JPH05124887A - Production of single crystal and device therefor - Google Patents
Production of single crystal and device thereforInfo
- Publication number
- JPH05124887A JPH05124887A JP29006491A JP29006491A JPH05124887A JP H05124887 A JPH05124887 A JP H05124887A JP 29006491 A JP29006491 A JP 29006491A JP 29006491 A JP29006491 A JP 29006491A JP H05124887 A JPH05124887 A JP H05124887A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- solid
- single crystal
- interface
- melt
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、垂直ブリッジマン法
(VB法)による高品質な単結晶を育成することが可能
な単結晶の製造方法及びその装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a single crystal manufacturing method and apparatus capable of growing a high quality single crystal by the vertical Bridgman method (VB method).
【0002】[0002]
【従来の技術】図2(A)、(B)に示すように従来の
垂直ブリッジマン法による単結晶の製造装置は、炉内に
垂直に融液形成部11、固液界面部12、冷却部13を
設けて、炉内の重力方向に高温域21から融点近傍の界
面温度域22を経て低温域23に至る緩やかな温度分布
20を形成する。この温度分布20を形成する高温域2
1下にある融液6を、ルツボ4を降下させることによ
り、界面温度域22を経て低温域23に移動させて単結
晶5を育成するものである。2. Description of the Related Art As shown in FIGS. 2A and 2B, a conventional vertical Bridgman method for producing a single crystal has a melt forming section 11, a solid-liquid interface section 12 and a cooling chamber arranged vertically in a furnace. By providing the portion 13, a gentle temperature distribution 20 is formed in the direction of gravity in the furnace from a high temperature region 21 to an interface temperature region 22 near the melting point to a low temperature region 23. High temperature region 2 forming this temperature distribution 20
By lowering the crucible 4 below the melt 6, the melt 6 is moved to the low temperature region 23 through the interface temperature region 22 to grow the single crystal 5.
【0003】[0003]
【発明が解決しようとする課題】前述したように従来の
垂直ブリッジマン法は、固液界面部10より上部の高温
域21の温度分布は固液界面10より除々に温度が高く
なる分布を使用しているため、融液6の対流(矢印で示
す)が固液界面10位置まで影響を及ぼす。従って、図
3(B)に示すように固液界面形状9は、種結晶8の反
対の融液方向(矢印a)に対し凹面になりがちであっ
た。その結果、 ルツボ壁から欠陥を取込みやすく単結晶収率が悪い、 成長速度を遅くさせざるをえない(例えば1〜3mm
/h)、という欠点があった。As described above, in the conventional vertical Bridgman method, the temperature distribution in the high temperature region 21 above the solid-liquid interface 10 is such that the temperature gradually rises above the solid-liquid interface 10. Therefore, the convection of the melt 6 (indicated by an arrow) affects the solid-liquid interface 10 position. Therefore, as shown in FIG. 3 (B), the solid-liquid interface shape 9 tends to be concave in the melt direction (arrow a) opposite to the seed crystal 8. As a result, defects are easily taken in from the crucible wall, the single crystal yield is poor, and the growth rate must be slowed (for example, 1 to 3 mm).
/ H).
【0004】本発明の目的は、融液の対流が固液界面に
影響を及ぼすのを防ぐバッファゾーンを設けることによ
って、前記した従来技術の欠点を解消し、単結晶収率が
良く、しかも成長速度が速い新規な単結晶の製造方法及
びその装置を提供することにある。The object of the present invention is to eliminate the above-mentioned drawbacks of the prior art by providing a buffer zone for preventing the convection of the melt from affecting the solid-liquid interface, resulting in a good single crystal yield and growth. It is an object of the present invention to provide a novel method for producing a single crystal having a high speed and an apparatus thereof.
