JP2009102187A - Crucible for growth of silicon carbide single crystal, method of manufacturing silicon carbide single crystal using the same, and silicon carbide single crystal ingot - Google Patents

Crucible for growth of silicon carbide single crystal, method of manufacturing silicon carbide single crystal using the same, and silicon carbide single crystal ingot Download PDF

Info

Publication number
JP2009102187A
JP2009102187A JP2007274115A JP2007274115A JP2009102187A JP 2009102187 A JP2009102187 A JP 2009102187A JP 2007274115 A JP2007274115 A JP 2007274115A JP 2007274115 A JP2007274115 A JP 2007274115A JP 2009102187 A JP2009102187 A JP 2009102187A
Authority
JP
Japan
Prior art keywords
crucible
single crystal
silicon carbide
seed crystal
carbide single
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007274115A
Other languages
Japanese (ja)
Other versions
JP4850807B2 (en
Inventor
Noboru Otani
昇 大谷
Masakazu Katsuno
正和 勝野
Masashi Nakabayashi
正史 中林
Tatsuo Fujimoto
辰雄 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2007274115A priority Critical patent/JP4850807B2/en
Publication of JP2009102187A publication Critical patent/JP2009102187A/en
Application granted granted Critical
Publication of JP4850807B2 publication Critical patent/JP4850807B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a crucible for the growth of a SiC single crystal for producing a high quality SiC single crystal wafer which is reduced in transfer defect and has a large diameter, with high reproducibility. <P>SOLUTION: In an apparatus for the growth of the SiC single crystal by a sublimation re-crystallization method, the whole of the crucible is composed of a 2 or more kinds of materials each having different thermal expansion coefficient and a crucible component material of a seed crystal holding part 4 to which the SiC seed crystal 1 is attached has thermal expansion coefficient substantially smaller than that of another part. At least one kind of a component material of the crucible is made from graphite and the thermal expansion coefficient of the seed crystal holding part 4 at 2,000°C is 5.0-5.5×10<SP>-6</SP>/°C. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、炭化珪素単結晶育成用坩堝、及びこれを用いた炭化珪素単結晶の製造方法、並びに炭化珪素単結晶インゴットに関し、特に、電子デバイスの基板ウェハとなる良質で大型の炭化珪素単結晶インゴットを得るのに好適な炭化珪素単結晶育成用坩堝、及びこれを用いた炭化珪素単結晶の製造方法、並びに炭化珪素単結晶インゴットに関するものである。   The present invention relates to a crucible for growing a silicon carbide single crystal, a method for producing a silicon carbide single crystal using the same, and a silicon carbide single crystal ingot, and in particular, a high-quality and large-sized silicon carbide single crystal that serves as a substrate wafer of an electronic device. The present invention relates to a crucible for growing a silicon carbide single crystal suitable for obtaining an ingot, a method for producing a silicon carbide single crystal using the crucible, and a silicon carbide single crystal ingot.

炭化珪素(SiC)は、耐熱性及び機械的強度に優れ、放射線に強い等の物理的、化学的性質から耐環境性半導体材料として注目されている。また、近年、青色から紫外にかけての短波長光デバイス、高周波・高耐圧電子デバイス等の基板ウェハとしてSiC単結晶ウェハの需要が高まっている。しかしながら、大面積を有する高品質のSiC単結晶を、工業的規模で安定に供給し得る結晶成長技術は、未だ確立されていない。それ故、SiCは、上述のような多くの利点及び可能性を有する半導体材料にもかかわらず、その実用化が阻まれていた。   Silicon carbide (SiC) has attracted attention as an environmentally resistant semiconductor material because of its physical and chemical properties such as excellent heat resistance and mechanical strength, and resistance to radiation. In recent years, the demand for SiC single crystal wafers as substrate wafers for short wavelength optical devices from blue to ultraviolet, high frequency / high voltage electronic devices, and the like has been increasing. However, a crystal growth technique that can stably supply a high-quality SiC single crystal having a large area on an industrial scale has not yet been established. Therefore, practical use of SiC has been hindered despite the semiconductor material having many advantages and possibilities as described above.

従来、研究室程度の規模では、例えば昇華再結晶法(レーリー法)でSiC単結晶を成長させ、半導体素子の作製が可能なサイズのSiC単結晶を得ていた。しかしながら、この方法では、得られた単結晶の面積が小さく、その寸法及び形状を高精度に制御することは困難である。また、SiCが有する結晶多形及び不純物キャリア濃度の制御も容易ではない。また、化学気相成長法(CVD法)を用いて珪素(Si)等の異種基板上にヘテロエピタキシャル成長させることにより立方晶のSiC単結晶を成長させることも行われている。この方法では、大面積の単結晶は得られるが、基板との格子不整合が約20%あることにより、積層欠陥等の結晶欠陥が入り易く、高品質のSiC単結晶を得ることは難しい。   Conventionally, on a laboratory scale scale, for example, a SiC single crystal was grown by a sublimation recrystallization method (Rayleigh method) to obtain a SiC single crystal of a size capable of producing a semiconductor element. However, with this method, the area of the obtained single crystal is small, and it is difficult to control its size and shape with high accuracy. Also, it is not easy to control the crystal polymorphism and impurity carrier concentration of SiC. In addition, a cubic SiC single crystal is grown by heteroepitaxial growth on a heterogeneous substrate such as silicon (Si) using chemical vapor deposition (CVD). In this method, a single crystal having a large area can be obtained. However, since the lattice mismatch with the substrate is about 20%, crystal defects such as stacking faults are easily generated, and it is difficult to obtain a high-quality SiC single crystal.

これらの問題点を解決するために、SiC単結晶を種結晶として用いて昇華再結晶化を行う改良型のレーリー法が提案され(非特許文献1)、多くの研究機関で実施されている。この方法では、種結晶を用いているため結晶の核形成過程が制御でき、また、不活性ガスにより雰囲気圧力を100Pa〜15kPa程度に制御することにより結晶の成長速度等を再現性良くコントロールできる。   In order to solve these problems, an improved Rayleigh method in which sublimation recrystallization is performed using a SiC single crystal as a seed crystal has been proposed (Non-patent Document 1) and has been implemented in many research institutions. In this method, since the seed crystal is used, the nucleation process of the crystal can be controlled, and the growth rate of the crystal can be controlled with good reproducibility by controlling the atmospheric pressure to about 100 Pa to 15 kPa with an inert gas.

図1を用いて改良レーリー法の原理を説明する。種結晶となるSiC単結晶と原料となるSiC結晶粉末は坩堝(通常黒鉛)の中に収納され、アルゴン等の不活性ガス雰囲気中(133〜13.3kPa)、2000〜2400℃に加熱される。この際、原料粉末に比べ、種結晶がやや低温になるように、温度勾配が設定される。原料は昇華後、濃度勾配(温度勾配により形成される)により種結晶方向へ拡散、輸送される。単結晶成長は、種結晶に到着した原料ガスが種結晶上で再結晶化することにより実現される。この際、結晶の抵抗率は、不活性ガスからなる雰囲気中に不純物ガスを添加する、あるいはSiC原料粉末中に不純物元素あるいはその化合物を混合することにより、制御可能である。SiC単結晶中の置換型不純物として代表的なものに、窒素(n型)、ホウ素(p型)、アルミニウム(p型)がある。改良レーリー法を用いれば、SiC単結晶の結晶多形(6H型、4H型、15R型等)及び形状、キャリア型及び濃度を制御しながら、SiC単結晶を成長させることができる。   The principle of the improved Rayleigh method will be described with reference to FIG. The SiC single crystal serving as a seed crystal and the SiC crystal powder serving as a raw material are stored in a crucible (usually graphite) and heated to 2000 to 2400 ° C. in an inert gas atmosphere such as argon (133 to 13.3 kPa). At this time, the temperature gradient is set so that the seed crystal has a slightly lower temperature than the raw material powder. After sublimation, the raw material is diffused and transported in the direction of the seed crystal by a concentration gradient (formed by a temperature gradient). Single crystal growth is realized by recrystallization of the source gas that has arrived at the seed crystal on the seed crystal. At this time, the resistivity of the crystal can be controlled by adding an impurity gas in an atmosphere made of an inert gas or mixing an impurity element or a compound thereof in the SiC raw material powder. Typical substitutional impurities in SiC single crystals include nitrogen (n-type), boron (p-type), and aluminum (p-type). By using the modified Rayleigh method, it is possible to grow a SiC single crystal while controlling the crystal polymorphism (6H type, 4H type, 15R type, etc.), shape, carrier type and concentration of the SiC single crystal.

現在、上記の改良レーリー法で作製したSiC単結晶から口径2インチ(50.8mm)から3インチ(76.2mm)のSiC単結晶ウェハが切り出され、エピタキシャル薄膜成長、デバイス作製に供されている。しかしながら、これらのSiC単結晶ウェハには、デバイスの製造歩留り等に重大な影響を及ぼす転位欠陥が104cm-2以上含まれており、高歩留りなデバイス製造を妨げていた。 Currently, SiC single crystal wafers having a diameter of 2 inches (50.8 mm) to 3 inches (76.2 mm) are cut out from the SiC single crystals produced by the above-described improved Rayleigh method, and are used for epitaxial thin film growth and device fabrication. However, these SiC single crystal wafers contain 10 4 cm −2 or more of dislocation defects that have a significant effect on device manufacturing yield and the like, which hinders high yield device manufacturing.

上記したように、従来の技術で作られたSiC単結晶には転位欠陥が多量に含まれていた。これらの欠陥は、結晶成長中に、結晶が熱応力を受けることにより発生することが報告されている。また、特許文献1には、結晶成長時に、成長するSiC単結晶と坩堝部材が接触することにより成長結晶中に機械的応力が発生し、その結果、転位欠陥が発生すると記載されている。特許文献1では、この接触を防ぐために坩堝内にガイド部材構造を設置し、さらに、このガイド部材と坩堝及び種結晶との間に特定の寸法の隙間を設け、この隙間を原料からの昇華ガスが流れることによって成長結晶と坩堝部材との接触を防いでいる。
特開2007-77017号公報 Yu. M. Tairov and V. F. Tsvetkov, Journal of Crystal Growth, Vol.52 (1981) pp.146-150
As described above, the SiC single crystal produced by the conventional technique contained a large amount of dislocation defects. It has been reported that these defects occur due to thermal stress of the crystal during crystal growth. Patent Document 1 describes that, during crystal growth, a growing SiC single crystal and a crucible member come into contact with each other to generate mechanical stress in the grown crystal, resulting in dislocation defects. In Patent Document 1, in order to prevent this contact, a guide member structure is installed in the crucible, and a gap of a specific size is provided between the guide member, the crucible and the seed crystal, and this gap is sublimated gas from the raw material. Flows to prevent contact between the grown crystal and the crucible member.
JP 2007-77017 A Yu. M. Tairov and VF Tsvetkov, Journal of Crystal Growth, Vol.52 (1981) pp.146-150

従来、成長結晶と坩堝部材の接触防止に関しては、特許文献1に記載の方法のように、坩堝内に種々の内部構造を導入することにより目的を達成してきた。しかしながら、坩堝内に、特許文献1に記載されているような複雑な内部構造を設けた場合、坩堝の設計自由度が大きく損なわれ、結果として、成長結晶の大型化や高品質化のための坩堝・プロセス設計に大きな制限を受けることになる。また、複雑な坩堝内部構造は、坩堝全体のコスト増をもたらし、製造されるSiC単結晶インゴットのコスト増の原因となっていた。   Conventionally, with respect to preventing contact between the grown crystal and the crucible member, the object has been achieved by introducing various internal structures into the crucible, as in the method described in Patent Document 1. However, when a complicated internal structure as described in Patent Document 1 is provided in the crucible, the design freedom of the crucible is greatly impaired, and as a result, the size of the grown crystal is increased in size and quality. The crucible process design will be severely limited. Moreover, the complicated crucible internal structure caused an increase in the cost of the entire crucible and caused an increase in the cost of the manufactured SiC single crystal ingot.

