JP3812573B2 - Semiconductor crystal growth method - Google Patents

Semiconductor crystal growth method Download PDF

Info

Publication number
JP3812573B2
JP3812573B2 JP2004124930A JP2004124930A JP3812573B2 JP 3812573 B2 JP3812573 B2 JP 3812573B2 JP 2004124930 A JP2004124930 A JP 2004124930A JP 2004124930 A JP2004124930 A JP 2004124930A JP 3812573 B2 JP3812573 B2 JP 3812573B2
Authority
JP
Japan
Prior art keywords
heat
solid
raw material
liquid interface
crucible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004124930A
Other languages
Japanese (ja)
Other versions
JP2004210638A (en
Inventor
正登 入倉
伸介 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2004124930A priority Critical patent/JP3812573B2/en
Publication of JP2004210638A publication Critical patent/JP2004210638A/en
Application granted granted Critical
Publication of JP3812573B2 publication Critical patent/JP3812573B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

この発明は縦型ブリッジマン法による半導体結晶の成長方法に関する。半導体結晶の成長方法には様々な方法が知られている。Si単結晶の場合はチョクラルスキ−法が最も有力である。ほとんどのSi単結晶はこの方法で作られる。原料をるつぼに入れてヒ−タによって周りから加熱し融液とし、種結晶を上から垂らして種付けし回転させながら種結晶を引き上げることにより単結晶を引き上げる。単結晶の直径は、るつぼの半分以下であることが多い。チョクラルスキ−法は代表的な結晶成長方法でSi以外にも広く使われる。
GaAs、InPなどの化合物半導体の場合は、V族元素の蒸気圧が高いのでV族の解離を防ぐための特別の工夫が必要である。代表的な方法は水平ブリッジマン法と液体封止チョクラルスキ−法である。
The present invention relates to a method for growing a semiconductor crystal by a vertical Bridgman method. Various methods are known for growing semiconductor crystals. In the case of Si single crystal, the Czochralski method is most effective. Most Si single crystals are made by this method. The raw material is placed in a crucible and heated from around by a heater to form a melt, and the seed crystal is hung from above and seeded, and the seed crystal is pulled up while rotating to pull up the single crystal. The diameter of a single crystal is often less than half that of a crucible. The Czochralski method is a typical crystal growth method and is widely used in addition to Si.
In the case of a compound semiconductor such as GaAs and InP, special vaporization for preventing dissociation of the V group is necessary because the vapor pressure of the V group element is high. Typical methods are the horizontal Bridgman method and the liquid-sealed Czochralski method.

水平ブリッジマン法は、半円断面のボ−トに原料を入れ、これを中間隔壁で仕切られた長い石英管の一方の空間に入れ、他方の空間にAsやPを入れた状態で封入し、これを温度勾配のある炉の中へ入れて成長させるものである。ボ−トの一端には種結晶を置く。全体を高温に加熱して原料を溶融してから、種結晶の側から徐々に冷却する。種結晶と同じ方位の単結晶が横方向に成長してゆく。成長方向が水平であるので水平という限定が付く。   In the horizontal Bridgman method, raw materials are put into a semicircular cross-section boat, which is put into one space of a long quartz tube partitioned by an intermediate partition, and sealed with As and P in the other space. This is put into a furnace with a temperature gradient and grown. A seed crystal is placed on one end of the boat. The whole is heated to a high temperature to melt the raw material, and then gradually cooled from the seed crystal side. A single crystal with the same orientation as the seed crystal grows laterally. Since the growth direction is horizontal, there is a limitation of being horizontal.

ブリッジマン法というのは、融液と単結晶が同じ容器内にあり、断面積も同じであるという特徴がある。境界面(固液界面)が少しずつ動いてゆく。温度勾配のある炉の中を、石英管を動かすことにより固液界面を動かす。水平ブリッジマン法は、結晶を引き上げるということをしないので、応力がかからず歪みの小さい結晶を得ることができる。ために転位密度の低い良質の単結晶を製造することができる。発光素子、高周波素子などの化合物半導体の結晶はこの方法で作られる。   The Bridgman method is characterized in that the melt and the single crystal are in the same container and have the same cross-sectional area. The boundary surface (solid-liquid interface) moves gradually. The solid-liquid interface is moved by moving the quartz tube in a furnace with a temperature gradient. Since the horizontal Bridgman method does not pull up the crystal, it is possible to obtain a crystal with little stress and no stress. Therefore, a high-quality single crystal having a low dislocation density can be produced. Crystals of compound semiconductors such as light-emitting elements and high-frequency elements are produced by this method.

