A JP 2005343722A JP 2004163500 A JP2004163500 A JP 2004163500A JP 2004163500 A JP2004163500 A JP 2004163500A JP 2005343722 A JP2005343722 A JP 2005343722A
Authority
JP
Japan
Prior art keywords
aln
crystal
seed crystal
aln crystal
seed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004163500A
Other languages
Japanese (ja)
Inventor
Shinsuke Fujiwara
伸介 藤原
Tomomasa Miyanaga
倫正 宮永
Mitsuru Shimazu
充 嶋津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2004163500A priority Critical patent/JP2005343722A/en
Publication of JP2005343722A publication Critical patent/JP2005343722A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for growing an AlN crystal whereby a large AlN crystal can be obtained, an AlN crystal substrate and a semiconductor device containing the AlN crystal substrate. <P>SOLUTION: In the method for growing the AlN crystal 2, the AlN crystal is grown through a sublimation method by using a first AlN seed crystal 1 grown through an HVPE method. In an alternative method for growing the AlN crystal, the AlN crystal 2 is grown through the sublimation method by using a second AlN seed crystal 1 as a seed crystal, wherein the second AlN seed crystal 1 is at least a portion of the AlN crystal 2 obtained through the method for growing the AlN crystal. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、発光素子、電子素子、半導体センサなどの半導体デバイスの基板などに用いられるAlN結晶の成長方法に関する。さらに詳しくは、大型のAlN結晶の成長方法、AlN結晶基板およびAlN結晶基板を含む半導体デバイスに関する。   The present invention relates to an AlN crystal growth method used for a substrate of a semiconductor device such as a light emitting element, an electronic element, or a semiconductor sensor. More particularly, the present invention relates to a method for growing a large AlN crystal, an AlN crystal substrate, and a semiconductor device including the AlN crystal substrate.

AlN結晶などのIII族窒化物結晶は、発光素子、電子素子、半導体センサなどの半導体デバイスを形成するための材料として非常に有用なものである。   Group III nitride crystals such as AlN crystals are very useful as materials for forming semiconductor devices such as light-emitting elements, electronic elements, and semiconductor sensors.

かかるAlN結晶を作製するための方法としては、昇華法、HVPE(Hydride Vapor Phase Epitaxy;ハイドライド気相成長)法、MBE(Molecular Beam Epitaxy;分子線エピタキシ)法、MOCVD(Metal Organic Chemical Vapor Deposition;有機金属化学気相堆積)法などの気相成長法が提案されている。   Methods for producing such AlN crystals include sublimation method, HVPE (Hydride Vapor Phase Epitaxy) method, MBE (Molecular Beam Epitaxy) method, MOCVD (Metal Organic Chemical Vapor Deposition; organic). Vapor deposition methods such as metal chemical vapor deposition have been proposed.

ここで、昇華法では、種結晶を用いることなく、X線回折の半値幅が小さい結晶性のよい結晶が得られるが、大型の結晶の成長は困難である(たとえば、非特許文献1参照)。   Here, in the sublimation method, a crystal having good crystallinity with a small half-value width of X-ray diffraction can be obtained without using a seed crystal, but it is difficult to grow a large crystal (for example, see Non-Patent Document 1) .

しかし、昇華法において、種結晶として大型のSiC種結晶を用いて、SiC種結晶上にAlN結晶を成長させようとすると、SiC種結晶とAlN結晶とでは格子定数および線膨張係数が大きく異なるために、AlN結晶成長後の冷却時にAlN結晶に大きな引張応力がかかり、AlN結晶が割れてしまう問題があった(たとえば、非特許文献2参照)。   However, in the sublimation method, when a large SiC seed crystal is used as a seed crystal and an AlN crystal is grown on the SiC seed crystal, the lattice constant and the linear expansion coefficient are greatly different between the SiC seed crystal and the AlN crystal. In addition, there is a problem that a large tensile stress is applied to the AlN crystal during cooling after the growth of the AlN crystal and the AlN crystal is cracked (for example, see Non-Patent Document 2).

一方、気相成長法の一つであるHVPE法においては、Si基板またはSiC基板などの基板を用いて、これらの基板上にAlN結晶を成長させることによって、大型(大口径)のAlN結晶が得られている(たとえば、非特許文献3参照)。   On the other hand, in the HVPE method, which is one of the vapor phase growth methods, a large (large diameter) AlN crystal is obtained by growing an AlN crystal on a substrate such as a Si substrate or a SiC substrate. (For example, refer nonpatent literature 3).

しかし、上記HVPEにおいても、Si基板またはSiC基板とIII族窒化物結晶とでは格子定数および線膨張係数が大きく異なるため、結晶性のよい結晶を得ることが困難である。たとえば、Si基板またはSiC基板上に成長させたAlN結晶は、X線回折の半値幅が大きい。   However, even in the HVPE, since the lattice constant and the linear expansion coefficient are greatly different between the Si substrate or SiC substrate and the group III nitride crystal, it is difficult to obtain a crystal with good crystallinity. For example, an AlN crystal grown on a Si substrate or a SiC substrate has a large half width of X-ray diffraction.

なお、MBE法およびMOCVD法は、結晶の成長速度が低く、大型のAlN結晶を作製するためには不利である。
M.Tanaka, 他4名, “Morphology and X-Ray Diffraction Peak Widths of Aluminum Nitride Single Crystals Prepared by the Sublimation Method”, Jpn. J. Appl. Phys., Vol36, (1997), Pt.2, No.8B, p.L1062-L1064 L.Liu, 他3名, “Raman characterization and stress analysis of AlN grown on SiC by sublimation”, J. Appl. Phys., Vol. 92, Nov. (2002), No. 1, p.5183-5188 Yu.Melnik, 他11名, “AlN substrate: fabrication via vapor phase growth and characterization”, Phys. stat. sol., (a)200, (2002), No. 1, p.22-25
The MBE method and the MOCVD method are disadvantageous for producing a large AlN crystal because the crystal growth rate is low.
M. Tanaka and four others, “Morphology and X-Ray Diffraction Peak Widths of Aluminum Nitride Single Crystals Prepared by the Sublimation Method”, Jpn. J. Appl. Phys., Vol36, (1997), Pt.2, No. 8B, p.L1062-L1064 L. Liu and three others, “Raman characterization and stress analysis of AlN grown on SiC by sublimation”, J. Appl. Phys., Vol. 92, Nov. (2002), No. 1, p.5183-5188 Yu. Melnik and 11 others, “AlN substrate: fabrication via vapor phase growth and characterization”, Phys. Stat. Sol., (A) 200, (2002), No. 1, p.22-25

本発明は、上記問題点を解決して、大型のAlN結晶が得られるAlN結晶の成長方法、AlN結晶基板およびAlN結晶基板を含む半導体デバイスを提供することを目的とする。   An object of the present invention is to solve the above problems and provide an AlN crystal growth method capable of obtaining a large AlN crystal, an AlN crystal substrate, and a semiconductor device including the AlN crystal substrate.