本発明は、上記事情に鑑みてなされたものであり、複雑な坩堝内部構造を用いることなく、成長結晶に働く応力を最小とし、高品質なSiC単結晶インゴットを低コストに製造するための、SiC単結晶育成用坩堝、及びこれを用いたSiC単結晶の製造方法、並びにSiC単結晶インゴット等を提供するものである。   The present invention has been made in view of the above circumstances, and without using a complicated crucible internal structure, to minimize the stress acting on the growth crystal, to produce a high-quality SiC single crystal ingot at a low cost, The present invention provides a crucible for growing a SiC single crystal, a method for producing a SiC single crystal using the same, a SiC single crystal ingot, and the like.

本発明は、
(1) 種結晶を坩堝内に収納し、昇華再結晶法により種結晶上に炭化珪素(SiC)単結晶を成長させる工程を包含するSiC単結晶の製造方法に用いる坩堝であって、種結晶を保持する種結晶保持部が2000℃における熱膨張係数が4.5×10-6/℃以上5.5×10-6/℃以下である材料により構成されていることを特徴とするSiC単結晶育成用坩堝、
(2) 前記種結晶保持部が2000℃における熱膨張係数が5.0×10-6/℃以上5.5×10-6/℃以下である材料により構成されている(1)に記載のSiC単結晶育成用坩堝、
(3) 前記種結晶保持部の構成材料が黒鉛である(1)又は(2)の何れかに記載のSiC単結晶育成用坩堝、
(4) 前記坩堝の全ての構成材料が黒鉛である(1)又は(2)の何れかに記載のSiC単結晶育成用坩堝、
(5) 種結晶を坩堝内に収納し、昇華再結晶法により種結晶上にSiC単結晶を成長させる工程を包含するSiC単結晶の製造方法に用いる坩堝であって、該坩堝全体が熱膨張係数の異なる2種類以上の材料から構成され、且つ種結晶を保持する種結晶保持部の坩堝構成材料が、実質的に他の部分より小さな熱膨張係数を有することを特徴とするSiC単結晶育成用坩堝、
(6) 前記種結晶保持部の坩堝構成材料の2000℃における熱膨張係数が4.5×10-6/℃以上5.5×10-6/℃以下である(5)に記載のSiC単結晶育成用坩堝、
(7) 前記種結晶保持部の坩堝構成材料の2000℃における熱膨張係数が5.0×10-6/℃以上5.5×10-6/℃以下である(5)に記載のSiC単結晶育成用坩堝、
(8) 前記坩堝の少なくとも1種類の構成材料が黒鉛である(5)〜(7)の何れかに記載のSiC単結晶育成用坩堝、
(9) 前記坩堝の全ての構成材料が黒鉛である請求項(5)〜(7)の何れかに記載のSiC単結晶育成用坩堝、
(10) 種結晶を坩堝内に収納し、昇華再結晶法により種結晶上に炭化珪素単結晶を成長させる工程を包含する炭化珪素単結晶の製造方法に用いる坩堝であって、該坩堝全体が熱膨張係数の異なる2種類以上の材料から構成され、種結晶を保持する種結晶保持部の坩堝構成材料が、実質的に他の部分より小さな熱膨張係数を有し、且つ種結晶保持部が種結晶と接触している部分とそれ以外の部分とに別けられ、該種結晶保持部の種結晶と接触していない部分の構成材料が、種結晶と接触している部分の構成材料よりも小さな熱膨張係数を有することを特徴とする炭化珪素単結晶育成用坩堝、
(11) 前記種結晶保持部の種結晶と接触している部分の構成材料の2000℃における熱膨張係数が4.5×10-6/℃以上5.5×10-6/℃以下である(10)に記載のSiC単結晶育成用坩堝、
(12) 前記種結晶保持部の種結晶と接触している部分の構成材料の2000℃における熱膨張係数が5.0×10-6/℃以上5.5×10-6/℃以下である(10)に記載のSiC単結晶育成用坩堝、
(13) 前記坩堝の少なくとも1種類の構成材料が黒鉛である(10)〜(12)の何れかに記載のSiC単結晶育成用坩堝、
(14) 前記坩堝の全ての構成材料が黒鉛である(10)〜(12)の何れかに記載のSiC単結晶育成用坩堝、
(15) 種結晶を坩堝内に収納し、昇華再結晶法により種結晶上にSiC単結晶を成長させる工程を包含するSiC単結晶の製造方法であって、前記坩堝として(1)〜(14)の何れかに記載の坩堝を用いることを特徴とするSiC単結晶の製造方法、
(16) (15)に記載の製造方法により得られたSiC単結晶インゴットであって、該インゴットの口径が50mm以上300mm以下であることを特徴とするSiC単結晶インゴット、
(17) (16)に記載のSiC単結晶インゴットであって、該インゴット中の基底面転位密度が1×104cm-2以下であることを特徴とするSiC単結晶インゴット、
(18) (16)に記載のSiC単結晶インゴットであって、該インゴット中の基底面転位密度が5×103cm-2以下であることを特徴とするSiC単結晶インゴット、
(19) (16)〜(18)のいずれかに記載のSiC単結晶インゴットを切断し、研磨してなるSiC単結晶基板、
(20) (19)に記載のSiC単結晶基板に、SiC薄膜をエピタキシャル成長してなるSiCエピタキシャルウェハ、
(21) (19)に記載のSiC単結晶基板に、窒化ガリウム(GaN)、窒化アルミニウム(AlN)、窒化インジウム(InN)又はこれらの混晶をエピタキシャル成長してなる薄膜エピタキシャルウェハ、
である。
The present invention
(1) A crucible used in a method for producing a SiC single crystal including a step of storing a seed crystal in a crucible and growing a silicon carbide (SiC) single crystal on the seed crystal by a sublimation recrystallization method. A SiC single crystal growth crucible, characterized in that the seed crystal holding part for holding silicon is made of a material having a thermal expansion coefficient of 4.5 × 10 −6 / ° C. to 5.5 × 10 −6 / ° C. at 2000 ° C. ,
(2) The SiC single crystal growth according to (1), wherein the seed crystal holding part is composed of a material having a thermal expansion coefficient of 5.0 × 10 −6 / ° C. to 5.5 × 10 −6 / ° C. at 2000 ° C. Crucible for
(3) The SiC single crystal growth crucible according to any one of (1) and (2), wherein the constituent material of the seed crystal holding part is graphite,
(4) All the constituent materials of the crucible are graphite (1) or the crucible for growing a single crystal of crystal according to any one of (2),
(5) A crucible used in a method for producing a SiC single crystal including a step of storing a seed crystal in a crucible and growing the SiC single crystal on the seed crystal by a sublimation recrystallization method, wherein the entire crucible is thermally expanded. SiC single crystal growth characterized in that the material constituting the crucible of the seed crystal holding part, which is composed of two or more types of materials having different coefficients, has a smaller thermal expansion coefficient than other parts. Crucible for
(6) The SiC single crystal growth crucible according to (5), wherein a thermal expansion coefficient at 2000 ° C. of the crucible constituent material of the seed crystal holding part is 4.5 × 10 −6 / ° C. or more and 5.5 × 10 −6 / ° C. or less. ,
(7) The SiC single crystal growth crucible according to (5), wherein a thermal expansion coefficient at 2000 ° C. of the crucible constituent material of the seed crystal holding portion is 5.0 × 10 −6 / ° C. or more and 5.5 × 10 −6 / ° C. or less. ,
(8) A crucible for growing a SiC single crystal according to any one of (5) to (7), wherein at least one kind of constituent material of the crucible is graphite,
(9) The SiC single crystal growth crucible according to any one of claims (5) to (7), wherein all the constituent materials of the crucible are graphite.
(10) A crucible used in a method for producing a silicon carbide single crystal including a step of storing a seed crystal in a crucible and growing a silicon carbide single crystal on the seed crystal by a sublimation recrystallization method, wherein the entire crucible is The crucible-constituting material of the seed crystal holding part, which is composed of two or more materials having different thermal expansion coefficients and holds the seed crystal, has a substantially smaller thermal expansion coefficient than other parts, and the seed crystal holding part has The constituent material of the portion that is separated from the portion that is in contact with the seed crystal and the other portion and that is not in contact with the seed crystal of the seed crystal holding portion is more than the constituent material of the portion that is in contact with the seed crystal A crucible for growing a silicon carbide single crystal, characterized by having a small thermal expansion coefficient,
(11) The thermal expansion coefficient at 2000 ° C. of the constituent material in contact with the seed crystal of the seed crystal holding part is 4.5 × 10 −6 / ° C. to 5.5 × 10 −6 / ° C. The crucible for SiC single crystal growth described,
(12) The constituent material of the portion in contact with the seed crystal of the seed crystal holding part has a thermal expansion coefficient at 2000 ° C. of 5.0 × 10 −6 / ° C. or more and 5.5 × 10 −6 / ° C. or less (10) The crucible for SiC single crystal growth described,
(13) The SiC single crystal growing crucible according to any one of (10) to (12), wherein at least one kind of constituent material of the crucible is graphite,
(14) The SiC single crystal growing crucible according to any one of (10) to (12), wherein all the constituent materials of the crucible are graphite.
(15) A method for producing a SiC single crystal comprising the steps of storing a seed crystal in a crucible and growing the SiC single crystal on the seed crystal by a sublimation recrystallization method, wherein the crucibles (1) to (14 ) A method for producing a SiC single crystal, characterized by using the crucible according to any one of
(16) A SiC single crystal ingot obtained by the production method according to (15), wherein the diameter of the ingot is 50 mm or more and 300 mm or less,
(17) The SiC single crystal ingot according to (16), wherein the basal plane dislocation density in the ingot is 1 × 10 4 cm −2 or less,
(18) The SiC single crystal ingot according to (16), wherein the basal plane dislocation density in the ingot is 5 × 10 3 cm −2 or less,
(19) SiC single crystal substrate obtained by cutting and polishing the SiC single crystal ingot according to any one of (16) to (18),
(20) A SiC epitaxial wafer obtained by epitaxially growing a SiC thin film on the SiC single crystal substrate according to (19),
(21) A thin film epitaxial wafer formed by epitaxially growing gallium nitride (GaN), aluminum nitride (AlN), indium nitride (InN) or a mixed crystal thereof on the SiC single crystal substrate according to (19),
It is.