液体封止チョクラルスキ−法は、るつぼに原料を入れBなどの封止剤を更に入れる。高温に加熱し高圧をかけてV族元素の揮発を防止する。種結晶を上から垂らして種付けし回転しながら引き上げる。高圧が封止剤を押さえるのでV族の揮発を防ぐことができるが、封止剤の断熱性が大きく温度勾配が大きくなるので熱歪みが入りやすい。この方法で作った結晶は転位密度が高い。 In the liquid sealing Czochralski method, a raw material is put in a crucible and a sealing agent such as B 2 O 3 is further added. Heat to high temperature and apply high pressure to prevent volatilization of group V elements. The seed crystal is hung from above, seeded, and pulled up while rotating. Since the high pressure suppresses the sealant, volatilization of the group V can be prevented, but the thermal insulation of the sealant is large and the temperature gradient is large, so that thermal distortion tends to occur. Crystals made by this method have a high dislocation density.

本発明の対象とする縦型ブリッジマン法はこれらの代表的な化合物半導体の成長方法のいずれとも異なる。水平ブリッジマンを縦型にしたようなものである。原料を入れた縦型のるつぼを、上が高温、下が低温の縦型の温度勾配炉に入れ、全体を溶融し融液にしてから、るつぼを下方に移動させて、下方から徐々に原料融液を固化する。下が固体で上が液体であるので、チョクラルスキ−法とは温度勾配が反対になる。   The vertical Bridgman method which is the subject of the present invention is different from any of these typical compound semiconductor growth methods. It's like a horizontal bridgeman made vertical. Put the vertical crucible containing the raw material into a vertical temperature gradient furnace with the upper part at a high temperature and the lower part at a low temperature, melt the whole into a melt, move the crucible downward, and gradually start the raw material from below Solidify the melt. Since the bottom is solid and the top is liquid, the temperature gradient is opposite to the Czochralski method.

縦型ブリッジマン法がどうして必要なのかをまず説明する。チョクラルスキ−法は使い慣れた方法であり、固体と液体の境界がはっきりしており、制御も容易である。結晶の重量は上軸に取り付けたロ−ドセルにより測定できる。境界は目視観察、テレビカメラで観察できる。しかし、チョクラルスキ−法は、一様な不純物濃度のものや、一様な組成の混晶を成長させることができない。一般にるつぼ内の原料は、平衡状態で、固体と液体の界面とで不純物の濃度が異なる。固体中の不純物濃度を液体(融液)の不純物濃度で割った値は温度のみによる定数である。この比の値を偏析係数という。偏析係数が1より小さいと、引き上げとともに融液中の不純物が濃縮されるので、結晶中の不純物濃度が上昇してゆく。偏析係数が1より大きいと反対に不純物濃度が減少してゆく。   First, we will explain why the vertical Bridgman method is necessary. The Czochralski method is a familiar method, the boundary between solid and liquid is clear, and control is easy. The weight of the crystal can be measured by a load cell attached to the upper shaft. The boundary can be observed visually or with a television camera. However, the Czochralski method cannot grow a mixed crystal having a uniform impurity concentration or a uniform composition. In general, the raw material in the crucible is in an equilibrium state, and the impurity concentration differs at the solid-liquid interface. The value obtained by dividing the impurity concentration in the solid by the impurity concentration of the liquid (melt) is a constant based only on temperature. The value of this ratio is called the segregation coefficient. If the segregation coefficient is less than 1, the impurities in the melt are concentrated with the pulling, so that the impurity concentration in the crystal increases. On the contrary, when the segregation coefficient is greater than 1, the impurity concentration decreases.

これは不純物の場合であるが、混晶の場合も同様である。平行状態にある融液と固体に含まれる原料組成が同一でない。ために成長とともに混晶比が変動してくる。一様な組成の混晶を得ることができない。このような欠点は水平ブリッジマン法でも同様である。融液と固体(結晶)が熱平衡にあるので、固体と融液での原料組成が同一でない。   This is the case of impurities, but the same is true for mixed crystals. The raw material composition contained in the melt and the solid in the parallel state is not the same. Therefore, the mixed crystal ratio fluctuates with growth. A mixed crystal having a uniform composition cannot be obtained. Such a defect is also the same in the horizontal Bridgman method. Since the melt and the solid (crystal) are in thermal equilibrium, the raw material composition of the solid and the melt is not the same.