【0005】[0005]
【課題を解決するための手段】本発明の単結晶の製造方
法は、炉内の垂直方向に、融液を形成する高温域から固
液界面位置を制御する融点近傍の界面温度域を経て融点
より低い低温域に至る温度分布を形成し、高温域にある
融液を界面温度域を経て低温域に移動させていくことに
より柱状の単結晶を育成する垂直ブリッジマン法による
単結晶の製造方法において、高温域と界面温度域との間
に温度分布の谷を形成して、この温度の谷部と固液界面
との間の結晶成長軸方向に温度匂配を実質的に0℃/c
mとするようにしたものである。According to the method for producing a single crystal of the present invention, in the vertical direction in the furnace, the melting point is passed from the high temperature region forming the melt to the interface temperature region near the melting point for controlling the solid-liquid interface position. A method for producing a single crystal by the vertical Bridgman method in which a columnar single crystal is grown by forming a temperature distribution reaching a lower temperature region and moving a melt in the high temperature region to a low temperature region through an interface temperature region. In, a valley of temperature distribution is formed between the high temperature region and the interface temperature region, and the temperature gradient is substantially 0 ° C./c in the crystal growth axis direction between the valley portion of this temperature and the solid-liquid interface.
It is set to m.
【0006】この場合、単結晶収率をより良好とし、成
長速度をより速くするために、温度の谷部と固液界面間
の距離Lと、結晶直径dとの関係が次式 0.5d≦L≦2d を満たすことが望ましい。In this case, in order to improve the single crystal yield and increase the growth rate, the relationship between the distance L between the temperature valley and the solid-liquid interface and the crystal diameter d is expressed by the following equation: 0.5d It is desirable to satisfy ≦ L ≦ 2d.
【0007】また、本発明の単結晶の製造装置は、炉内
の垂直方向に温度分布を形成すべく、融液を形成する高
温域を作る高温加熱部と、固液界面位置を制御する結晶
融点近傍の界面温度域を作る界面加熱部と、融点より低
い低温域を作る低温加熱部とを備え、結晶原料を入れた
ルツボを高温加熱部から界面加熱部を経て低温加熱部に
相対移動させていくことにより単結晶を育成する垂直ブ
リッジマン法による単結晶の製造装置において、高温加
熱部と界面加熱部との間に隙間を設け、この隙間により
温度分布の谷を形成したものである。Further, the apparatus for producing a single crystal according to the present invention comprises a high temperature heating part for forming a high temperature region for forming a melt and a crystal for controlling a solid-liquid interface position in order to form a temperature distribution in a vertical direction in the furnace. Equipped with an interface heating unit that creates an interface temperature region near the melting point and a low temperature heating unit that creates a low temperature region lower than the melting point, and move the crucible containing the crystal raw material from the high temperature heating unit to the low temperature heating unit through the interface heating unit. In the apparatus for producing a single crystal by the vertical Bridgman method in which the single crystal is grown by going down, a gap is provided between the high temperature heating part and the interface heating part, and the valley of the temperature distribution is formed by this gap.
【0008】この場合、隙間に代えて、あるいは隙間に
冷却手段を設けるようにしてもよい。In this case, cooling means may be provided instead of the gap or in the gap.
【0009】[0009]
【作用】界面加熱部と高温加熱部との間を広げる等し
て、これらの間に温度分布の谷を形成する隙間や冷却手
段を設けると、融液内の対流が上下で遮断され、しかも
温度勾配が0℃/cmとなることにより、固液界面形状
が融液方向に凸になり、単結晶収率が向上する。これ
は、従来は凸にするために成長速度を抑えていたことか
ら、実質的には成長速度が速くなることを意味する。When the space between the interface heating part and the high temperature heating part is widened to provide a gap or a cooling means for forming a valley of the temperature distribution between them, convection in the melt is blocked up and down, and By setting the temperature gradient to 0 ° C./cm, the solid-liquid interface shape becomes convex in the melt direction, and the single crystal yield is improved. This means that the growth rate is substantially increased because the growth rate is conventionally suppressed to be convex.