本発明のSiC単結晶育成用坩堝を用いれば、改良レーリー法により、転位欠陥が少ない良質のSiC単結晶インゴットを再現性良く低コストで成長させることができる。このようなSiC単結晶から切り出したウェハ及びエピタキシャルウェハを用いれば、電気的特性の優れた高周波・高耐圧電子デバイス、光学的特性の優れた短波長域発光素子を製作することができる。   If the crucible for growing SiC single crystal of the present invention is used, a high-quality SiC single crystal ingot with few dislocation defects can be grown with good reproducibility and low cost by the improved Rayleigh method. By using a wafer and an epitaxial wafer cut out from such a SiC single crystal, it is possible to produce a high-frequency / high-voltage electronic device having excellent electrical characteristics and a short wavelength region light-emitting element having excellent optical characteristics.

本発明のSiC単結晶の製造方法では、SiC単結晶育成用坩堝として、熱膨張係数の異なる2種類以上の材料から構成され、且つ種結晶を保持する種結晶保持部の坩堝構成材料が、実質的に他の部分より小さな熱膨張係数を有することにより、結晶成長中に成長結晶が受ける応力を最小にし、結果として転位欠陥の少ないSiC単結晶インゴット及びウェハを得ることができる。   In the method for producing a SiC single crystal of the present invention, the crucible constituent material of the seed crystal holding portion that is made of two or more kinds of materials having different thermal expansion coefficients as the SiC single crystal growing crucible and that holds the seed crystal is substantially In particular, by having a smaller coefficient of thermal expansion than the other parts, the stress applied to the grown crystal during crystal growth can be minimized, and as a result, a SiC single crystal ingot and a wafer with few dislocation defects can be obtained.

図2を用いて、本発明の効果を説明する。本発明のSiC単結晶育成用坩堝は、図2(a)に模式的に示されているように、熱膨張係数の異なる2種類以上の材料により構成され(図2の例は、2種類の場合を示している)、且つ種結晶保持部の坩堝構成材料が、実質的に他の部分より小さな熱膨張係数を有する。ここで、図2に示した本発明のSiC単結晶育成用坩堝は、蓋体の役割を兼ねる種結晶保持部と、坩堝本体とからなり、本坩堝をSiC単結晶成長に用いると、図2(b)に示されたように、結晶成長時(結晶成長温度:2000℃以上)に、坩堝の種結晶保持部とそれ以外の部分(坩堝本体)との熱膨張係数差により、坩堝本体の内壁が、結晶成長方向に向けて広がった形状を呈する。これは、種結晶保持部の構成材料の熱膨張係数に比べて、坩堝本体の熱膨張係数が大きいために、高温で坩堝本体が、種結晶保持部に比べ、より大きく膨張しようとするためである。結晶成長方向に沿って膨張の度合いが大きくなるのは、温度勾配が付与されているためである。図2(b)に示したように、SiC単結晶が成長し得る空間(結晶成長空間)が、結晶成長方向に向かって広がっている場合には、結晶成長時に成長結晶と坩堝本体との接触が抑制され、結果として、成長結晶が受ける応力が最小となる。   The effect of the present invention will be described with reference to FIG. The SiC single crystal growth crucible of the present invention is composed of two or more kinds of materials having different coefficients of thermal expansion, as schematically shown in FIG. 2 (a). The crucible constituent material of the seed crystal holding part has a substantially smaller thermal expansion coefficient than the other parts. Here, the SiC single crystal growth crucible of the present invention shown in FIG. 2 is composed of a seed crystal holding part that also serves as a lid and a crucible body, and when this crucible is used for SiC single crystal growth, FIG. As shown in (b), during crystal growth (crystal growth temperature: 2000 ° C. or higher), the difference in thermal expansion coefficient between the seed crystal holding part of the crucible and the other part (crucible body), the crucible body The inner wall has a shape that expands in the crystal growth direction. This is because the thermal expansion coefficient of the crucible body is larger than the thermal expansion coefficient of the constituent material of the seed crystal holding part, so that the crucible body tends to expand more at a high temperature than the seed crystal holding part. is there. The reason why the degree of expansion increases along the crystal growth direction is that a temperature gradient is applied. As shown in Fig. 2 (b), when the space in which the SiC single crystal can grow (crystal growth space) expands in the direction of crystal growth, contact between the grown crystal and the crucible body during crystal growth As a result, the stress applied to the grown crystal is minimized.

種結晶保持部と坩堝本体が、何かのメカニズムで固定されている場合には、上記結晶成長空間の広がりがより助長され、成長結晶と坩堝本体との接触が更に抑制されることになる。これは、坩堝本体の種結晶保持部に近い側の熱膨張が、熱膨張係数の小さな種結晶保持部によって抑制されるためである。   When the seed crystal holding part and the crucible body are fixed by some mechanism, the expansion of the crystal growth space is further promoted, and the contact between the grown crystal and the crucible body is further suppressed. This is because the thermal expansion on the side close to the seed crystal holding part of the crucible body is suppressed by the seed crystal holding part having a small thermal expansion coefficient.

上記の説明では、SiC単結晶育成用坩堝が熱膨張係数の異なる2種類の材料で構成されている場合について触れたが、同様の効果が得られれば、坩堝が熱膨張係数の異なる3種類以上の材料により構成されていても問題ない。但し、この場合も、実質的に他の部分より熱膨張係数の小さな材料により種結晶保持部が構成されている必要がある。尚、本発明において、種結晶保持部の坩堝構成材料が、実質的に他の部分より小さな熱膨張係数を有するとは、例えば、種結晶保持部以外の部分に種結晶保持部の構成材料と同等あるいはそれ以下の熱膨張係数を有する材料を部分的に使用した場合でも、本発明と同等の効果が得られるのであれば、そのような場合も「種結晶保持部の坩堝構成材料が、他の部分より小さな熱膨張係数を有する」場合に含むことを意味している。   In the above description, the case where the crucible for growing a SiC single crystal is composed of two types of materials having different thermal expansion coefficients has been described. If the same effect is obtained, the crucible has three or more types having different thermal expansion coefficients. There is no problem even if it is composed of the above materials. However, also in this case, it is necessary that the seed crystal holding part is made of a material having a substantially smaller thermal expansion coefficient than other parts. In the present invention, the crucible constituent material of the seed crystal holding part has a substantially smaller thermal expansion coefficient than other parts, for example, the constituent material of the seed crystal holding part in a part other than the seed crystal holding part Even when a material having a thermal expansion coefficient equal to or lower than that is partially used, if the same effect as that of the present invention can be obtained, in such a case, “the material constituting the crucible of the seed crystal holding portion may be different. "Having a smaller coefficient of thermal expansion than the portion of".

以上述べてきたように、本発明では、熱膨張係数の異なる2種類以上の材料をSiC単結晶育成用坩堝として用いることにより、複雑な坩堝内部構造を用いることなく、成長結晶と坩堝部材との接触を抑制し、成長結晶に及ぼす応力を最小にできる。結晶成長時に成長結晶が受ける応力を最小にしたことによって、SiC単結晶中の転位欠陥、特に基底面転位を低減できる。基底面転位は、SiC単結晶を用いて作製したダイオードやトランジスタにおいて、その信頼性を劣化させることが報告されており、低減が望まれている。本発明のSiC単結晶育成用坩堝を用いて製造したSiC単結晶においては、基底面転位密度が1×104cm-2以下、更には5×103cm-2以下と低いため、信頼性の高いSiCデバイスの製造に適している。 As described above, in the present invention, by using two or more kinds of materials having different thermal expansion coefficients as a crucible for growing a SiC single crystal, the growth crystal and the crucible member can be formed without using a complicated crucible internal structure. The contact can be suppressed and the stress exerted on the grown crystal can be minimized. By minimizing the stress applied to the grown crystal during crystal growth, dislocation defects in the SiC single crystal, particularly basal plane dislocations, can be reduced. It has been reported that basal plane dislocations deteriorate the reliability of diodes and transistors fabricated using SiC single crystals, and reduction is desired. In the SiC single crystal manufactured using the SiC single crystal growth crucible of the present invention, the basal plane dislocation density is as low as 1 × 10 4 cm −2 or less, and further 5 × 10 3 cm −2 or less. Suitable for the manufacture of high SiC devices.

また、本発明において、種結晶保持部を構成する坩堝材料として、SiC単結晶と熱膨張係数が近い材料を用いることにより、結晶成長中に成長結晶が受ける応力をより低減することが可能となる。これは、結晶成長時に、種結晶保持部とSiC単結晶との間に大きな熱膨張係数差があった場合に、種結晶及びその上に成長したSiC単結晶に大きな熱応力が発生するためである。SiC単結晶の熱膨張係数に関しては、幾つかの論文において報告されており、値として、2000℃において4.9×10-6〜5.4×10-6/℃程度と推定される。 Further, in the present invention, by using a material having a thermal expansion coefficient close to that of the SiC single crystal as the crucible material constituting the seed crystal holding portion, it is possible to further reduce the stress applied to the grown crystal during crystal growth. . This is because a large thermal stress is generated in the seed crystal and the SiC single crystal grown on it when there is a large difference in thermal expansion coefficient between the seed crystal holding part and the SiC single crystal during crystal growth. is there. The thermal expansion coefficient of SiC single crystal has been reported in several papers, and is estimated to be about 4.9 × 10 −6 to 5.4 × 10 −6 / ° C. at 2000 ° C.

種結晶保持部を構成する材料の熱膨張係数としては、2000℃において、4.5×10-6/℃以上5.5×10-6/℃以下、より好ましくは5.0×10-6/℃以上5.5×10-6/℃以下が望ましい。2000℃における熱膨張係数が、4.5×10-6/℃未満、あるいは5.5×10-6/℃超になると、SiC単結晶との間の熱膨張係数差が過大となり、熱応力による転位等の発生が顕著になる。 As a coefficient of thermal expansion of the material constituting the seed crystal holding part, at 2000 ° C., 4.5 × 10 −6 / ° C. to 5.5 × 10 −6 / ° C., more preferably 5.0 × 10 −6 / ° C. to 5.5 × 10 -6 / ℃ or less is desirable. When the thermal expansion coefficient at 2000 ° C is less than 4.5 × 10 -6 / ° C or more than 5.5 × 10 -6 / ° C, the difference in thermal expansion coefficient with the SiC single crystal becomes excessive, and dislocations caused by thermal stress, etc. Occurrence becomes remarkable.

本発明の別の態様では、種結晶保持部が2種類以上の材料により構成され、種結晶と接触している部分(ii)とそれ以外の部分(i)とに別けられる(図2(c)参照)。種結晶と接触している部分とそれ以外の部分には、熱膨張係数が異なる材料が用いられており、このような構成とすることで、坩堝本体との熱膨張係数差を最大化する機能と、SiC単結晶との熱膨張係数差を最小化する機能とをほぼ独立して保持することが可能となる。即ち、種結晶と接触している部分にはSiC単結晶とほぼ同等の熱膨張係数を有する材料を用い、その一方で、種結晶と接触していない部分には、坩堝本体との熱膨張係数差を最大化できるよう、より小さな熱膨張係数を有する材料を用いることができる。   In another aspect of the present invention, the seed crystal holding part is composed of two or more kinds of materials and is divided into a part (ii) in contact with the seed crystal and a part (i) other than that (FIG. 2 (c) )reference). Materials that have different coefficients of thermal expansion are used for the parts that are in contact with the seed crystal and the other parts, and by this structure, the function that maximizes the difference in coefficient of thermal expansion with the crucible body And the function of minimizing the difference in thermal expansion coefficient from the SiC single crystal can be maintained almost independently. That is, a material having a thermal expansion coefficient substantially equal to that of the SiC single crystal is used for a portion in contact with the seed crystal, while a thermal expansion coefficient with the crucible body is used for a portion not in contact with the seed crystal. A material with a smaller coefficient of thermal expansion can be used so that the difference can be maximized.