本発明は、HVPE法により成長させた第1のAlN種結晶を用いて、昇華法によりAlN結晶を成長させるAlN結晶の成長方法である。   The present invention is an AlN crystal growth method in which an AlN crystal is grown by a sublimation method using a first AlN seed crystal grown by an HVPE method.

本発明にかかるAlN結晶の成長方法において、第1のAlN種結晶の結晶成長面を(0001)面または(000−1)面とすることができる。また、第1のAlN種結晶の直径が5cm以上の第1のAlN種結晶を用いることができる。   In the AlN crystal growth method according to the present invention, the crystal growth plane of the first AlN seed crystal can be a (0001) plane or a (000-1) plane. Alternatively, a first AlN seed crystal having a diameter of 5 cm or more can be used.

また、本発明にかかるAlN結晶の成長方法において、種結晶として上記のAlN結晶の成長方法により得られたAlN結晶の少なくとも一部である第2のAlN種結晶を準備し、この第2のAlN種結晶を用いて昇華法によりAlN結晶を成長させることができる。   In the AlN crystal growth method according to the present invention, a second AlN seed crystal that is at least a part of the AlN crystal obtained by the AlN crystal growth method is prepared as a seed crystal, and the second AlN crystal is prepared. An AlN crystal can be grown by a sublimation method using a seed crystal.

また、本発明は、AlN種結晶の平坦に加工された裏面に、結晶成長温度における昇華速度がAlN種結晶以下である種結晶保護材を密着させたAlN種結晶を用いて、昇華法によりAlN結晶を成長させるAlN結晶の成長方法である。   Further, the present invention uses an AlN seed crystal in which a seed crystal protective material having a sublimation rate at the crystal growth temperature equal to or lower than that of an AlN seed crystal is adhered to the flatly processed back surface of the AlN seed crystal by a sublimation method. This is a method for growing an AlN crystal to grow a crystal.

また、本発明は、上記のAlN結晶の成長方法により得られたAlN結晶の少なくとも一部を切り取り、その表面を研磨することにより得られるAlN結晶基板である。   The present invention also provides an AlN crystal substrate obtained by cutting at least a part of the AlN crystal obtained by the above-described AlN crystal growth method and polishing the surface thereof.

さらに、本発明は、上記のAlN結晶基板を含む半導体デバイスである。   Furthermore, this invention is a semiconductor device containing said AlN crystal substrate.

上記のように、本発明によれば、大型のAlN結晶が得られるAlN結晶の成長方法、AlN結晶基板およびAlN結晶基板を含む半導体デバイスを提供することができる。   As described above, according to the present invention, an AlN crystal growth method capable of obtaining a large AlN crystal, an AlN crystal substrate, and a semiconductor device including the AlN crystal substrate can be provided.

本発明にかかる一のAlN結晶の成長方法は、図1を参照して、HVPE法により成長させた第1のAlN種結晶1を用いて、昇華法によりAlN結晶2を成長させる方法である。   One AlN crystal growth method according to the present invention is a method of growing an AlN crystal 2 by a sublimation method using a first AlN seed crystal 1 grown by an HVPE method with reference to FIG.

HVPE法により成長させた第1のAlN種結晶は、結晶の成長速度が大きく大型の種結晶が得られる。ここで、昇華法により第1のAlN種結晶にAlN結晶を成長させると、種結晶と成長させる結晶との格子定数および線膨張係数が一致するため、割れを生じさせることなく大型のAlN結晶を得ることができる。   The first AlN seed crystal grown by the HVPE method has a large crystal growth rate and provides a large seed crystal. Here, when an AlN crystal is grown on the first AlN seed crystal by the sublimation method, since the lattice constant and the linear expansion coefficient of the seed crystal and the crystal to be grown coincide with each other, a large AlN crystal can be formed without causing cracks. Can be obtained.

ここで、本発明におけるHVPE法とは、図2を参照して、Al原料ガス7としてのハロゲン化Alガスと窒素原料ガス8とを反応させてAlN結晶(本発明における第1のAlN種結晶1)を成長させる方法をいう。   Here, the HVPE method in the present invention refers to an AlN crystal (first AlN seed crystal in the present invention) by reacting a halogenated Al gas as the Al source gas 7 with a nitrogen source gas 8 with reference to FIG. 1) refers to the method of growing.

HVPE法による結晶成長においては、たとえば、図2に示すようなHVPE装置20を用いる。このHVPE装置20は、反応容器21に下地基板9を載せるためのペディスタル22、下地基板9上にAl原料ガス7を導入するためのAl原料ガス導入口21a、下地基板9上に窒素原料ガス8を導入するための窒素原料ガス導入口21b、反応後のガスを排気するための排気口21c、反応容器21を加熱するためのヒータ25が配設されている。   In crystal growth by the HVPE method, for example, an HVPE apparatus 20 as shown in FIG. 2 is used. The HVPE apparatus 20 includes a pedestal 22 for placing the base substrate 9 on the reaction vessel 21, an Al source gas inlet 21 a for introducing the Al source gas 7 onto the base substrate 9, and a nitrogen source gas 8 on the base substrate 9. Is provided with a nitrogen source gas inlet 21b for exhausting, an exhaust outlet 21c for exhausting the reacted gas, and a heater 25 for heating the reaction vessel 21.

図2を参照して、上記HVPE装置20を用いて、たとえば、以下のようにしてAlN結晶を作製することができる。反応容器21内に設置されたペディスタル22上に、下地基板9としてSiC基板を配置し、Al原料ガス7としてハロゲン化Alガスを、窒素原料ガス8としてNH3ガスを、反応容器21内に導入して、Al原料ガス7と窒素原料ガス8とを反応させて、下地基板9に第1のAlN種結晶1を成長させる。Al原料ガス7の分圧を50Pa〜1×104Pa程度、窒素原料ガス8の分圧を5×103Pa〜5×104Pa程度、Al原料ガス7と窒素原料ガス8とのガス比(モル比)を1:10〜1:1000程度、下地基板9の温度を900℃〜1100℃程度にして、AlN種結晶1の成長速度を10μm/hr〜30μm/hr程度に調整することにより、結晶性のよい大型の第1のAlN種結晶1が得られる。 With reference to FIG. 2, using the HVPE apparatus 20, for example, an AlN crystal can be produced as follows. On the pedestal 22 installed in the reaction vessel 21, an SiC substrate is disposed as the base substrate 9, an Al halide gas as the Al source gas 7, and NH 3 gas as the nitrogen source gas 8 are introduced into the reaction vessel 21. Then, the Al source gas 7 and the nitrogen source gas 8 are reacted to grow the first AlN seed crystal 1 on the base substrate 9. The partial pressure of the Al source gas 7 is about 50 Pa to 1 × 10 4 Pa, the partial pressure of the nitrogen source gas 8 is about 5 × 10 3 Pa to 5 × 10 4 Pa, the gas of the Al source gas 7 and the nitrogen source gas 8 The ratio (molar ratio) is about 1:10 to 1: 1000, the temperature of the base substrate 9 is about 900 ° C. to 1100 ° C., and the growth rate of the AlN seed crystal 1 is adjusted to about 10 μm / hr to 30 μm / hr. Thus, a large first AlN seed crystal 1 with good crystallinity is obtained.