【0010】温度分布の谷部と固液界面との距離LをL
≧0.5dとしたのは、L<0.5dの場合は温度分布
の谷部を設けても、融液の対流が固液界面まで達してし
まうため、有効ではないからである。また、L≦2dと
したのは、L>2dの場合は、融液の高さが高すぎるた
め、その間の融液の軸方向の温度匂配を0℃/cmに保
つのは難しくなり、温度の谷部と固液界面の中間部で新
たな対流を形成したり、温度の谷部の温度を下げすぎ
て、その部分で融液が固化してしまうという様な不具合
の発生する確率が高くなるからである。好ましくは、実
用的に安定しているL=約dとするのがよい。なお、単
結晶としてはGaAsを始めとしたIII −V族化合物半
導体結晶がある。The distance L between the valley of the temperature distribution and the solid-liquid interface is L
The reason for setting ≧ 0.5d is that, in the case of L <0.5d, even if the valley portion of the temperature distribution is provided, the convection of the melt reaches the solid-liquid interface and is not effective. Further, L ≦ 2d means that in the case of L> 2d, since the height of the melt is too high, it is difficult to maintain the temperature gradient in the axial direction of the melt at 0 ° C./cm, There is a probability that a new convection will be formed in the middle of the temperature valley and the solid-liquid interface, or the temperature of the temperature valley will be too low and the melt will solidify in that area. Because it will be higher. It is preferable that L, which is practically stable, be about d. As a single crystal, there is a III-V group compound semiconductor crystal such as GaAs.
【0011】[0011]
【実施例】実施例1 本実施例によるVB法による単結晶の製造装置およびそ
の温度分布図を示す図1を用いて説明する。炉は縦型の
電気炉から構成され、炉内に所定の温度分布18(図1
(B))を形成する筒状のヒータが設けられる。このヒ
ータは垂直方向に3分割され、中央部に界面加熱部を構
成する固液界面位置制御用ヒータ1、上部に高温加熱部
を構成する融液形成用ヒータ2、及び下部に低温加熱部
を構成するインゴット急冷却防止用ヒータ3から成る。
各々のヒータは、融点(m.p.=1238℃)近辺の
界面温度域16、1245〜1250℃の高温域15、
1150〜1200℃の低温域17に保たれている。固
液界面位置制御用ヒータ1と融液形成用ヒータ2との間
には、寸法l=約20mmの隙間14が設けてあり、温
度分布の谷TL (=約1233〜1237℃)を形成し
ている。温度分布の谷TL と固液界面10との距離Lは
約50mmとした。後述するルツボ寸法から結晶直径d
との関係は、L=約dである。EXAMPLES Example 1 An explanation will be given with reference to FIG. 1 showing an apparatus for producing a single crystal by the VB method according to this example and its temperature distribution diagram. The furnace is composed of a vertical electric furnace and has a predetermined temperature distribution 18 (see FIG. 1).
A cylindrical heater forming (B)) is provided. This heater is divided into three parts in the vertical direction, and a solid-liquid interface position control heater 1 forming an interface heating part in the central part, a melt forming heater 2 forming a high temperature heating part in the upper part, and a low temperature heating part in the lower part. It comprises a heater 3 for preventing the rapid cooling of the ingot.
Each heater has an interface temperature range near the melting point (mp = 1238 ° C.) 16, a high temperature range 1524 to 1250 ° C. 15,
It is kept in the low temperature region 17 of 1150 to 1200 ° C. Between the solid-liquid interface position control heater 1 and the melt forming heater 2, there is provided a gap 14 having a dimension l = about 20 mm, and a valley T L of temperature distribution (= about 1233-1237 ° C.) is formed. is doing. The distance L between the valley T L of the temperature distribution and the solid-liquid interface 10 was set to about 50 mm. From the crucible size described below, the crystal diameter d
And L is about d.