縦型ブリッジマン法により結晶を成長させる方法としては、
特開平1−212291号(1989.8.25)…複数箇所に熱電対を設けて複数箇所での温度を求め、これを基に温度分布を計算推定し、成長界面形状、成長界面位置の変化を制御する。 PCT出願 WO 91/02832(1991.3.7)…外部の主ヒ−タの他に、原料融液の内部に円板状の補助ヒ−タを設けている。補助ヒ−タの作用で原料融液の動きが抑えられる。これは実効偏析係数をほぼ1に等しくし、不純物濃度が一定の結晶を成長させることができるというわけである。
As a method of growing a crystal by the vertical Bridgman method,
Japanese Patent Laid-Open No. 1-221291 (1989. 8.25) ... The temperature at a plurality of locations is obtained by providing thermocouples at a plurality of locations, the temperature distribution is calculated and estimated based on this, and the growth interface shape and the growth interface position change. To control. PCT application WO 91/02832 (19991.3.7) ... In addition to the external main heater, a disk-shaped auxiliary heater is provided inside the raw material melt. The movement of the raw material melt is suppressed by the action of the auxiliary heater. This is because the effective segregation coefficient is substantially equal to 1, and a crystal having a constant impurity concentration can be grown.

縦型ブリッジマン法は、混晶や不純物を含む結晶に適する方法と言われているが、必ずしも長手方向に混晶比や、不純物濃度の一定したものができる訳ではない。この方法は固体部と液体部の界面がどこであるのかはっきりせず、結晶成長条件を長手方向に一様に保持するのが難しい。るつぼを一定方向に一定速度で移動し成長を行う時、るつぼ移動に伴う機械的ノイズや、るつぼが移動することにより引き起こる炉内熱環境の変化などの諸要因が成長速度(固液界面速度)を変化させており、これによりストリエ−ション(ミクロな組成変動)が生じる。   The vertical Bridgman method is said to be suitable for mixed crystals and crystals containing impurities, but it does not necessarily produce a mixed crystal ratio or a constant impurity concentration in the longitudinal direction. In this method, it is not clear where the interface between the solid part and the liquid part is, and it is difficult to keep the crystal growth conditions uniform in the longitudinal direction. When the crucible is moved in a certain direction at a constant speed, the growth rate (solid-liquid interface velocity) is affected by mechanical noise accompanying the crucible movement and changes in the thermal environment in the furnace caused by the movement of the crucible. ), And this causes a story (micro compositional change).

混晶半導体の場合は、やはり長手方向に混晶比が揺らぐ。不純物をド−プした半導体は、長手方向に不純物濃度が変動する。アンド−プ半導体の場合は双晶が入りやすく結晶性が悪い。前記の特許文献1は構造が複雑になる。また再現性に問題がある。特許文献2は原料融液へ不純物が混入する惧れがある。
本発明は、縦型ブリッジマン法において、原料の結晶化位置(融点位置、あるいは、固液界面位置)を一定とすることにより、成長速度を一定とし、不純物濃度や混晶比の安定した結晶を成長させることを目的とする。
In the case of a mixed crystal semiconductor, the mixed crystal ratio also fluctuates in the longitudinal direction. The impurity concentration of a semiconductor doped with impurities varies in the longitudinal direction. In the case of an andrp semiconductor, twins easily enter and the crystallinity is poor. The structure of Patent Document 1 is complicated. There is also a problem in reproducibility. In Patent Document 2, impurities may be mixed into the raw material melt.
In the vertical Bridgman method, the present invention makes the growth rate constant by making the crystallization position (melting point position or solid-liquid interface position) of the raw material constant, and crystal with stable impurity concentration and mixed crystal ratio. The purpose is to grow.