種結晶保持部のうち、種結晶と接触している部分(ii)の構成材料の2000℃における熱膨張係数については、4.5×10-6/℃以上5.5×10-6/℃以下、好ましくは5.0×10-6/℃以上5.5×10-6/℃以下であるのがよい。一方、種結晶保持部の種結晶と接触していない部分(i)の熱膨張係数としては、2.0×10-6/℃以上6.0×10-6/℃以下が望ましい。2.0×10-6/℃未満となると、種結晶と接触している部分(ii)との間の熱膨張係数差が大きくなり過ぎてしまい、坩堝が結晶成長中に意図せぬ変形を起こしてしまう虞がある。また、6.0×10-6/℃超となった場合には、坩堝本体との熱膨張係数差が充分に取れなくなり、本発明の効果が得られない虞がある。 Regarding the thermal expansion coefficient at 2000 ° C. of the constituent material of the part (ii) in contact with the seed crystal in the seed crystal holding part, 4.5 × 10 −6 / ° C. to 5.5 × 10 −6 / ° C., preferably It should be 5.0 × 10 −6 / ° C. or more and 5.5 × 10 −6 / ° C. or less. On the other hand, the thermal expansion coefficient of the portion (i) that is not in contact with the seed crystal of the seed crystal holding part is preferably 2.0 × 10 −6 / ° C. or more and 6.0 × 10 −6 / ° C. or less. If the temperature is less than 2.0 × 10 -6 / ° C, the difference in thermal expansion coefficient from the portion (ii) in contact with the seed crystal becomes too large, causing the crucible to unintentionally deform during crystal growth. There is a risk of it. Further, if it exceeds 6.0 × 10 −6 / ° C., the difference in thermal expansion coefficient from the crucible body cannot be obtained sufficiently, and the effects of the present invention may not be obtained.

坩堝の一部、又は全ての構成材料としては、黒鉛材料を使用することが望ましい。黒鉛は、その耐熱性や機械加工容易性、また素材単価の観点から見て、SiC単結晶育成用坩堝材料として最も好ましい材料である。さらに、黒鉛材料では、その微細組織を制御することにより熱膨張係数を制御することが可能で、その意味でも本発明の坩堝構成材料として最適である。   It is desirable to use a graphite material as a part or all of the constituent material of the crucible. Graphite is the most preferable material as a crucible material for SiC single crystal growth from the viewpoint of its heat resistance, ease of machining, and unit cost of raw materials. Furthermore, in the graphite material, the thermal expansion coefficient can be controlled by controlling the microstructure, and in this sense, it is optimal as the crucible constituent material of the present invention.

SiC単結晶においては、一般に、熱応力は基底面転位の発生という形で緩和される(応力が開放される)。したがって、結晶成長中に成長結晶が高い熱応力を受けた場合には、SiC単結晶中の基底面転位密度の増加が観測される。例えば、結晶成長中に成長結晶が坩堝と接触してしまった場合や、種結晶保持部とSiC単結晶との間の熱膨張係数差が大きかった場合には、SiC単結晶中に、1×104cm-2を超える高密度の基底面転位が導入される。一方、本発明の坩堝を用いて製造したSiC単結晶においては、そのような現象が起こり難く、結果として、1×104cm-2以下あるいは5×103cm-2以下という低い基底面転位密度が実現される。 In a SiC single crystal, in general, thermal stress is relaxed in the form of basal plane dislocation generation (stress is released). Therefore, when the grown crystal is subjected to high thermal stress during crystal growth, an increase in the basal plane dislocation density in the SiC single crystal is observed. For example, if the grown crystal comes into contact with the crucible during crystal growth, or if the difference in thermal expansion coefficient between the seed crystal holding part and the SiC single crystal is large, 1 × High-density basal plane dislocations exceeding 10 4 cm -2 are introduced. On the other hand, in the SiC single crystal manufactured using the crucible of the present invention, such a phenomenon hardly occurs, and as a result, a low basal plane dislocation of 1 × 10 4 cm −2 or less or 5 × 10 3 cm −2 or less. Density is realized.

本発明のSiC単結晶育成用坩堝は、改良レーリー法等の、種結晶を用いて大口径の単結晶を製造するSiC単結晶成長法に適用される。坩堝は、図1に示されるように、SiC原料粉末と種結晶とを内部に収納し、アルゴン等の不活性ガス雰囲気中、2000〜2400℃に加熱される。この際、原料粉末に比べ、種結晶がやや低温になるように、温度勾配が設定される。原料は、昇華後、この温度勾配により種結晶方向へ拡散、輸送される。単結晶成長は、種結晶に到着した原料ガスが種結晶上で再結晶化することにより実現される。   The crucible for growing a SiC single crystal of the present invention is applied to a SiC single crystal growth method for producing a large-diameter single crystal using a seed crystal, such as an improved Rayleigh method. As shown in FIG. 1, the crucible contains the SiC raw material powder and the seed crystal inside, and is heated to 2000-2400 ° C. in an inert gas atmosphere such as argon. At this time, the temperature gradient is set so that the seed crystal has a slightly lower temperature than the raw material powder. After sublimation, the raw material is diffused and transported in the direction of the seed crystal by this temperature gradient. Single crystal growth is realized by recrystallization of the source gas that has arrived at the seed crystal on the seed crystal.

本発明のSiC単結晶育成用坩堝を用いて製造されるSiC単結晶基板は、50mm以上300mm以下の口径を有しているので、この基板を用いて各種デバイスを製造する際、工業的に確立されている従来の半導体(Si、GaAs等)基板用の製造ラインを使用することができ、量産に適している。また、本発明により製造されるSiC単結晶基板は、その基底面転位密度が1×104cm-2以下と低いために、基底面転位を原因として起こる、デバイス特性の劣化等の問題が、従来のものに比べ起こり難い。さらに、このSiC単結晶基板上にCVD法等によりエピタキシャル薄膜を成長して作製されるSiC単結晶エピタキシャルウェハ、あるいはGaN、AlN、InN及びこれらの混晶薄膜エピタキシャルウェハは、その基板となるSiC単結晶ウェハの転位密度が小さいために、良好な特性(エピタキシャル薄膜の表面モフォロジー、耐電圧等)を有するようになる。 The SiC single crystal substrate manufactured using the SiC single crystal growth crucible of the present invention has a diameter of 50 mm or more and 300 mm or less, and therefore is industrially established when manufacturing various devices using this substrate. A conventional production line for semiconductor (Si, GaAs, etc.) substrates can be used, which is suitable for mass production. In addition, the SiC single crystal substrate produced according to the present invention has a basal plane dislocation density as low as 1 × 10 4 cm −2 or less, which causes problems such as deterioration of device characteristics caused by basal plane dislocations. Less likely to occur than conventional ones. Furthermore, an SiC single crystal epitaxial wafer produced by growing an epitaxial thin film on this SiC single crystal substrate by a CVD method or the like, or GaN, AlN, InN, and mixed crystal thin film epitaxial wafers of the SiC single crystal substrate are used. Since the dislocation density of the crystal wafer is small, the crystal wafer has good characteristics (surface morphology, withstand voltage, etc. of the epitaxial thin film).

(実施例1)
以下に、本発明の実施例を述べる。図3は、本発明に用いる製造装置であり、種結晶を用いた改良レーリー法によってSiC単結晶を成長させる装置の一例である。まず、この単結晶成長装置について簡単に説明する。結晶成長は、種結晶として用いたSiC単結晶1の上に原料であるSiC粉末2を昇華再結晶化させることにより行われる。種結晶のSiC単結晶1は、種結晶保持部4(通常、黒鉛製)の内面に取り付けられる。原料のSiC粉末2は、坩堝本体3(通常、黒鉛製)の内部に充填されている。坩堝本体3は、種結晶が取り付けられた種結晶保持部4を上面に配置した後、二重石英管5の内部に、黒鉛の支持棒6により設置される。坩堝本体3の周囲には、熱シールドのための断熱フェルト7(通常、黒鉛製)が設置されている。二重石英管5は、真空排気装置13により高真空排気(10-3 Pa以下)することができ、かつ内部雰囲気をArガスにより圧力制御することができる。また、二重石英管5の外周には、ワークコイル8が設置されており、高周波電流を流すことにより坩堝本体3及び種結晶保持部4を加熱し、原料及び種結晶を所望の温度に加熱することができる。坩堝温度の計測は、坩堝本体及び種結晶保持部を覆うフェルトの中央部に直径2〜4mmの光路を設け坩堝本体及び種結晶保持部からの光を取り出し、二色温度計を用いて行う。坩堝本体下面の温度を原料温度、種結晶保持部上面の温度を種結晶温度とする。
(Example 1)
Examples of the present invention will be described below. FIG. 3 shows an example of an apparatus for growing a SiC single crystal by a modified Rayleigh method using a seed crystal, which is a manufacturing apparatus used in the present invention. First, this single crystal growth apparatus will be briefly described. Crystal growth is performed by sublimating and recrystallizing SiC powder 2 as a raw material on SiC single crystal 1 used as a seed crystal. Seed crystal SiC single crystal 1 is attached to the inner surface of seed crystal holding portion 4 (usually made of graphite). The raw material SiC powder 2 is filled in the crucible body 3 (usually made of graphite). The crucible body 3 is placed inside a double quartz tube 5 by a graphite support rod 6 after a seed crystal holding part 4 to which a seed crystal is attached is arranged on the upper surface. A heat insulating felt 7 (usually made of graphite) for heat shielding is installed around the crucible body 3. The double quartz tube 5 can be highly evacuated (10 −3 Pa or less) by the evacuation device 13, and the internal atmosphere can be pressure controlled by Ar gas. In addition, a work coil 8 is installed on the outer periphery of the double quartz tube 5 to heat the crucible body 3 and the seed crystal holding part 4 by flowing a high-frequency current, thereby heating the raw material and the seed crystal to a desired temperature. can do. The crucible temperature is measured using a two-color thermometer by providing an optical path having a diameter of 2 to 4 mm at the center of the felt covering the crucible main body and the seed crystal holding part, and extracting light from the crucible main body and the seed crystal holding part. The temperature of the lower surface of the crucible body is the raw material temperature, and the temperature of the upper surface of the seed crystal holding part is the seed crystal temperature.