【0012】前記筒状ヒータ内に上下方向に移動自在な
ルツボ4が挿入される。ルツボ4は内径φ50、直胴部
の深さ250mmで、材料はPBN製である。このルツ
ボ4の下端に種結晶8をセットし、さらにGaAs多結
晶1500gとB2 O3 100gを入れて、炉内にセッ
トする。炉内雰囲気をN2 ガスに置換した後、電気炉を
昇温してGaAs多結晶を及びB2 O3 を融解させ、液
体B2 O3 7により封止されたGaAs融液6を形成す
る。PBN製ルツボ4を若干上げて、種結晶8へのシー
ド付を行った後、5mm/hの速度で降下させて結晶成
長を行った。融液全体を固化した後、50℃/hの速度
で室温まで冷却し、炉から取り出した。得られた結晶の
シード部、テール部から(100)面でウェハをそれぞ
れ切り出し、融液KOH、350℃、15分間エッチン
グした後、転位密度を測定した結果、どちらも平均50
00cm-2以下であった。固液界面の形状9は図3
(A)のごとく融液方向aに対し凸形状を示していた。A crucible 4 which is vertically movable is inserted into the cylindrical heater. The crucible 4 has an inner diameter of φ50, a straight body depth of 250 mm, and is made of PBN. A seed crystal 8 is set at the lower end of the crucible 4, and 1500 g of GaAs polycrystal and 100 g of B 2 O 3 are further put therein and set in a furnace. After replacing the atmosphere in the furnace with N 2 gas, the electric furnace is heated to melt the GaAs polycrystal and B 2 O 3 to form a GaAs melt 6 sealed with the liquid B 2 O 3 7. .. The PBN crucible 4 was slightly raised to seed the seed crystal 8 and then lowered at a speed of 5 mm / h for crystal growth. After solidifying the entire melt, it was cooled to room temperature at a rate of 50 ° C./h and taken out of the furnace. Wafers were cut from the seed and tail portions of the obtained crystal at the (100) plane, respectively, and melted KOH was etched at 350 ° C. for 15 minutes, and the dislocation density was measured.
It was less than 00 cm -2 . The shape 9 of the solid-liquid interface is shown in FIG.
As in (A), a convex shape was shown in the melt direction a.
【0013】実施例2 TL 部と固液界面間の距離Lを約25mm、即ち、L=
約d/2とした以外は実施例と同一条件で成長を行っ
た。その結果、肩部から多結晶が発生してしまった。固
液界面形状を観察したところ、図3(B)のように、若
干凹面であった。ただし、成長速度を5mm/hから3
mm/hに遅くして成長したところ単結晶が得られた。
この結晶の転位密度も約5000cm-2であった。いず
れにしても、L=約d/2の条件は、固液界面に対する
融液の対流の影響が未だ残っていることがわかった。 Example 2 The distance L between the T L portion and the solid-liquid interface is about 25 mm, that is, L =
Growth was performed under the same conditions as in the example except that the thickness was set to about d / 2. As a result, polycrystals were generated from the shoulder. When the solid-liquid interface shape was observed, it was slightly concave as shown in FIG. However, the growth rate from 5 mm / h to 3
A single crystal was obtained when the growth was slowed down to mm / h.
The dislocation density of this crystal was also about 5000 cm -2 . In any case, it was found that under the condition of L = about d / 2, the influence of the convection of the melt on the solid-liquid interface still remained.
【0014】実施例3 L=約2dにした以外は、実施例1と同一条件で成長を
行った。その結果、TL の温度を1237℃近辺にしな
いと、その付近の融液が固化しやすく、成長の継続が困
難になることが多かった。そのため、TL を1238〜
1239℃に上げて成長を行ったところ、今度は融液の
対流が大きくなり、成長条件が不安定になることがわか
った。但し、TL =約1237℃で融液が固化しなかっ
た場合は単結晶が得られた。この場合の転位密度も約5
000cm-2であった。 Example 3 Growth was performed under the same conditions as in Example 1 except that L = about 2d. As a result, unless the temperature of TL was set to around 1237 ° C., the melt in the vicinity was likely to solidify, and it was often difficult to continue the growth. Therefore, T L is 1238-
When the temperature was raised to 1239 ° C. and the growth was performed, it was found that the convection of the melt became large and the growth conditions became unstable. However, when T L = about 1237 ° C. and the melt did not solidify, a single crystal was obtained. In this case, the dislocation density is about 5
It was 000 cm -2 .