本発明の半導体結晶の成長方法は、縦型のるつぼと、るつぼ外周を包囲する筒状縦型の断熱材と、断熱材とるつぼを支持し昇降させることのできる下軸と、断熱材の周囲上下方向に複数個設けられ独立に出力制御でき縦方向に温度分布を形成することのできるヒ−タと、るつぼの外周に設置した温度センサとを含む半導体結晶の成長装置を用い、るつぼの中に原料固体を収容し、ヒ−タに通電しヒータの熱が断熱材とるつぼを加熱するようにし、その熱で原料を溶融して原料融液とし、ヒ−タの出力を調整して上方を高温部、下方を低温部とし、断熱材を通過する熱量が縦方向の熱量よりも小さくなるようにヒ−タ制御を行いながら、下方から原料融液を固化し固液界面が上に凸になるように維持しながら結晶成長する。   The method for growing a semiconductor crystal according to the present invention includes a vertical crucible, a cylindrical vertical heat insulating material surrounding the outer periphery of the crucible, a lower shaft capable of supporting and moving up and down the heat insulating material crucible, and the periphery of the heat insulating material. Using a semiconductor crystal growth apparatus that includes a heater that is provided in the vertical direction and that can independently control output and that can form a temperature distribution in the vertical direction, and a temperature sensor installed on the outer periphery of the crucible. The raw material solid is contained in the heater, the heater is energized, and the heat of the heater heats the crucible for heat insulation. The heat melts the raw material into a raw material melt, and the heater output is adjusted The heat treatment is controlled so that the amount of heat passing through the heat insulating material is smaller than the amount of heat in the vertical direction, while the raw material melt is solidified from below and the solid-liquid interface protrudes upward. Crystal growth while maintaining

るつぼの外周に断熱材を設けているので原料融液をヒ−タと外界から遮断し原料融液、固体の温度分布を安定化させる。るつぼの周囲が断熱材に囲まれるので熱の流れは主に縦方向になる。断熱材を横切る熱流は小さいものとなる。断熱材がないと原料融液から輻射で放熱し、ヒータの輻射で原料が加熱されるから温度変動が大きいものとなるが本発明の場合は断熱材で包むので融液・固体部での温度の安定性が優れたものとなる。また断熱材がヒ−タからの熱輻射を遮断するので温度センサによる温度測定が精密になる。
或いは、融点位置に設定する温度センサの他に、上にひとつ以上、下にひとつ以上の温度センサを設ける。温度センサを増やすので、るつぼ外周の温度分布をより精密に測定することができる。
融点の位置より上方から融点の位置へ流れる熱量が、融点の位置より下方から流れる熱量よりも大きく断熱材を横方向へ通過する熱量が小さいのだから差の熱量は結晶の中心部へ向かうことになり固液界面が上方へ凸になる。
Since the heat insulating material is provided on the outer periphery of the crucible, the raw material melt is shielded from the heater and the outside, and the temperature distribution of the raw material melt and the solid is stabilized. Since the crucible is surrounded by heat insulating material, the heat flow is mainly in the vertical direction. The heat flow across the insulation is small. If there is no heat insulating material, the heat will be radiated from the raw material melt and the material will be heated by the radiation of the heater, so the temperature fluctuation will be large, but in the case of the present invention, the temperature in the melt / solid part will be wrapped with the heat insulating material. The stability of is excellent. Further, since the heat insulating material blocks the heat radiation from the heater, the temperature measurement by the temperature sensor becomes precise.
Alternatively, in addition to the temperature sensor set at the melting point position, one or more temperature sensors are provided above and one or more temperature sensors are provided below. Since the number of temperature sensors is increased, the temperature distribution on the outer periphery of the crucible can be measured more precisely.
The amount of heat that flows from the position above the melting point to the position of the melting point is larger than the amount of heat that flows from below the position of the melting point, and the amount of heat that passes through the heat insulating material is small. The solid-liquid interface becomes convex upward.