次に、この結晶成長装置を用いたSiC単結晶の製造について実施例を説明する。まず、種結晶として、口径50mmの(000-1)C面を有した4H型のSiC単結晶ウェハを用意し、黒鉛製の種結晶保持部4の内面に取り付けた。種結晶保持部4の製作に際しては、熱膨張係数が常温付近において2.6×10-6/℃、2000℃において4.7×10-6/℃の等方性黒鉛を使用した。また、黒鉛製坩堝本体3の製作に際しては、熱膨張係数が常温付近において3.5×10-6/℃、2000℃において5.8×10-6/℃の等方性黒鉛を使用した。黒鉛製坩堝本体3の内径は51.5mmとし、その内部には原料(SiC粉末)2を充填した。次いで、原料を充填した黒鉛製坩堝本体3を、種結晶を取り付けた種結晶保持部4で閉じ、黒鉛製フェルト7で被覆した後、黒鉛製支持棒6の上に乗せ、二重石英管5の内部に設置した。そして、石英管の内部を真空排気した後、ワークコイルに電流を流し原料温度を2000℃まで上げた。その後、雰囲気ガスとして窒素を10%含むArガスを流入させ、石英管内圧力を約80kPaに保ちながら、原料温度を目標温度である2400℃まで上昇させた。成長圧力である1.3kPaには約30分かけて減圧し、その後約20時間成長を続けた。この際の坩堝内の温度勾配は15℃/cmで、成長速度は約0.8mm/時であった。得られた結晶の口径は51.47mmで、高さは16mm程度であった。また、取り出した成長結晶の側面を肉眼で観察したところ、光沢のある概観となっており、結晶成長時に成長結晶が坩堝内壁と接触した形跡は見られなかった。 Next, an example of manufacturing a SiC single crystal using this crystal growth apparatus will be described. First, a 4H type SiC single crystal wafer having a (000-1) C face with a diameter of 50 mm was prepared as a seed crystal, and attached to the inner surface of the graphite seed crystal holding part 4. In producing the seed crystal holding part 4, isotropic graphite having a thermal expansion coefficient of 2.6 × 10 −6 / ° C. near normal temperature and 4.7 × 10 −6 / ° C. at 2000 ° C. was used. In the production of the graphite crucible body 3, isotropic graphite having a thermal expansion coefficient of 3.5 × 10 −6 / ° C. near normal temperature and 5.8 × 10 −6 / ° C. at 2000 ° C. was used. The inner diameter of the graphite crucible main body 3 was 51.5 mm, and the raw material (SiC powder) 2 was filled inside. Next, the graphite crucible main body 3 filled with the raw material is closed with a seed crystal holding part 4 to which a seed crystal is attached, covered with a graphite felt 7, and then placed on a graphite support rod 6, and a double quartz tube 5 Installed inside. Then, after evacuating the inside of the quartz tube, current was passed through the work coil to raise the raw material temperature to 2000 ° C. Thereafter, Ar gas containing 10% nitrogen was introduced as an atmospheric gas, and the raw material temperature was raised to the target temperature of 2400 ° C. while maintaining the pressure in the quartz tube at about 80 kPa. The growth pressure was reduced to 1.3 kPa over about 30 minutes, and then continued for about 20 hours. At this time, the temperature gradient in the crucible was 15 ° C./cm, and the growth rate was about 0.8 mm / hour. The diameter of the obtained crystal was 51.47 mm, and the height was about 16 mm. Moreover, when the side surface of the taken-out grown crystal was observed with the naked eye, it became a glossy overview, and there was no evidence of the grown crystal contacting the crucible inner wall during crystal growth.

こうして得られたSiC単結晶をX線回折及びラマン散乱により分析したところ、4H型のSiC単結晶が成長したことを確認できた。また、成長結晶中に存在する基底面転位密度を評価する目的で、成長した単結晶インゴットを切断、研磨することにより、[11-20]方向に8°オフした(0001)Si面ウェハを取り出した。その後、約530℃の溶融KOHでウェハ表面をエッチングし、顕微鏡により基底面転位に対応するエッチピットの密度を調べたところ、ウェハ全面の平均で0.8×104cm-2という値を得た。 When the SiC single crystal thus obtained was analyzed by X-ray diffraction and Raman scattering, it was confirmed that a 4H type SiC single crystal was grown. Also, for the purpose of evaluating the basal plane dislocation density existing in the grown crystal, the grown (single crystal) ingot was cut and polished to take out the (0001) Si plane wafer that was turned off by 8 ° in the [11-20] direction. It was. Thereafter, the wafer surface was etched with molten KOH at about 530 ° C., and the density of etch pits corresponding to the basal plane dislocation was examined with a microscope. As a result, an average value of 0.8 × 10 4 cm −2 was obtained on the entire wafer surface.

さらに、上記のSiC単結晶ウェハを基板として用いて、SiC薄膜のエピタキシャル成長を行った。SiCエピタキシャル薄膜の成長条件は、成長温度1500℃、シラン(SiH4)、プロパン(C3H8)、水素(H2)の流量が、それぞれ5.0×10-9m3/sec、3.3×10-9m3/sec、5.0×10-5m3/secであった。成長圧力は大気圧とした。成長時間は2時間で、膜厚としては約5μm成長した。 Furthermore, using the above SiC single crystal wafer as a substrate, an SiC thin film was epitaxially grown. The growth conditions of the SiC epitaxial thin film are as follows: the growth temperature is 1500 ° C., the flow rates of silane (SiH 4 ), propane (C 3 H 8 ), and hydrogen (H 2 ) are 5.0 × 10 −9 m 3 / sec and 3.3 × 10 respectively. -9 m 3 / sec, 5.0 × 10 -5 m 3 / sec. The growth pressure was atmospheric pressure. The growth time was 2 hours and the film thickness was about 5 μm.

エピタキシャル薄膜成長後、ノマルスキー光学顕微鏡により、得られたエピタキシャル薄膜の表面モフォロジーを観察したところ、ウェハ全面に渡って非常に平坦で、ピット等の表面欠陥が少ない良好な表面モフォロジーを有するSiCエピタキシャル薄膜が成長されているのが分かった。   After the epitaxial thin film was grown, the surface morphology of the obtained epitaxial thin film was observed with a Nomarski optical microscope. I found it growing up.

また、上記SiC単結晶から同様にしてオフ角度が0°の(0001)Si面SiC単結晶ウェハを切り出し、鏡面研磨した後、その上にGaN薄膜を有機金属化学気相成長(MOCVD)法によりエピタキシャル成長させた。成長条件は、成長温度1050℃、トリメチルガリウム(TMG)、アンモニア(NH3)、シラン(SiH4)をそれぞれ、54×10-6モル/min、4リットル/min、22×10-11モル/min流した。また、成長圧力は大気圧とした。成長時間は60分間で、n型のGaNを3μmの膜厚で成長させた。 Similarly, a (0001) Si surface SiC single crystal wafer with an off angle of 0 ° was cut out from the SiC single crystal and mirror-polished, and then a GaN thin film was formed thereon by metal organic chemical vapor deposition (MOCVD). Epitaxially grown. Growth conditions are: growth temperature 1050 ° C., trimethylgallium (TMG), ammonia (NH 3 ), silane (SiH 4 ), 54 × 10 −6 mol / min, 4 liter / min, 22 × 10 −11 mol / min, respectively. Min shed. The growth pressure was atmospheric pressure. The growth time was 60 minutes, and n-type GaN was grown to a thickness of 3 μm.

得られたGaN薄膜の表面状態を調べる目的で、成長表面をノマルスキー光学顕微鏡により観察した。ウェハ全面に渡って非常に平坦なモフォロジーが得られ、全面に渡って高品質なGaN薄膜が形成されているのが分かった。   In order to examine the surface state of the obtained GaN thin film, the growth surface was observed with a Nomarski optical microscope. It was found that a very flat morphology was obtained over the entire surface of the wafer, and a high-quality GaN thin film was formed over the entire surface.

(実施例2)
実施例1と同様に、種結晶として、口径50mmの(000-1)C面を有した4H型のSiC単結晶ウェハを作製した。その後、このSiC単結晶ウェハを黒鉛製種結晶保持部4の内面に種結晶として取り付けた。種結晶保持部4の製作に際しては、熱膨張係数が常温付近において2.9×10-6/℃、2000℃において5.2×10-6/℃の等方性黒鉛を使用した。また、黒鉛製坩堝本体3の製作に際しては、熱膨張係数が常温付近において3.5×10-6/℃、2000℃において5.8×10-6/℃の等方性黒鉛を使用した。黒鉛製坩堝本体3の内径は51.5mmとし、その内部には原料2を充填した。次いで、原料を充填した黒鉛製坩堝本体3を、種結晶を取り付けた種結晶保持部4で閉じ、黒鉛製フェルト7で被覆した後、黒鉛製支持棒6の上に乗せ、二重石英管5の内部に設置した。そして、石英管の内部を真空排気した後、ワークコイルに電流を流し、原料温度を2000℃まで上げた。その後、雰囲気ガスとして窒素を10%含むArガスを流入させ、石英管内圧力を約80kPaに保ちながら、原料温度を目標温度である2400℃まで上昇させた。成長圧力である1.3kPaには約30分かけて減圧し、その後約20時間成長を続けた。この際の坩堝内の温度勾配は15℃/cmで、成長速度は約0.75mm/時であった。得られた結晶の口径は51.48mmで、高さは15mm程度であった。また、取り出した成長結晶の側面を肉眼で観察したところ、光沢のある概観となっており、結晶成長時に成長結晶が坩堝内壁と接触した形跡は見られなかった。
(Example 2)
As in Example 1, a 4H-type SiC single crystal wafer having a (000-1) C face with a diameter of 50 mm was produced as a seed crystal. Thereafter, this SiC single crystal wafer was attached to the inner surface of the graphite seed crystal holding unit 4 as a seed crystal. In producing the seed crystal holding part 4, isotropic graphite having a thermal expansion coefficient of 2.9 × 10 −6 / ° C. near normal temperature and 5.2 × 10 −6 / ° C. at 2000 ° C. was used. In the production of the graphite crucible body 3, isotropic graphite having a thermal expansion coefficient of 3.5 × 10 −6 / ° C. near normal temperature and 5.8 × 10 −6 / ° C. at 2000 ° C. was used. The inner diameter of the graphite crucible body 3 was 51.5 mm, and the raw material 2 was filled in the inside. Next, the graphite crucible main body 3 filled with the raw material is closed with a seed crystal holding part 4 to which a seed crystal is attached, covered with a graphite felt 7, and then placed on a graphite support rod 6, and a double quartz tube 5 Installed inside. Then, after evacuating the inside of the quartz tube, a current was passed through the work coil to raise the raw material temperature to 2000 ° C. Thereafter, Ar gas containing 10% nitrogen was introduced as an atmospheric gas, and the raw material temperature was raised to the target temperature of 2400 ° C. while maintaining the pressure in the quartz tube at about 80 kPa. The growth pressure was reduced to 1.3 kPa over about 30 minutes, and then continued for about 20 hours. At this time, the temperature gradient in the crucible was 15 ° C./cm, and the growth rate was about 0.75 mm / hour. The diameter of the obtained crystal was 51.48 mm, and the height was about 15 mm. Moreover, when the side surface of the taken-out grown crystal was observed with the naked eye, it became a glossy overview, and there was no evidence of the grown crystal contacting the crucible inner wall during crystal growth.