【0015】変形例 固液界面位置制御用ヒータ1と融液形成用ヒータ2との
間に、温度分布の谷を設ける方法として、上記実施例で
はヒータ間の隙間を調整して行ったが、本発明はこれに
限定されない。例えば、ヒータ間に水冷管を通す等の方
法も有効である。要するにヒータ間を冷却すれば良いの
である。さらに、本発明はVGF法(垂直温度傾斜凝固
法)への応用も可能であり、VGF法への応用を考える
ならば、固液界面より上部に、例えば水冷管を設置し、
界面位置の移動に伴い、水冷管を移動する等の方法も可
能である。要するに固液界面から若干離れた融液側に、
融液が固化しないぎりぎりの温度の低温領域を設けるこ
とが重要なポイントとなる。 Modification As a method for providing a valley of the temperature distribution between the solid-liquid interface position control heater 1 and the melt forming heater 2, the gap between the heaters was adjusted in the above-mentioned embodiment. The present invention is not limited to this. For example, a method of passing a water cooling pipe between the heaters is also effective. In short, it suffices to cool the space between the heaters. Furthermore, the present invention can be applied to the VGF method (vertical temperature gradient solidification method), and if the application to the VGF method is considered, for example, a water cooling pipe is installed above the solid-liquid interface,
A method of moving the water-cooled pipe along with the movement of the interface position is also possible. In short, on the melt side slightly away from the solid-liquid interface,
It is an important point to provide a low temperature region where the melt temperature does not solidify.
【0016】[0016]
【発明の効果】本発明によれば、次の効果がある。The present invention has the following effects.
【0017】(1)温度分布の一部に、温度の谷を設け
るという比較的単純な方法を採ることにより、長尺の単
結晶が歩留良く、かつスピーディに得られる。(1) By adopting a relatively simple method of providing a temperature valley in a part of the temperature distribution, a long single crystal can be obtained with good yield and speed.
【0018】(2)温度の谷部と固液界面間の距離L
と、結晶直径dとの関係をd/2≦L≦2dとなるよう
に設定したので、長尺の単結晶がより歩留良く、よりス
ピーディに得られる。(2) Distance L between temperature valley and solid-liquid interface
And the crystal diameter d are set so that d / 2 ≦ L ≦ 2d, a long single crystal can be obtained with higher yield and more speedily.
【0019】(3)既存の設備に隙間を設けるだけでよ
いので、構造を簡素化できる。(3) Since it is only necessary to provide a gap in the existing equipment, the structure can be simplified.
【0020】(4)積極的に冷却できる冷却手段を設け
ることにより、谷部の温度を所望の温度に設定できるた
め、装置の信頼性が高い。(4) Since the temperature of the valley can be set to a desired temperature by providing a cooling means capable of positively cooling, the reliability of the apparatus is high.
【図1】本発明方法を実施するVB法による単結晶の製
造装置の実施例を示した模式図及びその温度分布図。FIG. 1 is a schematic view showing an embodiment of an apparatus for producing a single crystal by a VB method for carrying out the method of the present invention, and its temperature distribution chart.
【図2】従来のVB法による単結晶の製造装置例を示し
た模式図及びその温度分布図。FIG. 2 is a schematic view showing an example of a conventional single crystal manufacturing apparatus by the VB method and its temperature distribution diagram.
【図3】本実施例における単結晶の固液界面形状、及び
従来方式で得られた単結晶の固液界面形状を示す結晶断
面図。FIG. 3 is a crystal cross-sectional view showing a solid-liquid interface shape of a single crystal in this example and a solid-liquid interface shape of a single crystal obtained by a conventional method.