ここで、Al原料ガスおよび窒素原料ガスの導入に際しては、H2ガス、N2ガスまたはArガスなどのキャリアガスを用いることができる。Al原料ガスまたは窒素原料ガスに上記キャリアガスを加えることにより、Al原料ガスまたは窒素原料ガスの導入量を安定化させるとともに、Al原料ガスと窒素原料ガスとの反応性を調節することができ、効率よく結晶性のよい大型のAlN種結晶が得られる。 Here, when introducing the Al source gas and the nitrogen source gas, a carrier gas such as H 2 gas, N 2 gas or Ar gas can be used. By adding the carrier gas to the Al source gas or nitrogen source gas, the amount of introduction of the Al source gas or nitrogen source gas can be stabilized, and the reactivity between the Al source gas and the nitrogen source gas can be adjusted, A large AlN seed crystal with good crystallinity can be obtained efficiently.

また、図示はしないが、下地基板の表面を凹凸表面として、HVPE法によりAlN種結晶をラテラル成長させることも可能である。また、下地基板上に中間層を形成し、この中間層上にAlN種結晶を成長させることも可能である。これらの方法により、AlN種結晶の結晶性を向上させ転位密度を低減することができる。ここで、中間層に特に制限はないが、AlN種結晶の転位密度を低くすることにより結晶性を向上させる観点から、AlNアモルファス層を形成することが好ましい。このAlNアモルファス層は、たとえばHVPE法により下地基板温度を500℃〜600℃程度にして、下地基板上でハロゲン化AlガスとNH3ガスとを反応させることにより、下地基板上に形成させることができる。 Although not shown, it is also possible to laterally grow the AlN seed crystal by the HVPE method using the surface of the base substrate as an uneven surface. It is also possible to form an intermediate layer on the base substrate and grow an AlN seed crystal on the intermediate layer. By these methods, the crystallinity of the AlN seed crystal can be improved and the dislocation density can be reduced. Here, the intermediate layer is not particularly limited, but it is preferable to form an AlN amorphous layer from the viewpoint of improving crystallinity by reducing the dislocation density of the AlN seed crystal. The AlN amorphous layer can be formed on the base substrate by causing the base substrate temperature to be about 500 ° C. to 600 ° C., for example, by HVPE, and reacting the halogenated Al gas and NH 3 gas on the base substrate. it can.

次に、上記のHVPE法により得られた大型の第1のAlN種結晶を用いて、昇華法によりAlN結晶を成長させる。ここで、本発明における昇華法とは、図1を参照して、AlN粉末などのAlN原料5を昇華させた後、AlN種結晶1において再度固化させて、AlN種結晶1にAlN結晶2を成長させる方法をいう。昇華法による結晶成長においては、たとえば、図1に示すような高周波加熱方式の縦型の昇華炉10を用いる。この縦型の昇華炉10における反応容器11の中央部には、結晶成長容器として排気口12cを有するBN製の坩堝12が設けられ、坩堝12の周りに坩堝の内部から外部への通気を確保するように加熱体14が設けられている。また、反応容器11の外側中央部には、坩堝12を加熱するための高周波加熱コイル24が設けられている。さらに、反応容器21の端部には、反応容器11の坩堝12の外側にN2ガスを流すためのN2ガス導入口11aおよびN2ガス排気口11cと、坩堝12の下面および上面の温度を測定するための放射温度計16が設けられている。 Next, an AlN crystal is grown by a sublimation method using the large first AlN seed crystal obtained by the HVPE method. Here, the sublimation method in the present invention refers to FIG. 1, after sublimating an AlN raw material 5 such as an AlN powder, the AlN seed crystal 1 is solidified again, and the AlN seed crystal 1 is formed with the AlN crystal 2. A method of growing. In crystal growth by the sublimation method, for example, a high-frequency heating type vertical sublimation furnace 10 as shown in FIG. 1 is used. A BN-made crucible 12 having an exhaust port 12c is provided as a crystal growth container in the center of the reaction vessel 11 in the vertical sublimation furnace 10 to ensure ventilation around the crucible 12 from the inside of the crucible to the outside. The heating body 14 is provided to do this. In addition, a high-frequency heating coil 24 for heating the crucible 12 is provided at the outer central portion of the reaction vessel 11. Further, at the end of the reaction vessel 21, the N 2 gas introduction port 11 a and the N 2 gas exhaust port 11 c for flowing N 2 gas to the outside of the crucible 12 of the reaction vessel 11, and the temperatures of the lower surface and the upper surface of the crucible 12 are provided. A radiation thermometer 16 is provided for measuring.

図1を参照して、上記縦型の昇華炉10を用いて、たとえば、以下のようにしてAlN結晶2を作製することができる。坩堝12の上部にAlN種結晶1を、坩堝12の下部にAlN粉末などのAlN原料5を収納し、反応容器11内にN2ガスを流しながら、高周波加熱コイル24を用いて坩堝12内の温度を上昇させて、坩堝12のAlN原料5側の温度を、AlN種結晶1側の温度よりも高く保持することによって、AlN原料5からAlNを昇華させて、坩堝12の上部に配置されたAlN種結晶1上で、AlNを再度固化させてAlN結晶2を成長させる。 With reference to FIG. 1, for example, AlN crystal 2 can be manufactured as follows using vertical sublimation furnace 10. The AlN seed crystal 1 is housed in the upper part of the crucible 12, the AlN raw material 5 such as AlN powder is housed in the lower part of the crucible 12, and the high-frequency heating coil 24 is used to flow the N 2 gas into the reaction vessel 11. By raising the temperature and maintaining the temperature on the AlN raw material 5 side of the crucible 12 higher than the temperature on the AlN seed crystal 1 side, AlN was sublimated from the AlN raw material 5 and placed on top of the crucible 12. On the AlN seed crystal 1, AlN is solidified again to grow an AlN crystal 2.