本発明は、縦長の断熱材に囲まれた縦型のるつぼに原料を入れて融液とし、複数個上下方向に配置された独立のヒータを制御して下方が低温、上方が高温となる温度分布を作り、下方が低温、上方が高温となった温度勾配の中を、断熱材、るつぼ、融液を下げてゆくことにより、原料融液の下方から固化させる。るつぼの外周で断熱材より内部に縦長の空間を形成し、ここに熱電対のような温度センサを昇降自在に設けて、原料融液の温度を測定する。断熱材で囲まれヒータの輻射を直接に受けないので温度センサの信頼性が高い。本発明は、温度センサの位置と固液界面の位置は不変とし、下軸を下方に変位させることにより、原料融液と結晶を下方へ下げて行く。こうすると原料融液が固化する条件が時間的に変わらない。また原料の融点の位置に温度センサを固定しているので、原料中の固液界面と、温度センサの関係が一定である。ために、固液界面の高さが一定となる。縦型ブリッジマン法の難点は固液界面が分からないことにある。しかし本発明は、常に固液界面の位置を精密に知ることができる。縦型ブリッジマンの欠点を解消する有力な方法である。   In the present invention, a raw material is placed in a vertical crucible surrounded by a vertically long heat insulating material to form a melt, and a plurality of independent heaters arranged in the vertical direction are controlled so that the lower temperature is lower and the upper temperature is higher. The distribution is made, and the heat insulating material, the crucible, and the melt are lowered in a temperature gradient in which the lower temperature is low and the upper temperature is high, so that the raw material melt is solidified from below. A vertically long space is formed inside the outer periphery of the crucible from the heat insulating material, and a temperature sensor such as a thermocouple is provided so as to be movable up and down, and the temperature of the raw material melt is measured. The temperature sensor is highly reliable because it is surrounded by heat insulating material and does not receive the radiation of the heater directly. In the present invention, the position of the temperature sensor and the position of the solid-liquid interface are not changed, and the raw material melt and the crystal are lowered downward by displacing the lower shaft downward. In this way, the conditions for solidifying the raw material melt do not change with time. Since the temperature sensor is fixed at the melting point of the raw material, the relationship between the solid-liquid interface in the raw material and the temperature sensor is constant. For this reason, the height of the solid-liquid interface is constant. The difficulty of the vertical Bridgman method is that the solid-liquid interface is unknown. However, the present invention can always know the position of the solid-liquid interface precisely. It is a powerful method to eliminate the drawbacks of the vertical bridgeman.

図1は本発明の縦型ブリッジマン装置の概略構成図である。真空に引くことのできるチャンバ1の内部には、独立してパワ−を制御できるヒ−タ2、3、4、5が縦方向に設置される。これによって、任意の温度分布を形成することができる。チャンバ1の中央部には、縦長のるつぼ6がある。るつぼの外周面は筒状の断熱材12によって包囲されている。るつぼ6の下底および断熱材の下端は、下軸8によって支持される。るつぼ6の側方断熱材の内側には縦長の熱電対挿入管9が形成される。熱電対挿入管9には上方から熱電対10が挿入される。縦長るつぼ6の内部には原料融液7が収容される。るつぼ6の上部開口は蓋11で閉じられる。ヒータからの輻射熱は直接に断熱材を加熱する。断熱材を昇温し断熱材を熱伝導で伝わった熱が内部のるつぼへいたり熱伝導によってるつぼ内部の原料を加熱し融液とする。断熱材がヒータからの直接加熱を遮断し原料融液から外部への直接の放熱を防ぐ。
この状態ではすべてが融液である。ヒ−タによる温度環境は、下方が低温、上方が高温になっている。下軸8を下げることにより、融液が下の方から次第に固化してゆく。熱電対10の位置は変わらないようにする。しかも熱電対10は常に固液界面に位置するように調節する。下軸の下降速度を加減して、このような条件を満足させる。固液界面の高さが常に一定である。結晶は上下方向に同一の条件によって成長するということになる。品質の安定した、不純物密度の一様な結晶を成長させることができる。
FIG. 1 is a schematic configuration diagram of a vertical Bridgman device of the present invention. Heaters 2, 3, 4, 5, which can control power independently, are installed in the vertical direction inside the chamber 1 that can be evacuated. Thereby, an arbitrary temperature distribution can be formed. There is a vertically long crucible 6 at the center of the chamber 1. The outer peripheral surface of the crucible is surrounded by a cylindrical heat insulating material 12. The lower bottom of the crucible 6 and the lower end of the heat insulating material are supported by the lower shaft 8. A vertically long thermocouple insertion tube 9 is formed inside the side heat insulating material of the crucible 6. A thermocouple 10 is inserted into the thermocouple insertion tube 9 from above. A raw material melt 7 is accommodated inside the vertically long crucible 6. The upper opening of the crucible 6 is closed with a lid 11. Radiant heat from the heater directly heats the insulation. The temperature of the heat insulating material is raised, and the heat transmitted through the heat insulating material is transferred to the inner crucible or the raw material inside the crucible is heated to form a melt. The heat insulating material blocks direct heating from the heater and prevents direct heat radiation from the raw material melt.
In this state, everything is a melt. The temperature environment by the heater is low in the lower part and high in the upper part. By lowering the lower shaft 8, the melt gradually solidifies from the lower side. The position of the thermocouple 10 is not changed. Moreover, the thermocouple 10 is adjusted so that it is always located at the solid-liquid interface. The lower shaft lowering speed is adjusted to satisfy these conditions. The height of the solid-liquid interface is always constant. The crystal grows under the same conditions in the vertical direction. A crystal having a uniform quality and a uniform impurity density can be grown.