こうして得られたSiC単結晶をX線回折及びラマン散乱により分析したところ、4H型のSiC単結晶が成長したことを確認できた。また、成長結晶中に存在する基底面転位密度を評価する目的で、成長した単結晶インゴットを切断、研磨することにより、[11-20]方向に8°オフした(0001)Si面ウェハを取り出した。その後、約530℃の溶融KOHでウェハ表面をエッチングし、顕微鏡により基底面転位に対応するエッチピットの密度を調べたところ、ウェハ全面の平均で3.8×103cm-2という値を得た。 When the SiC single crystal thus obtained was analyzed by X-ray diffraction and Raman scattering, it was confirmed that a 4H type SiC single crystal was grown. Also, for the purpose of evaluating the basal plane dislocation density existing in the grown crystal, the grown (single crystal) ingot was cut and polished to take out the (0001) Si plane wafer that was turned off by 8 ° in the [11-20] direction. It was. Thereafter, the wafer surface was etched with molten KOH at about 530 ° C., and the density of etch pits corresponding to the basal plane dislocation was examined with a microscope. As a result, an average value of 3.8 × 10 3 cm −2 was obtained on the entire wafer surface.

さらに、実施例1と同様に、SiC薄膜、GaN薄膜を形成させたが、良好な表面モフォロジーを有するエピタキシャルウェハが得られた。   Furthermore, as in Example 1, an SiC thin film and a GaN thin film were formed, but an epitaxial wafer having a good surface morphology was obtained.

(実施例3)
実施例1と同様に、種結晶として、口径50mmの(000-1)C面を有した4H型のSiC単結晶ウェハを作製した。その後、このSiC単結晶ウェハを黒鉛製種結晶保持部4の内面に種結晶として取り付けた。種結晶保持部4の製作に際しては、図2(c)のように、種結晶に接触する部分(ii)とそれ以外の部分(i)に別れた構成とし、それぞれの部分に熱膨張係数の異なる材料を用いた。熱膨張係数としては、種結晶に接触する部分(ii)においては、常温付近で2.9×10-6/℃、2000℃で5.2×10-6/℃の等方性黒鉛を使用し、種結晶に接触しない部分(i)においては、常温付近で2.6×10-6/℃、2000℃で4.7×10-6/℃の等方性黒鉛を使用した。また、黒鉛製坩堝本体3の製作に際しては、熱膨張係数が常温付近において3.5×10-6/℃、2000℃において5.8×10-6/℃の等方性黒鉛を使用した。黒鉛製坩堝本体3の内径は51.5mmとし、その内部には原料2を充填した。次いで、原料を充填した黒鉛製坩堝本体3を、種結晶を取り付けた種結晶保持部4で閉じ、黒鉛製フェルト7で被覆した後、黒鉛製支持棒6の上に乗せ、二重石英管5の内部に設置した。そして、石英管の内部を真空排気した後、ワークコイルに電流を流し、原料温度を2000℃まで上げた。その後、雰囲気ガスとして窒素を10%含むArガスを流入させ、石英管内圧力を約80kPaに保ちながら、原料温度を目標温度である2400℃まで上昇させた。成長圧力である1.3kPaには約30分かけて減圧し、その後約20時間成長を続けた。この際の坩堝内の温度勾配は15℃/cmで、成長速度は約0.8mm/時であった。得られた結晶の口径は51.48mmで、高さは16mm程度であった。また、取り出した成長結晶の側面を肉眼で観察したところ、光沢のある概観となっており、結晶成長時に成長結晶が坩堝内壁と接触した形跡は見られなかった。
(Example 3)
As in Example 1, a 4H-type SiC single crystal wafer having a (000-1) C face with a diameter of 50 mm was produced as a seed crystal. Thereafter, this SiC single crystal wafer was attached to the inner surface of the graphite seed crystal holding unit 4 as a seed crystal. When producing the seed crystal holding part 4, as shown in FIG. 2 (c), the seed crystal holding part 4 is divided into a part (ii) in contact with the seed crystal and a part (i) other than that, and each part has a thermal expansion coefficient. Different materials were used. As for the thermal expansion coefficient, in the part (ii) in contact with the seed crystal, isotropic graphite of 2.9 × 10 −6 / ° C. near room temperature and 5.2 × 10 −6 / ° C. at 2000 ° C. is used. In the portion (i) that does not come into contact, isotropic graphite of 2.6 × 10 −6 / ° C. near normal temperature and 4.7 × 10 −6 / ° C. at 2000 ° C. was used. In the production of the graphite crucible body 3, isotropic graphite having a thermal expansion coefficient of 3.5 × 10 −6 / ° C. near normal temperature and 5.8 × 10 −6 / ° C. at 2000 ° C. was used. The inner diameter of the graphite crucible body 3 was 51.5 mm, and the raw material 2 was filled in the inside. Next, the graphite crucible main body 3 filled with the raw material is closed with a seed crystal holding part 4 to which a seed crystal is attached, covered with a graphite felt 7, and then placed on a graphite support rod 6, and a double quartz tube 5 Installed inside. Then, after evacuating the inside of the quartz tube, a current was passed through the work coil to raise the raw material temperature to 2000 ° C. Thereafter, Ar gas containing 10% nitrogen was introduced as an atmospheric gas, and the raw material temperature was raised to the target temperature of 2400 ° C. while maintaining the pressure in the quartz tube at about 80 kPa. The growth pressure was reduced to 1.3 kPa over about 30 minutes, and then continued for about 20 hours. At this time, the temperature gradient in the crucible was 15 ° C./cm, and the growth rate was about 0.8 mm / hour. The diameter of the obtained crystal was 51.48 mm, and the height was about 16 mm. Moreover, when the side surface of the taken-out grown crystal was observed with the naked eye, it became a glossy overview, and there was no evidence of the grown crystal contacting the crucible inner wall during crystal growth.

こうして得られたSiC単結晶をX線回折及びラマン散乱により分析したところ、4H型のSiC単結晶が成長したことを確認できた。また、成長結晶中に存在する基底面転位密度を評価する目的で、成長した単結晶インゴットを切断、研磨することにより、[11-20]方向に8°オフした(0001)Si面ウェハを取り出した。その後、約530℃の溶融KOHでウェハ表面をエッチングし、顕微鏡により基底面転位に対応するエッチピットの密度を調べたところ、ウェハ全面の平均で4.2×103cm-2という値を得た。 When the SiC single crystal thus obtained was analyzed by X-ray diffraction and Raman scattering, it was confirmed that a 4H type SiC single crystal was grown. Also, for the purpose of evaluating the basal plane dislocation density existing in the grown crystal, the grown (single crystal) ingot was cut and polished to take out the (0001) Si plane wafer that was turned off by 8 ° in the [11-20] direction. It was. Thereafter, the surface of the wafer was etched with molten KOH at about 530 ° C., and the density of etch pits corresponding to the basal plane dislocation was examined with a microscope, and an average value of 4.2 × 10 3 cm −2 was obtained on the entire surface of the wafer.

さらに、実施例1と同様に、SiC薄膜、GaN薄膜を形成させたが、良好な表面モフォロジ−を有するエピタキシャルウェハが得られた。   Furthermore, as in Example 1, an SiC thin film and a GaN thin film were formed, but an epitaxial wafer having a good surface morphology was obtained.

(比較例)
まず、実施例1と同様に、種結晶として、口径50mmの(000-1)C面を有した4H型のSiC単結晶ウェハを作製した。その後、このSiC単結晶ウェハを黒鉛製種結晶保持部4の内面に種結晶として取り付けた。種結晶保持部4の製作に際しては、熱膨張係数が常温付近において3.5×10-6/℃、2000℃において5.8×10-6/℃の等方性黒鉛を使用した。また、黒鉛製坩堝本体3の製作に際しても、熱膨張係数が常温付近において同様の3.5×10-6/℃、2000℃において5.8×10-6/℃の等方性黒鉛を使用した。黒鉛製坩堝本体3の内径は51.5mmとし、その内部には原料2を充填した。次いで、原料を充填した黒鉛製坩堝本体3を、種結晶を取り付けた種結晶保持部4で閉じ、黒鉛製フェルト7で被覆した後、黒鉛製支持棒6の上に乗せ、二重石英管5の内部に設置した。そして、石英管の内部を真空排気した後、ワークコイルに電流を流し、原料温度を2000℃まで上げた。その後、雰囲気ガスとして窒素を10%含むArガスを流入させ、石英管内圧力を約80kPaに保ちながら、原料温度を目標温度である2400℃まで上昇させた。成長圧力である1.3kPaには約30分かけて減圧し、その後約20時間成長を続けた。この際の坩堝内の温度勾配は15℃/cmで、成長速度は約0.8mm/時であった。得られた結晶の口径は51.57mmで、高さは16mm程度であった。また、取り出した成長結晶の側面を肉眼で観察したところ、数箇所の部位において、黒鉛と思われる黒色の層が成長結晶側面に付着していた。この黒色層の付着は、結晶成長時に成長結晶が坩堝内壁と接触したために起こったものと推測された。
(Comparative example)
First, as in Example 1, a 4H-type SiC single crystal wafer having a (000-1) C face with a diameter of 50 mm was produced as a seed crystal. Thereafter, this SiC single crystal wafer was attached to the inner surface of the graphite seed crystal holding unit 4 as a seed crystal. In producing the seed crystal holding part 4, isotropic graphite having a thermal expansion coefficient of 3.5 × 10 −6 / ° C. near normal temperature and 5.8 × 10 −6 / ° C. at 2000 ° C. was used. Further, in the production of the graphite crucible body 3, isotropic graphite having the same thermal expansion coefficient of 3.5 × 10 −6 / ° C. near normal temperature and 5.8 × 10 −6 / ° C. at 2000 ° C. was used. The inner diameter of the graphite crucible body 3 was 51.5 mm, and the raw material 2 was filled in the inside. Next, the graphite crucible main body 3 filled with the raw material is closed with a seed crystal holding part 4 to which a seed crystal is attached, covered with a graphite felt 7, and then placed on a graphite support rod 6, and a double quartz tube 5 Installed inside. Then, after evacuating the inside of the quartz tube, a current was passed through the work coil to raise the raw material temperature to 2000 ° C. Thereafter, Ar gas containing 10% nitrogen was introduced as an atmospheric gas, and the raw material temperature was raised to the target temperature of 2400 ° C. while maintaining the pressure in the quartz tube at about 80 kPa. The growth pressure was reduced to 1.3 kPa over about 30 minutes, and then continued for about 20 hours. At this time, the temperature gradient in the crucible was 15 ° C./cm, and the growth rate was about 0.8 mm / hour. The diameter of the obtained crystal was 51.57 mm, and the height was about 16 mm. Further, when the side surface of the taken-out growth crystal was observed with the naked eye, a black layer considered to be graphite adhered to the side surface of the growth crystal at several sites. It was speculated that the black layer was attached because the grown crystal was in contact with the inner wall of the crucible during crystal growth.