1 固液界面位置制御用ヒータ(界面加熱部) 2 融液形成用ヒータ(高温加熱部) 3 結晶インゴット急冷防止用ヒータ(低温加熱部) 4 PBN製ルツボ 5 GaAs単結晶 7 液体B2 O3 6 GaAs融液 8 種結晶 10 固液界面 14 隙間 15 高温域 16 界面温度域 17 低温域 18 温度分布 d 結晶直径 TL 温度の谷 L TL 部と固液界面間の距離 m.p. GaAs融点(約1238℃)1 Solid-liquid interface position control heater (interface heating part) 2 Melt forming heater (high temperature heating part) 3 Crystal ingot quenching prevention heater (low temperature heating part) 4 PBN crucible 5 GaAs single crystal 7 Liquid B 2 O 3 6 GaAs melt 8 seed crystal 10 solid-liquid interface 14 gap 15 high temperature region 16 interface temperature region 17 low temperature region 18 temperature distribution d crystal diameter TL temperature valley L TL distance between solid-liquid interface m. p. GaAs melting point (about 1238 ℃)
Claims (4)
から固液界面位置を制御する結晶融点近傍の界面温度域
を経て融点より低い低温域に至る温度分布を形成し、高
温域にある融液を界面温度域を経て低温域に移動させて
いくことにより柱状の単結晶を育成する垂直ブリッジマ
ン法による単結晶の製造方法において、前記高温域と界
面温度域との間に温度分布の谷を形成して、この温度の
谷部と界面温度域にある固液界面との間の温度匂配を実
質的に0℃/cmとすることを特徴とする単結晶の製造
方法。1. A temperature distribution is formed in a vertical direction in a furnace from a high temperature region forming a melt to a low temperature region lower than the melting point through an interface temperature region near a crystal melting point for controlling a solid-liquid interface position, In the method for producing a single crystal by the vertical Bridgman method of growing a columnar single crystal by moving the melt in the zone to the low temperature zone through the interface temperature zone, between the high temperature zone and the interface temperature zone A method for producing a single crystal, characterized in that a valley of temperature distribution is formed and a temperature gradient between the valley portion of this temperature and the solid-liquid interface in the interface temperature region is substantially 0 ° C./cm. ..
結晶直径dとの関係が次式 d/2≦L≦2d を満たすことを特徴とする請求項1に記載の単結晶の製
造方法。2. The distance L between the temperature valley and the solid-liquid interface,
The method for producing a single crystal according to claim 1, wherein the relationship with the crystal diameter d satisfies the following expression: d / 2 ≦ L ≦ 2d.
融液を形成する高温域を作る高温加熱部と、固液界面位
置を制御する結晶融点近傍の界面温度域を作る界面加熱
部と、融点より低い低温域を作る低温加熱部とを備え、
結晶原料を入れたルツボを高温加熱部から界面加熱部を
経て低温加熱部に相対移動させていくことにより単結晶
を育成する垂直ブリッジマン法による単結晶の製造装置
において、前記高温加熱部と界面加熱部との間に隙間を
設け、この隙間により温度分布の谷を形成したことを特
徴とする単結晶の製造装置。3. In order to form a temperature distribution in the furnace in the vertical direction,
A high-temperature heating unit that creates a high-temperature region that forms a melt, an interface heating unit that creates an interface temperature region near the crystal melting point that controls the solid-liquid interface position, and a low-temperature heating unit that creates a low-temperature region lower than the melting point are provided.
In the apparatus for producing a single crystal by the vertical Bridgman method of growing a single crystal by moving the crucible containing the crystal raw material from the high temperature heating section to the low temperature heating section through the interface heating section, the high temperature heating section and the interface An apparatus for producing a single crystal, wherein a gap is provided between the heating unit and a valley of temperature distribution is formed by the gap.