ここで、AlN結晶2の成長中は、坩堝12のAlN原料5側の温度は2000℃〜2200℃程度とし、坩堝(結晶成長容器12)の上部のAlN種結晶1側の温度をAlN原料5側の温度より10℃〜100℃程度低くすることにより、結晶性のよいAlN結晶2が効率よく得られる。また、結晶成長中も反応容器11内の坩堝12の外側にN2ガスを、ガス分圧が101.3hPa〜1013hPa程度になるように流し続けることにより、AlN結晶2への不純物の混入を低減することができる。 Here, during the growth of the AlN crystal 2, the temperature on the AlN raw material 5 side of the crucible 12 is about 2000 ° C. to 2200 ° C., and the temperature on the AlN seed crystal 1 side in the upper part of the crucible (crystal growth vessel 12) is set to the AlN raw material 5. By making the temperature about 10 ° C. to 100 ° C. lower than the temperature on the side, the AlN crystal 2 having good crystallinity can be obtained efficiently. Further, during the crystal growth, N 2 gas is continuously supplied to the outside of the crucible 12 in the reaction vessel 11 so that the gas partial pressure is about 101.3 hPa to 1013 hPa, thereby reducing the contamination of impurities into the AlN crystal 2. can do.

なお、坩堝12内部の昇温中は、坩堝12のAlN種結晶1側の温度をAlN原料5側の温度よりも高くすることにより、昇温中にAlN種結晶1の表面をエッチングにより清浄するとともに、昇温中にAlN種結晶1および坩堝12内部から放出された不純物を、排気口12cを通じて除去することができ、AlN結晶2への不純物の混入をより低減することができる。   During the temperature rise inside the crucible 12, the surface of the AlN seed crystal 1 is cleaned by etching during the temperature rise by making the temperature on the AlN seed crystal 1 side of the crucible 12 higher than the temperature on the AlN raw material 5 side. At the same time, impurities released from the inside of the AlN seed crystal 1 and the crucible 12 during the temperature rise can be removed through the exhaust port 12c, and contamination of the impurities into the AlN crystal 2 can be further reduced.

上記図1においては、AlN種結晶1上に直接AlN結晶2を成長させる場合を示している。図示はしないが、AlN種結晶1上に中間層を形成した後、この中間層上に昇華法によりAlN結晶を成長させることもできる。ここで、中間層の化学組成、製造方法は特に限定されない。   FIG. 1 shows a case where the AlN crystal 2 is grown directly on the AlN seed crystal 1. Although not shown, after an intermediate layer is formed on the AlN seed crystal 1, an AlN crystal can be grown on the intermediate layer by a sublimation method. Here, the chemical composition and manufacturing method of the intermediate layer are not particularly limited.

本発明にかかるAlN結晶の成長方法において、第1のAlN種結晶の結晶成長面を(0001)面または(000−1)面とすることが好ましい。HVPE法によるAlN種結晶の成長においては、(0001)面または(000−1)面の結晶成長が容易であるため、このAlN種結晶を用いた昇華法によるAlN結晶の成長においても、第1のAlN種結晶の結晶成長面を(0001)面または(000−1)面とすることにより、大型結晶の成長が容易になる。   In the AlN crystal growth method according to the present invention, it is preferable that the crystal growth surface of the first AlN seed crystal is a (0001) plane or a (000-1) plane. In the growth of the AlN seed crystal by the HVPE method, since the crystal growth of the (0001) plane or the (000-1) plane is easy, the first growth of the AlN crystal by the sublimation method using the AlN seed crystal is also performed. By making the crystal growth surface of the AlN seed crystal a (0001) plane or a (000-1) plane, growth of a large crystal is facilitated.

また、本発明にかかるAlN種結晶の成長方法において、第1のAlN種結晶の直径は5cm以上であることが好ましい。HVPE法によれば、直径が5cm以上である大口径のAlN種結晶を容易に作製することができ、直径が5cm射上の大口径のAlN種結晶を用いることにより、昇華法においても大型のAlN結晶を作製することができる。   In the AlN seed crystal growth method according to the present invention, the diameter of the first AlN seed crystal is preferably 5 cm or more. According to the HVPE method, a large-diameter AlN seed crystal having a diameter of 5 cm or more can be easily produced. By using a large-diameter AlN seed crystal having a diameter of 5 cm, a large-sized AlN seed crystal can be obtained even in the sublimation method. An AlN crystal can be produced.

本発明にかかる別のAlN結晶の成長方法は、上記のAlN結晶の成長方法により得られたAlN結晶の少なくとも一部を第2のAlN種結晶として用いて、昇華法によりAlN結晶を成長させる方法である。昇華法により得られたAlN結晶を種結晶として用いて、さらに昇華法によりAlN結晶を成長させることにより、結晶性の高い大型のAlN結晶を容易に作製することができる。   Another AlN crystal growth method according to the present invention is a method of growing an AlN crystal by a sublimation method using at least a part of the AlN crystal obtained by the AlN crystal growth method as a second AlN seed crystal. It is. By using the AlN crystal obtained by the sublimation method as a seed crystal and further growing the AlN crystal by the sublimation method, a large AlN crystal with high crystallinity can be easily produced.

本発明にかかるさらに別のAlN結晶の成長方法は、図1を参照して、AlN種結晶1の平坦に加工された裏面に、結晶成長温度における昇華速度がAlN種結晶1以下である種結晶保護材13を密着させたAlN種結晶1を用いて、昇華法によりAlN結晶2を成長させる方法である。ここで、本成長方法においては、AlN種結晶の成長方法には特に制限はなく、昇華法またはHVPE法により成長させられたAlN種結晶(第1または第2のAlN種結晶)などが用いられる。   Still another AlN crystal growth method according to the present invention is described with reference to FIG. 1, on a flatly processed back surface of an AlN seed crystal 1, a seed crystal having a sublimation rate at the crystal growth temperature of AlN seed crystal 1 or less. In this method, an AlN crystal 2 is grown by a sublimation method using an AlN seed crystal 1 to which a protective material 13 is adhered. Here, in this growth method, the growth method of the AlN seed crystal is not particularly limited, and an AlN seed crystal (first or second AlN seed crystal) grown by the sublimation method or the HVPE method is used. .