こうして得られたSiC単結晶をX線回折及びラマン散乱により分析したところ、4H型のSiC単結晶が成長したことを確認できた。また、成長結晶中に存在する基底面転位密度を評価する目的で、成長した単結晶インゴットを切断、研磨することにより、[11-20]方向に8°オフした(0001)Si面ウェハを取り出した。その後、約530℃の溶融KOHでウェハ表面をエッチングし、顕微鏡により基底面転位に対応するエッチピットの密度を調べたところ、ウェハ全面の平均で2.3×104cm-2という値を得た。 When the SiC single crystal thus obtained was analyzed by X-ray diffraction and Raman scattering, it was confirmed that a 4H type SiC single crystal was grown. Also, for the purpose of evaluating the basal plane dislocation density existing in the grown crystal, the grown (single crystal) ingot was cut and polished to take out the (0001) Si plane wafer that was turned off by 8 ° in the [11-20] direction. It was. Thereafter, the wafer surface was etched with molten KOH at about 530 ° C., and the density of etch pits corresponding to the basal plane dislocation was examined with a microscope. As a result, an average value of 2.3 × 10 4 cm −2 was obtained on the entire wafer surface.

さらに、上記のSiC単結晶ウェハを基板として用いて、SiCのエピタキシャル成長を行った。SiCエピタキシャル薄膜の成長条件は、成長温度1500℃、SiH4、C3H8、H2の流量が、それぞれ5.0×10-9m3/sec、3.3×10-9m3/sec、5.0×10-5m3/secであった。成長圧力は大気圧とした。成長時間は2時間で、膜厚としては約5μm成長した。 Furthermore, SiC was epitaxially grown using the above SiC single crystal wafer as a substrate. The SiC epitaxial film growth conditions, the growth temperature of 1500 ℃, SiH 4, C 3 H 8, the flow rate of H 2, respectively 5.0 × 10 -9 m 3 /sec,3.3×10 -9 m 3 /sec,5.0× 10 -5 m 3 / sec. The growth pressure was atmospheric pressure. The growth time was 2 hours and the film thickness was about 5 μm.

エピタキシャル薄膜成長後、ノマルスキー光学顕微鏡により、得られたエピタキシャル薄膜の表面モフォロジーを観察したところ、基板中の基底面転位等に起因すると思われる表面欠陥が一部の領域で観測された。   After the growth of the epitaxial thin film, the surface morphology of the obtained epitaxial thin film was observed with a Nomarski optical microscope. As a result, surface defects thought to be caused by basal plane dislocations in the substrate were observed in some regions.

また、上記SiC単結晶から同様にしてオフ角度が0°の(0001)Si面SiC単結晶ウェハを切り出し、鏡面研磨した後、その上にGaN薄膜をMOCVD法によりエピタキシャル成長させた。成長条件は、成長温度1050℃、TMG、NH3、SiH4をそれぞれ、54×10-6モル/min、4リットル/min、22×10-11モル/min流した。また、成長圧力は大気圧とした。成長時間は60分間で、n型のGaNを3μmの膜厚で成長させた。 Similarly, a (0001) Si-plane SiC single crystal wafer having an off angle of 0 ° was cut out from the SiC single crystal and mirror-polished, and then a GaN thin film was epitaxially grown thereon by MOCVD. As growth conditions, a growth temperature of 1050 ° C., TMG, NH 3 , and SiH 4 were flowed at 54 × 10 −6 mol / min, 4 liter / min, and 22 × 10 −11 mol / min, respectively. The growth pressure was atmospheric pressure. The growth time was 60 minutes, and n-type GaN was grown to a thickness of 3 μm.

得られたGaN薄膜の表面状態を調べる目的で、成長表面をノマルスキー光学顕微鏡により観察したところ、ウェハ表面の数箇所において、ピット等の表面欠陥の密集部が観測された。   In order to investigate the surface state of the obtained GaN thin film, the growth surface was observed with a Nomarski optical microscope, and dense portions of surface defects such as pits were observed at several locations on the wafer surface.

図1は、改良レーリー法の原理を説明する図。FIG. 1 is a diagram for explaining the principle of the improved Rayleigh method. 図2は、本発明の効果を説明する図。種結晶保持部及び坩堝本体の、(a)室温(結晶成長前)での形態、(b)高温(結晶成長時)での形態、(c)本発明の別の態様の坩堝の高温(結晶成長時)での形態(種結晶保持部が、種結晶と接触している部分とそれ以外の部分とで構成され、種結晶と接触している部分がSiC単結晶とほぼ同等の熱膨張係数を有している場合)。FIG. 2 is a diagram illustrating the effect of the present invention. The seed crystal holding part and the crucible body, (a) the form at room temperature (before crystal growth), (b) the form at high temperature (during crystal growth), (c) the high temperature of the crucible of another aspect of the present invention (crystal (When grown) The seed crystal holding part is composed of a part in contact with the seed crystal and the other part, and the part in contact with the seed crystal is approximately the same thermal expansion coefficient as the SiC single crystal If you have). 図3は、本発明の製造方法に用いられる単結晶成長装置の一例を示す構成図。FIG. 3 is a configuration diagram showing an example of a single crystal growth apparatus used in the manufacturing method of the present invention.

符号の説明Explanation of symbols

1 種結晶(SiC単結晶)
2 SiC粉末原料
3 坩堝本体(黒鉛製)
4 種結晶保持部(黒鉛製)
5 二重石英管
6 支持棒
7 黒鉛製フェルト
8 ワークコイル
9 Arガス配管
10 Arガス用マスフローコントローラ
11 窒素ガス配管
12 窒素ガス用マスフローコントローラ
13 真空排気装置
1 seed crystal (SiC single crystal)
2 Raw material for SiC powder
3 Crucible body (made of graphite)
4 Seed crystal holding part (made of graphite)
5 Double quartz tube
6 Support rod
7 Graphite felt
8 Work coil
9 Ar gas piping
10 Ar gas mass flow controller
11 Nitrogen gas piping
12 Mass flow controller for nitrogen gas
13 Vacuum exhaust system

Claims (21)

種結晶を坩堝内に収納し、昇華再結晶法により種結晶上に炭化珪素単結晶を成長させる工程を包含する炭化珪素単結晶の製造方法に用いる坩堝であって、種結晶を保持する種結晶保持部が2000℃における熱膨張係数が4.5×10-6/℃以上5.5×10-6/℃以下である材料により構成されていることを特徴とする炭化珪素単結晶育成用坩堝。 A crucible used in a method for producing a silicon carbide single crystal including a step of storing a seed crystal in a crucible and growing a silicon carbide single crystal on the seed crystal by a sublimation recrystallization method, the seed crystal holding the seed crystal A crucible for growing a silicon carbide single crystal, characterized in that the holding part is made of a material having a thermal expansion coefficient of 4.5 × 10 −6 / ° C. to 5.5 × 10 −6 / ° C. at 2000 ° C. 前記種結晶保持部が2000℃における熱膨張係数が5.0×10-6/℃以上5.5×10-6/℃以下である材料により構成されている請求項1に記載の炭化珪素単結晶育成用坩堝。 2. The crucible for growing a silicon carbide single crystal according to claim 1, wherein the seed crystal holding part is made of a material having a thermal expansion coefficient of 5.0 × 10 −6 / ° C. to 5.5 × 10 −6 / ° C. at 2000 ° C. . 前記種結晶保持部の構成材料が黒鉛である請求項1又は2に記載の炭化珪素単結晶育成用坩堝。   3. The crucible for growing silicon carbide single crystal according to claim 1, wherein the constituent material of the seed crystal holding part is graphite. 前記坩堝の全ての構成材料が黒鉛である請求項1又は2に記載の炭化珪素単結晶育成用坩堝。   3. The crucible for growing a silicon carbide single crystal according to claim 1, wherein all the constituent materials of the crucible are graphite. 種結晶を坩堝内に収納し、昇華再結晶法により種結晶上に炭化珪素単結晶を成長させる工程を包含する炭化珪素単結晶の製造方法に用いる坩堝であって、該坩堝全体が熱膨張係数の異なる2種類以上の材料から構成され、且つ種結晶を保持する種結晶保持部の坩堝構成材料が、実質的に他の部分より小さな熱膨張係数を有することを特徴とする炭化珪素単結晶育成用坩堝。   A crucible used in a method for producing a silicon carbide single crystal including a step of storing a seed crystal in a crucible and growing a silicon carbide single crystal on the seed crystal by a sublimation recrystallization method, wherein the entire crucible has a coefficient of thermal expansion Silicon carbide single crystal growth characterized in that the material constituting the crucible of the seed crystal holding part that holds the seed crystal is substantially smaller in thermal expansion coefficient than the other part. Crucible for use. 前記種結晶保持部の坩堝構成材料の2000℃における熱膨張係数が4.5×10-6/℃以上5.5×10-6/℃以下である請求項5に記載の炭化珪素単結晶育成用坩堝。 6. The crucible for growing silicon carbide single crystal according to claim 5, wherein a thermal expansion coefficient at 2000 ° C. of the crucible constituent material of the seed crystal holding part is 4.5 × 10 −6 / ° C. or more and 5.5 × 10 −6 / ° C. or less. 前記種結晶保持部の坩堝構成材料の2000℃における熱膨張係数が5.0×10-6/℃以上5.5×10-6/℃以下である請求項5に記載の炭化珪素単結晶育成用坩堝。 6. The crucible for growing a silicon carbide single crystal according to claim 5, wherein the crucible constituent material of the seed crystal holding part has a thermal expansion coefficient at 2000 ° C. of 5.0 × 10 −6 / ° C. or more and 5.5 × 10 −6 / ° C. or less. 前記坩堝の少なくとも1種類の構成材料が黒鉛である請求項5〜7の何れかに記載の炭化珪素単結晶育成用坩堝。   8. The crucible for growing a silicon carbide single crystal according to claim 5, wherein at least one constituent material of the crucible is graphite. 前記坩堝の全ての構成材料が黒鉛である請求項5〜7の何れかに記載の炭化珪素単結晶育成用坩堝。   The crucible for growing a silicon carbide single crystal according to any one of claims 5 to 7, wherein all the constituent materials of the crucible are graphite. 種結晶を坩堝内に収納し、昇華再結晶法により種結晶上に炭化珪素単結晶を成長させる工程を包含する炭化珪素単結晶の製造方法に用いる坩堝であって、該坩堝全体が熱膨張係数の異なる2種類以上の材料から構成され、種結晶を保持する種結晶保持部の坩堝構成材料が、実質的に他の部分より小さな熱膨張係数を有し、且つ種結晶保持部が種結晶と接触している部分とそれ以外の部分とに別けられ、該種結晶保持部の種結晶と接触していない部分の構成材料が、種結晶と接触している部分の構成材料よりも小さな熱膨張係数を有することを特徴とする炭化珪素単結晶育成用坩堝。   A crucible used in a method for producing a silicon carbide single crystal including a step of storing a seed crystal in a crucible and growing a silicon carbide single crystal on the seed crystal by a sublimation recrystallization method, wherein the entire crucible has a coefficient of thermal expansion The crucible constituent material of the seed crystal holding part that is made up of two or more different materials and that holds the seed crystal has a substantially smaller thermal expansion coefficient than the other part, and the seed crystal holding part is a seed crystal The constituent material of the portion not in contact with the seed crystal of the seed crystal holding part, which is separated into the portion in contact with the other portion, has a smaller thermal expansion than the constituent material of the portion in contact with the seed crystal. A crucible for growing silicon carbide single crystal, characterized by having a coefficient. 前記種結晶保持部の種結晶と接触している部分の構成材料の2000℃における熱膨張係数が4.5×10-6/℃以上5.5×10-6/℃以下である請求項10に記載の炭化珪素単結晶育成用坩堝。 11. The carbonization according to claim 10, wherein a thermal expansion coefficient at 2000 ° C. of a constituent material in contact with the seed crystal of the seed crystal holding part is 4.5 × 10 −6 / ° C. or more and 5.5 × 10 −6 / ° C. or less. A crucible for growing silicon single crystals. 前記種結晶保持部の種結晶と接触している部分の構成材料の2000℃における熱膨張係数が5.0×10-6/℃以上5.5×10-6/℃以下である請求項10に記載の炭化珪素単結晶育成用坩堝。 11. The carbonization according to claim 10, wherein a thermal expansion coefficient at 2000 ° C. of a constituent material in contact with the seed crystal of the seed crystal holding part is 5.0 × 10 −6 / ° C. or more and 5.5 × 10 −6 / ° C. or less. A crucible for growing silicon single crystals. 前記坩堝の少なくとも1種類の構成材料が黒鉛である請求項10〜12の何れかに記載の炭化珪素単結晶育成用坩堝。   13. The crucible for growing a silicon carbide single crystal according to claim 10, wherein at least one constituent material of the crucible is graphite. 前記坩堝の全ての構成材料が黒鉛である請求項10〜12の何れかに記載の炭化珪素単結晶育成用坩堝。   The crucible for growing silicon carbide single crystal according to any one of claims 10 to 12, wherein all the constituent materials of the crucible are graphite. 種結晶を坩堝内に収納し、昇華再結晶法により種結晶上に炭化珪素単結晶を成長させる工程を包含する炭化珪素単結晶の製造方法であって、前記坩堝として請求項1〜14の何れかに記載の坩堝を用いることを特徴とする炭化珪素単結晶の製造方法。   A method for producing a silicon carbide single crystal comprising a step of storing a seed crystal in a crucible and growing a silicon carbide single crystal on the seed crystal by a sublimation recrystallization method, wherein the crucible is any one of claims 1 to 14. A method for producing a silicon carbide single crystal, wherein the crucible according to claim 1 is used. 請求項15に記載の製造方法により得られた炭化珪素単結晶インゴットであって、該インゴットの口径が50mm以上300mm以下であることを特徴とする炭化珪素単結晶インゴット。   16. A silicon carbide single crystal ingot obtained by the production method according to claim 15, wherein the ingot has a diameter of 50 mm or more and 300 mm or less. 請求項16に記載の炭化珪素単結晶インゴットであって、該インゴット中の基底面転位密度が1×104cm-2以下であることを特徴とする炭化珪素単結晶インゴット。 17. The silicon carbide single crystal ingot according to claim 16, wherein the basal plane dislocation density in the ingot is 1 × 10 4 cm −2 or less. 請求項16に記載の炭化珪素単結晶インゴットであって、該インゴット中の基底面転位密度が5×103cm-2以下であることを特徴とする炭化珪素単結晶インゴット。 17. The silicon carbide single crystal ingot according to claim 16, wherein the basal plane dislocation density in the ingot is 5 × 10 3 cm −2 or less. 請求項16〜18のいずれかに記載の炭化珪素単結晶インゴットを切断し、研磨してなる炭化珪素単結晶基板。   19. A silicon carbide single crystal substrate obtained by cutting and polishing the silicon carbide single crystal ingot according to any one of claims 16 to 18. 請求項19に記載の炭化珪素単結晶基板に、炭化珪素薄膜をエピタキシャル成長してなる炭化珪素エピタキシャルウェハ。   20. A silicon carbide epitaxial wafer obtained by epitaxially growing a silicon carbide thin film on the silicon carbide single crystal substrate according to claim 19. 請求項19に記載の炭化珪素単結晶基板に、窒化ガリウム、窒化アルミニウム、窒化インジウム又はこれらの混晶をエピタキシャル成長してなる薄膜エピタキシャルウェハ。   20. A thin film epitaxial wafer obtained by epitaxially growing gallium nitride, aluminum nitride, indium nitride, or a mixed crystal thereof on the silicon carbide single crystal substrate according to claim 19.
JP2007274115A 2007-10-22 2007-10-22 Crucible for growing silicon carbide single crystal and method for producing silicon carbide single crystal using the same Active JP4850807B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007274115A JP4850807B2 (en) 2007-10-22 2007-10-22 Crucible for growing silicon carbide single crystal and method for producing silicon carbide single crystal using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007274115A JP4850807B2 (en) 2007-10-22 2007-10-22 Crucible for growing silicon carbide single crystal and method for producing silicon carbide single crystal using the same