本発明はるつぼと温度センサの外周面を断熱材で覆うのでヒータ輻射がるつぼに直接に当たらず、るつぼから熱が輻射で側方へ逃げない。断熱性が高いので、るつぼ内部の原料融液・固体の温度分布が安定し時間的な擾乱を受けない。ヒ−タからの輻射が温度センサに当たると、測定値が高めに出るが、断熱材で包むと、輻射が遮られる。熱伝導のみになるので、融液の温度をより正確に測定することができる。   In the present invention, since the outer peripheral surfaces of the crucible and the temperature sensor are covered with a heat insulating material, the heater radiation does not directly hit the crucible, and heat does not escape from the crucible to the side by radiation. Because of its high thermal insulation, the temperature distribution of the raw material melt and solid inside the crucible is stable and not subject to temporal disturbance. If the radiation from the heater hits the temperature sensor, the measured value will be higher, but if it is wrapped with a heat insulating material, the radiation will be blocked. Since it is only heat conduction, the temperature of the melt can be measured more accurately.

温度センサの数はひとつでも良いが、複数にすることにより、るつぼ内の温度分布をより正確に求めることができるようになる。前記の固液界面に固定するものの他に、これより上に一つ以上、下に一つ以上の温度センサを設ける。この方法では、縦型るつぼの下から固化してゆくので、下の温度センサは結晶の温度を監視し、上の温度センサは融液温度を監視することができる。
先述のように縦型ブリッジマンは固液界面が分からないという欠点があるが、本発明に於いて、3つ以上の温度センサを設けることにより、縦方向の原料融液、結晶の温度分布が求められる。るつぼの下降の速度や、ヒ−タのパワ−の制御のためのデ−タとして温度分布を用いることができる。
Although the number of temperature sensors may be one, the temperature distribution in the crucible can be obtained more accurately by using a plurality of temperature sensors. In addition to what is fixed to the solid-liquid interface, one or more temperature sensors are provided above and one or more temperature sensors are provided below. In this method, solidification starts from the bottom of the vertical crucible, so that the lower temperature sensor can monitor the crystal temperature and the upper temperature sensor can monitor the melt temperature.
As described above, the vertical Bridgman has the disadvantage that the solid-liquid interface is not known. However, in the present invention, by providing three or more temperature sensors, the temperature distribution of the raw material melt and crystals in the vertical direction can be increased. Desired. The temperature distribution can be used as data for controlling the crucible lowering speed and the heater power.

図2は3つの熱電対を設けた装置の例を示す。熱電対挿入管9に、3つの熱電対10、13、14が挿入されている。中間の熱電対10は、原料の融液7と、結晶15の境界である固液界面16の高さにある。一つの熱電対13は、より上方の点にあって、融液の温度をモニタしている。他の熱電対14はより下方の点にあって、結晶の温度をモニタしている。
上熱電対13、中間熱電対10、下熱電対14の温度をそれぞれT、T、Tとする。Tは原料の融点に固定してある。T>T>Tである。中間の熱電対10と上方の熱電対13の高さの差をL、中間の熱電対10と下方の熱電対14の高さの差をLとする。
FIG. 2 shows an example of an apparatus provided with three thermocouples. Three thermocouples 10, 13, and 14 are inserted into the thermocouple insertion tube 9. The intermediate thermocouple 10 is at the height of the solid-liquid interface 16 which is the boundary between the raw material melt 7 and the crystal 15. One thermocouple 13 is at a higher point and monitors the temperature of the melt. The other thermocouple 14 is at a lower point and monitors the temperature of the crystal.
Upper thermocouple 13, intermediate thermocouple 10, the temperature of the lower thermocouple 14 and T 1, T 2, T 3, respectively. T 2 is fixed at the melting point of the raw material. T 1 > T 2 > T 3 . The difference in height between the intermediate thermocouple 10 and the upper thermocouple 13 is L 1 , and the difference in height between the intermediate thermocouple 10 and the lower thermocouple 14 is L 2 .