AlN種結晶1の裏面に種結晶保護材13を密着させることにより、AlN種結晶の裏面からのAlNの昇華を防止することにより、成長させるAlN結晶中にボイドが発生するのを防止することができる。ここで、種結晶保護材は、AlN結晶の成長温度における昇華速度がAlN種結晶以下である材料であれば特に制限がなく、たとえば、BN、AlNなどの窒化物、TiCなどの炭化物、Y23、ZrO2などの酸化物、C(炭素)などを用いることができる。 By sticking the seed crystal protective material 13 to the back surface of the AlN seed crystal 1 to prevent sublimation of AlN from the back surface of the AlN seed crystal, it is possible to prevent generation of voids in the grown AlN crystal. it can. Here, the seed crystal protective material is not particularly limited as long as the sublimation rate at the growth temperature of the AlN crystal is equal to or lower than that of the AlN seed crystal. For example, nitrides such as BN and AlN, carbides such as TiC, Y 2 An oxide such as O 3 or ZrO 2 , C (carbon), or the like can be used.

本発明にかかる一のAlN結晶基板は、図3〜図5を参照して、図3に示すように上記のAlN結晶の成長方法によりAlN種結晶1に成長させたAlN結晶2の少なくとも一部を、図4に示すように切り取り、その表面を図5に示すように研磨することにより得られる。   One AlN crystal substrate according to the present invention is shown in FIG. 3 to FIG. 5, and as shown in FIG. 3, at least a part of the AlN crystal 2 grown on the AlN seed crystal 1 by the AlN crystal growth method described above. Is cut out as shown in FIG. 4 and the surface thereof is polished as shown in FIG.

ここで、図4および図5に示すように、AlN種結晶1とともにAlN結晶2を切り取り(図4(a))その表面を研磨をしたもの(図5(a))、AlN結晶2のみを切り取り(図4(b))その表面を研磨したもの(図5(b))、いずれのものもAlN結晶基板として用いることができる。   Here, as shown in FIGS. 4 and 5, the AlN crystal 2 is cut out together with the AlN seed crystal 1 (FIG. 4A), and the surface is polished (FIG. 5A), and only the AlN crystal 2 is removed. Any one of the cut (FIG. 4B) and the polished surface (FIG. 5B) can be used as the AlN crystal substrate.

本発明にかかる半導体デバイスは、上記のAlN結晶基板を含む。本発明における大型のAlN結晶基板を用いることにより、効率よくAlN結晶基板を含む半導体デバイスが得られる。本発明におけるAlN結晶基板を含む半導体デバイスとしては、発光ダイオード、レーザダイオードなどの発光素子、整流器、バイポーラトランジスタ、電界効果トランジスタ、HEMT(High Electron Mobility Transistor;高電子移動度トランジスタ)などの電子素子、温度センサ、圧力センサ、放射線センサ、可視−紫外光検出器などの半導体センサ、SAWデバイス(Surface Acoustic Wave Device;表面弾性波素子)などが挙げられる。   A semiconductor device according to the present invention includes the AlN crystal substrate described above. By using the large AlN crystal substrate in the present invention, a semiconductor device including the AlN crystal substrate can be obtained efficiently. Examples of the semiconductor device including the AlN crystal substrate in the present invention include light emitting elements such as light emitting diodes and laser diodes, electronic elements such as rectifiers, bipolar transistors, field effect transistors, and HEMTs (High Electron Mobility Transistors). Examples include a temperature sensor, a pressure sensor, a radiation sensor, a semiconductor sensor such as a visible-ultraviolet light detector, and a SAW device (Surface Acoustic Wave Device).

(実施例1)
HVPE法で成長させたAlN結晶を切り出したAlN種結晶(直径50mm×厚さ1.5mm、表面を鏡面に研磨した後、エッチングを行ない、研磨ダメージ層を除去したもの)上に、昇華法により以下のようにしてAlN結晶を成長させた。
(Example 1)
On the AlN seed crystal (diameter 50 mm × thickness 1.5 mm, after polishing the surface to a mirror surface and then etching and removing the polishing damage layer) by sublimation method on the AlN crystal grown by HVPE method An AlN crystal was grown as follows.

図1を参照して、BN製の坩堝12の下部にAlN粉末などのAlN原料5を収納し、内径48mmの坩堝12の上部に第1のAlN種結晶1を配置した。第1のAlN種結晶は平坦に加工されており、このAlN種結晶1の裏面に種結晶保護材13であるBN材が密着するように配置して、種結晶保護材13によってAlN種結晶の裏面からのAlNの昇華を防止した。   Referring to FIG. 1, AlN raw material 5 such as AlN powder was housed in the lower part of a BN crucible 12, and the first AlN seed crystal 1 was placed on the upper part of the crucible 12 having an inner diameter of 48 mm. The first AlN seed crystal is processed flat, and is arranged so that the BN material as the seed crystal protective material 13 is in close contact with the back surface of the AlN seed crystal 1. AlN sublimation from the back side was prevented.

次に、反応容器11内にN2ガスを流しながら、高周波加熱コイル15を用いて坩堝12内の温度を上昇させた。坩堝12内の昇温中は、坩堝12のAlN種結晶1側の温度をAlN原料5側の温度よりも高くして、昇温中にAlN種結晶1の表面をエッチングにより清浄するとともに、昇温中にAlN種結晶1および坩堝12内部から放出された不純物を、排気口12cを通じて除去した。 Next, the temperature in the crucible 12 was raised using the high-frequency heating coil 15 while flowing N 2 gas into the reaction vessel 11. During the temperature rise in the crucible 12, the temperature on the AlN seed crystal 1 side of the crucible 12 is set higher than the temperature on the AlN raw material 5 side, and the surface of the AlN seed crystal 1 is cleaned by etching during the temperature rise. Impurities released from the inside of the AlN seed crystal 1 and the crucible 12 during the warming were removed through the exhaust port 12c.

次に、坩堝12のAlN種結晶1側の温度を2100℃、AlN原料5側の温度を2150℃にして、AlN原料5からAlNを昇華させて、坩堝12の上部に配置されたAlN種結晶1上で、AlNを再度固化させてAlN結晶2を成長させた。AlN結晶成長中も、反応容器11内の坩堝12の外側にN2ガスを流し続け、反応容器11内の坩堝12の外側のガス分圧が101.3hPa〜1013hPa程度になるように、N2ガス導入量とN2ガス排気量とを制御した。上記の結晶成長条件で50時間AlN結晶を成長させた後、室温(25℃)まで冷却して、AlN結晶を得た。 Next, the temperature of the AlN seed crystal 1 side of the crucible 12 is 2100 ° C., the temperature of the AlN raw material 5 side is 2150 ° C., AlN is sublimated from the AlN raw material 5, and the AlN seed crystal disposed at the top of the crucible 12 1, AlN was solidified again to grow an AlN crystal 2. During AlN crystal growth, it continued to flow N 2 gas on the outside of the crucible 12 in the reaction vessel 11, as the outer gas partial pressure of the crucible 12 in the reaction vessel 11 is about 101.3HPa~1013hPa, N 2 The amount of gas introduced and the amount of N 2 gas exhaust were controlled. An AlN crystal was grown for 50 hours under the above crystal growth conditions, and then cooled to room temperature (25 ° C.) to obtain an AlN crystal.