Publications (2)

Publication Number Publication Date
JP2009102187A true JP2009102187A (en) 2009-05-14
JP4850807B2 JP4850807B2 (en) 2012-01-11

Family

ID=40704358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007274115A Active JP4850807B2 (en) 2007-10-22 2007-10-22 Crucible for growing silicon carbide single crystal and method for producing silicon carbide single crystal using the same

Country Status (1)

Country Link
JP (1) JP4850807B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011111372A (en) * 2009-11-27 2011-06-09 Showa Denko Kk Silicon carbide single crystal, method for producing the same, silicon carbide single crystal wafer, and silicon carbide single crystal ingot
JP2019156698A (en) * 2018-03-15 2019-09-19 信越半導体株式会社 Method for manufacturing silicon carbide single crystal
US10844517B2 (en) 2017-12-22 2020-11-24 Showa Denko K.K. Method of processing SiC single crystal and method of manufacturing SiC ingot
CN113113293A (en) * 2020-01-09 2021-07-13 株式会社东芝 Method for producing silicon carbide substrate, method for producing semiconductor device, silicon carbide substrate, and semiconductor device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000219595A (en) * 1999-01-28 2000-08-08 Shikusuon:Kk Crucible, crystal growth device and crystal growth method
JP2004338971A (en) * 2003-05-13 2004-12-02 Denso Corp METHOD AND APPARATUS FOR MANUFACTURING SiC SINGLE CRYSTAL
JP2004352590A (en) * 2003-05-30 2004-12-16 Bridgestone Corp Silicon carbide single crystal, and method and apparatus for manufacturing the same
JP2006225232A (en) * 2005-02-21 2006-08-31 Nippon Steel Corp Method for producing silicon carbide single crystal, silicon carbide single crystal ingot, silicon carbide single crystal substrate, silicon carbide epitaxial wafer and thin film epitaxial wafer
JP2009046367A (en) * 2007-08-22 2009-03-05 Denso Corp Apparatus for manufacturing silicon carbide single crystal

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000219595A (en) * 1999-01-28 2000-08-08 Shikusuon:Kk Crucible, crystal growth device and crystal growth method
JP2004338971A (en) * 2003-05-13 2004-12-02 Denso Corp METHOD AND APPARATUS FOR MANUFACTURING SiC SINGLE CRYSTAL
JP2004352590A (en) * 2003-05-30 2004-12-16 Bridgestone Corp Silicon carbide single crystal, and method and apparatus for manufacturing the same
JP2006225232A (en) * 2005-02-21 2006-08-31 Nippon Steel Corp Method for producing silicon carbide single crystal, silicon carbide single crystal ingot, silicon carbide single crystal substrate, silicon carbide epitaxial wafer and thin film epitaxial wafer
JP2009046367A (en) * 2007-08-22 2009-03-05 Denso Corp Apparatus for manufacturing silicon carbide single crystal

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011111372A (en) * 2009-11-27 2011-06-09 Showa Denko Kk Silicon carbide single crystal, method for producing the same, silicon carbide single crystal wafer, and silicon carbide single crystal ingot
US10844517B2 (en) 2017-12-22 2020-11-24 Showa Denko K.K. Method of processing SiC single crystal and method of manufacturing SiC ingot
JP2019156698A (en) * 2018-03-15 2019-09-19 信越半導体株式会社 Method for manufacturing silicon carbide single crystal
CN113113293A (en) * 2020-01-09 2021-07-13 株式会社东芝 Method for producing silicon carbide substrate, method for producing semiconductor device, silicon carbide substrate, and semiconductor device
JP2021109800A (en) * 2020-01-09 2021-08-02 株式会社東芝 Method for manufacturing silicon carbide base, method for manufacturing semiconductor device, silicon carbide base and semiconductor device
JP7319502B2 (en) 2020-01-09 2023-08-02 株式会社東芝 Silicon carbide substrate manufacturing method, semiconductor device manufacturing method, silicon carbide substrate, and semiconductor device

Also Published As

Publication number Publication date
JP4850807B2 (en) 2012-01-11

Similar Documents

Publication Publication Date Title
JP4964672B2 (en) Low resistivity silicon carbide single crystal substrate
JP4818754B2 (en) Method for producing silicon carbide single crystal ingot
JP4469396B2 (en) Silicon carbide single crystal ingot, substrate obtained therefrom and epitaxial wafer
JP5562641B2 (en) Micropipe-free silicon carbide and method for producing the same
US7678195B2 (en) Seeded growth process for preparing aluminum nitride single crystals
JP4603386B2 (en) Method for producing silicon carbide single crystal
JP4585359B2 (en) Method for producing silicon carbide single crystal
JP2008001532A (en) Silicon carbide single crystal ingot and its producing method
JP2008110907A (en) Method for producing silicon carbide single crystal ingot, and silicon carbide single crystal ingot
JP2004099340A (en) Seed crystal for silicon carbide single crystal growth, silicon carbide single crystal ingot and method of manufacturing the same
JP4690906B2 (en) Seed crystal for growing silicon carbide single crystal, method for producing the same, and method for producing silicon carbide single crystal
JP4408247B2 (en) Seed crystal for growing silicon carbide single crystal and method for producing silicon carbide single crystal using the same
JP5212343B2 (en) Silicon carbide single crystal ingot, substrate obtained therefrom and epitaxial wafer
JP2003104798A (en) Silicon carbide single crystal and its manufacturing method and raw material for silicon carbide crystal for growing silicon carbide single crystal
JP4850807B2 (en) Crucible for growing silicon carbide single crystal and method for producing silicon carbide single crystal using the same
JP5614387B2 (en) Silicon carbide single crystal manufacturing method and silicon carbide single crystal ingot
JP2005239496A (en) Silicon carbide raw material for growing silicon carbide single crystal, silicon carbide single crystal, and method for producing the same
JP2010077023A (en) Silicon carbide single crystal and method of manufacturing the same
JP5370025B2 (en) Silicon carbide single crystal ingot
JP2005314167A (en) Seed crystal for use in silicon carbide single crystal growth, manufacturing method thereof, and method for growing crystal using it
JP4585137B2 (en) Method for producing silicon carbide single crystal ingot
JP2008230868A (en) Method for growing gallium nitride crystal and gallium nitride crystal substrate
JP2003137694A (en) Seed crystal for growing silicon carbide single crystal, silicon carbide single crystal ingot and method of producing the same
JP5152293B2 (en) Manufacturing method of silicon carbide single crystal wafer with small mosaic property
JP5252495B2 (en) Method for producing aluminum nitride single crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110927

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111019

R151 Written notification of patent or utility model registration

Ref document number: 4850807

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141028

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141028

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141028

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350