優れた結晶性のものを作ろうとすると、図3に示すように、原料の固液界面は固体側が凸に、融液側が凹になっていなければならない。つまり、固液界面が中央で高く、周辺で低くなるような曲面になっているのが結晶性の点で望ましい。このためには、固液界面の周辺部において固液界面へ上方から流入する熱量Qと固液界面から下方へ流れ去る熱量Qとを比較し、QがQより大きくすると良い。図4に熱流の関係を示す。QがQより大きいと、その差Q=Q−Qは、るつぼの中心へ向かう熱流となる。側方に断熱材があるから外界とるつぼ内の半径方向の熱のやり取りは小さくなり、断熱材を通る熱が殆どないとして上のQ=Q−Qが成り立つ。 In order to produce an excellent crystalline material, the solid-liquid interface of the raw material must be convex on the solid side and concave on the melt side as shown in FIG. That is, it is desirable in terms of crystallinity that the solid-liquid interface has a curved surface that is high at the center and low at the periphery. For this purpose, it compares the amount of heat Q 2 to which flow away from heat Q 1, the solid-liquid interface downward flowing from the upper to the solid-liquid interface at the periphery of the solid-liquid interface, may Q 1 is larger than Q 2. FIG. 4 shows the relationship of heat flow. And Q 1 is greater than Q 2, the difference Q 3 = Q 1 -Q 2 is a heat flow toward the center of the crucible. Since there is a heat insulating material on the side, the exchange of heat in the radial direction in the crucible taking the outside becomes small, and the above Q 3 = Q 1 -Q 2 is established assuming that there is almost no heat passing through the heat insulating material.

このような中心に向かう熱流が存在するということは、原料結晶、融液の外周の方が、中央部よりも温度が高いということである。温度は下方で低く、上方で高いのであるから、上向きに凸の等温線が形成される。このため固液界面が、上向きに凸となる。これにより良好な結晶性を持つ結晶ができる。Q>Qという条件を温度分布によって書き表わしてみよう。 The existence of such a heat flow toward the center means that the temperature of the outer periphery of the raw crystal and the melt is higher than that of the central portion. Since the temperature is low at the bottom and high at the top, an upwardly convex isotherm is formed. For this reason, the solid-liquid interface is convex upward. As a result, crystals with good crystallinity can be obtained. Let us write the condition of Q 1 > Q 2 by the temperature distribution.

縦方向上向きにZ軸を定義する。上向きの熱流の大きさは、−λ(δT/δz)によって表現することができる。ここでλは熱伝導率である。Tは温度、zはZ軸上の座標である。温度センサを上(融液)、中(固液界面)、下(結晶)の3つの異なる高さに設けている場合は、これらの点での温度を実測できる。
上の温度センサと、中(固液界面)の温度センサの距離をL、中の温度センサと下(固体)の温度センサの距離をLとする。上記の熱流Q、Qは、これら3点の温度T(融液)、T(固液界面)、T(結晶)と距離によって次のように表すことができる。
融液側から固液界面に向かう下向きの熱流Qは、Q=λ(T−T)/Lとなる。ここでλは融液中の熱伝導率である。固液界面から結晶側に流れる下向きの熱流Qは、Q=λ(T−T)/Lである。λは固体中の熱伝導率である。固液界面を上向きに凸型にするためには、Q>Qであれば良いので、結局λ(T−T)/L>λ(T−T)/Lであれば良い。
Define the Z-axis vertically upward. The magnitude of the upward heat flow can be expressed by -λ (δT / δz). Here, λ is the thermal conductivity. T is the temperature and z is the coordinate on the Z axis. In the case where the temperature sensors are provided at three different heights: upper (melt), middle (solid-liquid interface), and lower (crystal), the temperatures at these points can be measured.
Let L 1 be the distance between the upper temperature sensor and the middle (solid-liquid interface) temperature sensor, and let L 2 be the distance between the middle temperature sensor and the lower (solid) temperature sensor. Heat flow Q 1, Q 2 above, the temperature T 1 of the these three points (the melt), T 2 (the solid-liquid interface), T 3 can be (crystals) and by the distance expressed as follows.
The downward heat flow Q 1 from the melt side toward the solid-liquid interface is Q 1 = λ 1 (T 1 −T 2 ) / L 1 . Here, λ 1 is the thermal conductivity in the melt. The downward heat flow Q 2 flowing from the solid-liquid interface to the crystal side is Q 2 = λ s (T 2 −T 3 ) / L 2 . λ s is the thermal conductivity in the solid. In order to make the solid-liquid interface convex upward, Q 1 > Q 2 suffices. Therefore, λ 1 (T 1 -T 2 ) / L 1 > λ s (T 2 -T 3 ) / L 2 is sufficient.