得られたAlN結晶は、結晶の外周部において多結晶化が見られたが、結晶の中心から直径42mmの範囲内ではX線回折の半値幅は200arsecであり、半導体デバイスの基板として使用可能なAlN単結晶であった。このAlN結晶の厚さは、厚い部分で7.5mm、薄い部分で4.5mmであった。   The obtained AlN crystal was polycrystallized in the outer peripheral portion of the crystal, but the half-value width of X-ray diffraction was 200 ars within the range of 42 mm in diameter from the center of the crystal, which can be used as a substrate for a semiconductor device. It was an AlN single crystal. The thickness of the AlN crystal was 7.5 mm at the thick part and 4.5 mm at the thin part.

次に、得られた上記のAlN結晶を、図4に示すようにAlN結晶2の結晶成長面(C面)と平行な面でスライスし、また多結晶化した外周部を取り除き、図5に示すようにその表面を鏡面に研磨しエッチングを行なって、直径4.2mm×厚さ1.5mmのAlN結晶基板を得た。このAlN結晶基板の10μm角の範囲内におけるAFM(Atomic Force Microscope;原子間力顕微鏡)により観察したRMS(Root Mean Square:平均線から測定曲線までの偏差の二乗を平均した値の平方根)表面粗さは50nm(500Å)以下であった。   Next, the obtained AlN crystal was sliced on a plane parallel to the crystal growth surface (C plane) of the AlN crystal 2 as shown in FIG. 4, and the polycrystallized outer peripheral portion was removed, and FIG. As shown, the surface was polished to a mirror surface and etched to obtain an AlN crystal substrate having a diameter of 4.2 mm and a thickness of 1.5 mm. RMS (Root Mean Square) surface roughness measured by an AFM (Atomic Force Microscope) within a 10 μm square range of this AlN crystal substrate. The thickness was 50 nm (500 mm) or less.

なお、上記実施例におけるAlN結晶基板は、成長させたAlN結晶のC面に平行な面でスライスして作製したものであるが、AlN結晶のスライス面は、C面と平行な面に限定されず、A面、R面、M面またはS面に平行な面、またはこれらの面に対して任意の傾きを有する面とすることができる。   In addition, the AlN crystal substrate in the above-mentioned example is produced by slicing a plane parallel to the C plane of the grown AlN crystal, but the slice plane of the AlN crystal is limited to a plane parallel to the C plane. The surface can be a plane parallel to the A plane, R plane, M plane or S plane, or a plane having an arbitrary inclination with respect to these planes.

上記のように、HVPE法により成長させたAlN種結晶を用いて、昇華法によりAlN結晶を成長させることにより、大型のAlN結晶が得られる。   As described above, a large AlN crystal can be obtained by growing an AlN crystal by a sublimation method using an AlN seed crystal grown by an HVPE method.

今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した説明でなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内のすべての変更が含まれることが意図される。   It should be understood that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

上記のように、本発明は、大型のAlN結晶が得られるAlN結晶の成長方法、AlN結晶基板およびAlN結晶基板を含む半導体デバイスに広く利用することができる。   As described above, the present invention can be widely used for AlN crystal growth methods that can obtain large AlN crystals, AlN crystal substrates, and semiconductor devices including AlN crystal substrates.

本発明において、AlN種結晶を用いて昇華法によりAlN結晶を成長させる昇華炉を示す模式図である。In this invention, it is a schematic diagram which shows the sublimation furnace which makes an AlN crystal grow by a sublimation method using an AlN seed crystal. 本発明において、HVPE法によりAlN種結晶を成長させるHVPE装置を示す模式図である。In this invention, it is a schematic diagram which shows the HVPE apparatus which grows an AlN seed crystal by HVPE method. 本発明においてAlN種結晶にAlN結晶を成長させる工程を示す模式図である。It is a schematic diagram which shows the process of growing an AlN crystal | crystallization on an AlN seed crystal in this invention. 本発明においてAlN結晶を切り取る工程を示す模式図である。ここで、(a)はAlN種結晶とともにAlN結晶が切り取られた部分を示し、(b)および(c)はAlN結晶のみが切り取られた部分を示す。It is a schematic diagram which shows the process of cutting off an AlN crystal in this invention. Here, (a) shows the portion where the AlN crystal is cut out together with the AlN seed crystal, and (b) and (c) show the portion where only the AlN crystal is cut off. 本発明において切り取られたIII族窒化物結晶を研磨する工程を示す模式図である。ここで、(a)は種結晶とともに切り取られたIII族窒化物結晶が研磨された状態を示し、(b)は切り取られたIII族窒化物結晶が研磨された状態を示す。It is a schematic diagram which shows the process of grind | polishing the group III nitride crystal cut out in this invention. Here, (a) shows a state where the group III nitride crystal cut together with the seed crystal is polished, and (b) shows a state where the cut group III nitride crystal is polished.

符号の説明Explanation of symbols

1 AlN種結晶、2 AlN結晶、5 AlN原料、7 Al原料ガス、8 窒素原料ガス、9 下地基板、10 昇華炉、11,21 反応容器、11a N2ガス導入口、11c N2ガス排気口、12 坩堝、13 種結晶保護材、14 加熱体、15 高周波加熱コイル、16 放射温度計、20 HVPE装置、21a Al原料ガス導入口、21b 窒素原料ガス導入口、22 ペディスタル、25 ヒータ。 1 AlN seed crystal, 2 AlN crystal, 5 AlN raw material, 7 Al source gas, 8 nitrogen source gas 9 underlying substrate 10 sublimation furnace, 11 and 21 the reaction vessel, 11a N 2 gas inlet, 11c N 2 gas exhaust port , 12 crucible, 13 seed crystal protective material, 14 heating element, 15 high-frequency heating coil, 16 radiation thermometer, 20 HVPE device, 21a Al source gas inlet, 21b nitrogen source gas inlet, 22 pedestal, 25 heater.