おいて、前記隙間に代えて、もしくは前記隙間に冷却手
段を設けたことを特徴とする単結晶の製造装置。4. The apparatus for producing a single crystal according to claim 3, wherein cooling means is provided in place of or in the gap.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29006491A JP2814796B2 (en) | 1991-11-06 | 1991-11-06 | Method and apparatus for producing single crystal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29006491A JP2814796B2 (en) | 1991-11-06 | 1991-11-06 | Method and apparatus for producing single crystal |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05124887A true JPH05124887A (en) | 1993-05-21 |
JP2814796B2 JP2814796B2 (en) | 1998-10-27 |
Family
ID=17751326
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29006491A Expired - Lifetime JP2814796B2 (en) | 1991-11-06 | 1991-11-06 | Method and apparatus for producing single crystal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2814796B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999050481A1 (en) * | 1998-03-31 | 1999-10-07 | Japan Energy Corporation | Method of manufacturing compound semiconductor single crystal |
JP2007217199A (en) * | 2006-02-14 | 2007-08-30 | Daiichi Kiden:Kk | Method and apparatus for manufacturing single crystal |
-
1991
- 1991-11-06 JP JP29006491A patent/JP2814796B2/en not_active Expired - Lifetime
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999050481A1 (en) * | 1998-03-31 | 1999-10-07 | Japan Energy Corporation | Method of manufacturing compound semiconductor single crystal |
US6334897B1 (en) | 1998-03-31 | 2002-01-01 | Japan Energy Corporation | Method of manufacturing compound semiconductor single crystal |
JP2007217199A (en) * | 2006-02-14 | 2007-08-30 | Daiichi Kiden:Kk | Method and apparatus for manufacturing single crystal |
Also Published As
Publication number | Publication date |
---|---|
JP2814796B2 (en) | 1998-10-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108823636A (en) | Monocrystalline silicon growing device and monocrystalline silicon growing method | |
EP0992618B1 (en) | Method of manufacturing compound semiconductor single crystal | |
JPS6046998A (en) | Pulling up of single crystal and its device | |
US5342475A (en) | Method of growing single crystal of compound semiconductor | |
JP3533812B2 (en) | Crystal manufacturing apparatus by Czochralski method, crystal manufacturing method, and crystal manufactured by this method | |
JP2003286024A (en) | Unidirectional solidified silicon ingot and manufacturing method thereof, silicon plate, substrate for solar cell and target base material for sputtering | |
JP3152971B2 (en) | Manufacturing method of high purity copper single crystal ingot | |
JP2814796B2 (en) | Method and apparatus for producing single crystal | |
JPH1087392A (en) | Production of compound semiconductor single crystal | |
JPH11349392A (en) | Method and apparatus for producing single crystal | |
JP2002104896A (en) | Method of growing single crystal and growing device | |
JPH05194073A (en) | Growth of compound semiconductor single crystal | |
JPH11302094A (en) | Production of compound semiconductor single crystal | |
JP2758038B2 (en) | Single crystal manufacturing equipment | |
JP3812573B2 (en) | Semiconductor crystal growth method | |
TWI698557B (en) | Mono-crystalline silicon growth method and mono-crystalline silicon growth apparatus | |
JPH0259494A (en) | Production of silicon single crystal and apparatus | |
JPH11130579A (en) | Production of compound semiconductor single crystal and apparatus for producing the same | |
JP2000169278A (en) | Production of semiconductor crystal and apparatus for production | |
JPH05319973A (en) | Single crystal production unit | |
JPH0782084A (en) | Single crystal growing method and single crystal growing apparatus | |
JPH03193689A (en) | Production of compound semiconductor crystal | |
JPH09142982A (en) | Apparatus for growing single crystal and method for growing single crystal | |
KR20220041649A (en) | Manufacturing apparatus of semiconductor ring and manufacturing method of semiconductor ring using the same | |
JPH10298000A (en) | Plate single crystal and its production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080814 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 11 Free format text: PAYMENT UNTIL: 20090814 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 12 Free format text: PAYMENT UNTIL: 20100814 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 12 Free format text: PAYMENT UNTIL: 20100814 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110814 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 14 Free format text: PAYMENT UNTIL: 20120814 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 14 Free format text: PAYMENT UNTIL: 20120814 |