Claims (7)

HVPE法により成長させた第1のAlN種結晶を用いて、昇華法によりAlN結晶を成長させるAlN結晶の成長方法。   An AlN crystal growth method in which an AlN crystal is grown by a sublimation method using a first AlN seed crystal grown by an HVPE method. 前記第1のAlN種結晶の結晶成長面が(0001)面または(000−1)面である請求項1に記載のAlN結晶の成長方法。   The method for growing an AlN crystal according to claim 1, wherein a crystal growth surface of the first AlN seed crystal is a (0001) plane or a (000-1) plane. 前記第1のAlN種結晶の直径が5cm以上である請求項1に記載のAlN結晶の成長方法。   The method for growing an AlN crystal according to claim 1, wherein the diameter of the first AlN seed crystal is 5 cm or more. 種結晶として、請求項1から請求項3のいずれかに記載のAlN結晶の成長方法により得られたAlN結晶の少なくとも一部である第2のAlN種結晶を準備し、前記第2のAlN種結晶を用いて昇華法によりAlN結晶を成長させるAlN結晶の成長方法。   A second AlN seed crystal that is at least part of the AlN crystal obtained by the AlN crystal growth method according to any one of claims 1 to 3 is prepared as a seed crystal, and the second AlN seed is prepared. A method for growing an AlN crystal, in which an AlN crystal is grown by sublimation using the crystal. AlN種結晶の平坦に加工された裏面に、結晶成長温度における昇華速度が前記AlN種結晶以下である種結晶保護材を密着させた前記AlN種結晶を用いて、昇華法によりAlN結晶を成長させるAlN結晶の成長方法。   An AlN crystal is grown by a sublimation method using the AlN seed crystal in which a seed crystal protective material having a sublimation rate at a crystal growth temperature equal to or lower than the AlN seed crystal is adhered to the flatly processed back surface of the AlN seed crystal. AlN crystal growth method. 請求項1から請求項5のいずれかに記載のAlN結晶の成長方法により得られたAlN結晶の少なくとも一部を切り取り、その表面を研磨することにより得られるAlN結晶基板。   An AlN crystal substrate obtained by cutting at least a part of an AlN crystal obtained by the AlN crystal growth method according to any one of claims 1 to 5 and polishing the surface thereof. 請求項6に記載のAlN結晶基板を含む半導体デバイス。   A semiconductor device comprising the AlN crystal substrate according to claim 6.
JP2004163500A 2004-06-01 2004-06-01 METHOD FOR GROWING AlN CRYSTAL, AlN CRYSTAL SUBSTRATE AND SEMICONDUCTOR DEVICE Pending JP2005343722A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004163500A JP2005343722A (en) 2004-06-01 2004-06-01 METHOD FOR GROWING AlN CRYSTAL, AlN CRYSTAL SUBSTRATE AND SEMICONDUCTOR DEVICE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004163500A JP2005343722A (en) 2004-06-01 2004-06-01 METHOD FOR GROWING AlN CRYSTAL, AlN CRYSTAL SUBSTRATE AND SEMICONDUCTOR DEVICE

Publications (1)

Publication Number Publication Date
JP2005343722A true JP2005343722A (en) 2005-12-15

Family

ID=35496441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004163500A Pending JP2005343722A (en) 2004-06-01 2004-06-01 METHOD FOR GROWING AlN CRYSTAL, AlN CRYSTAL SUBSTRATE AND SEMICONDUCTOR DEVICE

Country Status (1)

Country Link
JP (1) JP2005343722A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007080881A1 (en) * 2006-01-12 2007-07-19 Sumitomo Electric Industries, Ltd. Method for manufacturing aluminum nitride crystal, aluminum nitride crystal, aluminum nitride crystal substrate and semiconductor device
JP2007214547A (en) * 2006-01-12 2007-08-23 Sumitomo Electric Ind Ltd Aluminum nitride crystal, manufacturing method thereof, substrate thereof, and semiconductor device
WO2007111219A1 (en) * 2006-03-29 2007-10-04 Sumitomo Electric Industries, Ltd. Method for growing iii nitride single crystal
WO2008004424A1 (en) 2006-07-04 2008-01-10 Sumitomo Electric Industries, Ltd. PROCESS FOR PRODUCING SUBSTRATE OF AlN CRYSTAL, METHOD OF GROWING AlN CRYSTAL, AND SUBSTRATE OF AlN CRYSTAL
JP2009091186A (en) * 2007-10-05 2009-04-30 Sumitomo Electric Ind Ltd Method for growing aluminum nitride crystal and crystal growth device
JP2009132569A (en) * 2007-11-30 2009-06-18 Sumitomo Electric Ind Ltd Method for growing aluminum nitride crystal, method for producing aluminum nitride crystal, and aluminum nitride crystal
WO2009090831A1 (en) * 2008-01-15 2009-07-23 Sumitomo Electric Industries, Ltd. Method for growing aluminum nitride crystal, process for producing aluminum nitride crystal, and aluminum nitride crystal
JP2011132079A (en) * 2009-12-25 2011-07-07 National Institute Of Advanced Industrial Science & Technology Aluminum nitride single crystal, method and apparatus for manufacturing the same
JP2012140328A (en) * 2006-06-20 2012-07-26 Sumitomo Electric Ind Ltd AlxGa1-xN CRYSTAL SUBSTRATE
CN109023513A (en) * 2018-08-20 2018-12-18 深圳大学 Prepare the Crucible equipment and method of aluminum nitride crystal

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007080881A1 (en) * 2006-01-12 2007-07-19 Sumitomo Electric Industries, Ltd. Method for manufacturing aluminum nitride crystal, aluminum nitride crystal, aluminum nitride crystal substrate and semiconductor device
JP2007214547A (en) * 2006-01-12 2007-08-23 Sumitomo Electric Ind Ltd Aluminum nitride crystal, manufacturing method thereof, substrate thereof, and semiconductor device
KR101404270B1 (en) 2006-01-12 2014-06-05 스미토모덴키고교가부시키가이샤 Method for manufacturing aluminum nitride crystal, aluminum nitride crystal, aluminum nitride crystal substrate and semiconductor device
EP1972702A1 (en) * 2006-01-12 2008-09-24 Sumitomo Electric Industries, Ltd. Method for manufacturing aluminum nitride crystal, aluminum nitride crystal, aluminum nitride crystal substrate and semiconductor device
EP1972702A4 (en) * 2006-01-12 2010-08-11 Sumitomo Electric Industries Method for manufacturing aluminum nitride crystal, aluminum nitride crystal, aluminum nitride crystal substrate and semiconductor device
WO2007111219A1 (en) * 2006-03-29 2007-10-04 Sumitomo Electric Industries, Ltd. Method for growing iii nitride single crystal
JP5374872B2 (en) * 2006-03-29 2013-12-25 住友電気工業株式会社 Group III nitride single crystal growth method
US8361226B2 (en) 2006-03-29 2013-01-29 Sumitomo Electric Industries, Ltd. III-nitride single-crystal growth method
CN101351579B (en) * 2006-03-29 2011-11-02 住友电气工业株式会社 Method for growing III nitride single crystal
JP2012140328A (en) * 2006-06-20 2012-07-26 Sumitomo Electric Ind Ltd AlxGa1-xN CRYSTAL SUBSTRATE
US20090280354A1 (en) * 2006-07-04 2009-11-12 Sumitomo Electric Industries, Ltd. Process for Producing Substrate of AlN Crystal, Method of Growing AlN Crystal, and Substrate of AlN Crystal
EP2037012A1 (en) * 2006-07-04 2009-03-18 Sumitomo Electric Industries, Ltd. PROCESS FOR PRODUCING SUBSTRATE OF AlN CRYSTAL, METHOD OF GROWING AlN CRYSTAL, AND SUBSTRATE OF AlN CRYSTAL
WO2008004424A1 (en) 2006-07-04 2008-01-10 Sumitomo Electric Industries, Ltd. PROCESS FOR PRODUCING SUBSTRATE OF AlN CRYSTAL, METHOD OF GROWING AlN CRYSTAL, AND SUBSTRATE OF AlN CRYSTAL
CN101484617A (en) * 2006-07-04 2009-07-15 住友电气工业株式会社 Process for producing substrate of AlN crystal, method of growing AlN crystal, and substrate of AlN crystal
EP2037012A4 (en) * 2006-07-04 2010-08-11 Sumitomo Electric Industries PROCESS FOR PRODUCING SUBSTRATE OF AlN CRYSTAL, METHOD OF GROWING AlN CRYSTAL, AND SUBSTRATE OF AlN CRYSTAL
JP2008013390A (en) * 2006-07-04 2008-01-24 Sumitomo Electric Ind Ltd MANUFACTURING METHOD OF AlN CRYSTAL SUBSTRATE, GROWING METHOD OF AlN CRYSTAL AND AlN CRYSTAL SUBSTRATE
JP2009091186A (en) * 2007-10-05 2009-04-30 Sumitomo Electric Ind Ltd Method for growing aluminum nitride crystal and crystal growth device
JP2009132569A (en) * 2007-11-30 2009-06-18 Sumitomo Electric Ind Ltd Method for growing aluminum nitride crystal, method for producing aluminum nitride crystal, and aluminum nitride crystal
JP2009190965A (en) * 2008-01-15 2009-08-27 Sumitomo Electric Ind Ltd Method for growing aluminum nitride crystal, method for producing aluminum nitride crystal and aluminum nitride crystal
US8323402B2 (en) 2008-01-15 2012-12-04 Sumitomo Electric Industries, Ltd. Method for growing aluminum nitride crystal, process for producing aluminum nitride crystal, and aluminum nitride crystal
CN101842524B (en) * 2008-01-15 2013-05-01 住友电气工业株式会社 Method for growing aluminum nitride crystal, process for producing aluminum nitride crystal, and aluminum nitride crystal
WO2009090831A1 (en) * 2008-01-15 2009-07-23 Sumitomo Electric Industries, Ltd. Method for growing aluminum nitride crystal, process for producing aluminum nitride crystal, and aluminum nitride crystal
KR101504772B1 (en) * 2008-01-15 2015-03-20 스미토모덴키고교가부시키가이샤 Method for growing aluminum nitride crystal, process for producing aluminum nitride crystal, and aluminum nitride crystal
JP2011132079A (en) * 2009-12-25 2011-07-07 National Institute Of Advanced Industrial Science & Technology Aluminum nitride single crystal, method and apparatus for manufacturing the same
CN109023513A (en) * 2018-08-20 2018-12-18 深圳大学 Prepare the Crucible equipment and method of aluminum nitride crystal

Similar Documents

Publication Publication Date Title
JP6830658B2 (en) Nitride semiconductor substrate manufacturing method and manufacturing equipment
JP5324110B2 (en) Laminated body and method for producing the same
JP5560528B2 (en) Method for producing group III nitride single crystal ingot and method for producing group III nitride single crystal substrate
JP2006016294A (en) Method for growing group iii nitride crystal, group iii nitride crystal substrate, and semiconductor device
JP4603386B2 (en) Method for producing silicon carbide single crystal
KR101749781B1 (en) Single-crystal substrate, group ⅲ element nitride crystal obtained using same, and process for producing group ⅲ element nitride crystal
JP2007217227A (en) METHOD FOR PRODUCING GaN CRYSTAL, GaN CRYSTAL SUBSTRATE, AND SEMICONDUCTOR DEVICE
WO2010007867A1 (en) Process for producing group iii nitride crystal and group iii nitride crystal
TW201221710A (en) Gan-crystal free-standing substrate and method for producing the same
WO2007013286A1 (en) AlN CRYSTAL AND METHOD FOR GROWING THE SAME, AND AlN CRYSTAL SUBSTRATE
JP4600160B2 (en) Group III nitride crystal growth method
JP4733882B2 (en) Silicon carbide single crystal, method for producing the same, and silicon carbide crystal raw material for growing silicon carbide single crystal
JP2005343722A (en) METHOD FOR GROWING AlN CRYSTAL, AlN CRYSTAL SUBSTRATE AND SEMICONDUCTOR DEVICE
JP4460236B2 (en) Silicon carbide single crystal wafer
JP4408247B2 (en) Seed crystal for growing silicon carbide single crystal and method for producing silicon carbide single crystal using the same
JP3508519B2 (en) Epitaxial growth apparatus and epitaxial growth method
JP5303941B2 (en) Method of growing AlxGa1-xN single crystal
JP2014047097A (en) Manufacturing method for nitride semiconductor crystal
JP2006021964A (en) Ain single crystal and its growth method
JP2008230868A (en) Method for growing gallium nitride crystal and gallium nitride crystal substrate
JP4595592B2 (en) Single crystal growth method
JPH07267795A (en) Growth method of silicon carbide single crystal
JP2009102187A (en) Crucible for growth of silicon carbide single crystal, method of manufacturing silicon carbide single crystal using the same, and silicon carbide single crystal ingot
Rojo et al. Single-crystal aluminum nitride substrate preparation from bulk crystals
JP2003137694A (en) Seed crystal for growing silicon carbide single crystal, silicon carbide single crystal ingot and method of producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070220

A977 Report on retrieval

Effective date: 20090424

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090512

A521 Written amendment

Effective date: 20090707

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090825

A02 Decision of refusal

Effective date: 20091222

Free format text: JAPANESE INTERMEDIATE CODE: A02