本発明は、縦型温度勾配炉において、るつぼを断熱材で囲み、一定高さに保持される熱電対を融点に保つように、るつぼの全体を下降また上昇させる。これによりるつぼ内の温度分布を安定化させ、固化の条件を常に一定に保つことができ、混晶半導体の混晶比や、不純物ド−プ半導体の不純物濃度を軸方向にほぼ一様にすることができる。混晶半導体は、混晶比を変えることにより、格子定数を変えることができる。本発明は所望の混晶比のものを作ることができるから、電子デバイスを混晶を使って製造する際に極めて有効である。更に、アンド−プ半導体の場合でも、双晶の発生を防ぐことができる。   In the vertical temperature gradient furnace, the present invention surrounds the crucible with a heat insulating material and lowers or raises the whole crucible so as to keep the thermocouple held at a constant height at the melting point. As a result, the temperature distribution in the crucible can be stabilized, the solidification conditions can be kept constant, and the mixed crystal semiconductor mixed crystal ratio and the impurity concentration of the impurity doped semiconductor can be made substantially uniform in the axial direction. be able to. In mixed crystal semiconductors, the lattice constant can be changed by changing the mixed crystal ratio. Since the present invention can produce a desired mixed crystal ratio, it is extremely effective when manufacturing electronic devices using mixed crystals. Furthermore, even in the case of an andrp semiconductor, twinning can be prevented.

[実施例 1]
図1の縦型温度勾配炉を用いて、InGaAsの混晶を成長させた。目標の混晶比は、In97%、Ga3%である。予め合成された、In1−xGaAs(x=0.03)33.25gを、内径12mmの石英るつぼ6に真空封入した。石英るつぼ6と熱電対挿入管9を断熱材12に挿入し、これらを下軸8の上に固定した。チャンバ1を閉じて真空に引いてからヒ−タに電流を流し、るつぼ6、原料を加熱した。るつぼを上方に上げておき、高温に加熱し全体を原料融液にした。熱電対挿入管9には熱電対10が挿入される。るつぼ6、下軸8を4mm/hの速度で下降させる。原料融液は下方から固化し結晶になってゆく。この間、熱電対10の高さが一定でしかも原料の融点に等しいようにする。
[Example 1]
An InGaAs mixed crystal was grown using the vertical temperature gradient furnace shown in FIG. The target mixed crystal ratio is In 97% and Ga 3%. 33.25 g of In 1-x Ga x As (x = 0.03) synthesized in advance was vacuum-sealed in a quartz crucible 6 having an inner diameter of 12 mm. The quartz crucible 6 and the thermocouple insertion tube 9 were inserted into the heat insulating material 12, and these were fixed on the lower shaft 8. The chamber 1 was closed and a vacuum was applied, and then a current was passed through the heater to heat the crucible 6 and the raw material. The crucible was raised upward and heated to a high temperature to make the whole as a raw material melt. A thermocouple 10 is inserted into the thermocouple insertion tube 9. The crucible 6 and the lower shaft 8 are lowered at a speed of 4 mm / h. The raw material melt is solidified from below and becomes crystals. During this time, the height of the thermocouple 10 is made constant and equal to the melting point of the raw material.

この場合は、ヒ−タのパワ−を適当に調整して、熱電対の温度が融点になるようにする。下軸を下げてゆき、原料の全体を固化させる。全体が結晶になる。
混晶比の軸方向の変動が問題である。縦型ブリッジマンを使うのは一様な組成の混晶を作れる可能性があるからである。その期待に添うものであるかどうかを確かめなければならない。そこで、結晶を薄い薄片に切り出し、その試料中のGaの濃度を調べた。多くの薄片(ウエハ)のGa濃度を測定することにより軸方向のGa濃度の変化を知ることができる。この結果を図5に示す。横軸は固化率gである。縦軸はGa濃度である。
In this case, the heater power is appropriately adjusted so that the temperature of the thermocouple reaches the melting point. Lower the lower shaft to solidify the whole raw material. The whole becomes a crystal.
The axial variation of the mixed crystal ratio is a problem. The reason why the vertical Bridgman is used is that a mixed crystal having a uniform composition may be formed. You have to make sure that it meets your expectations. Therefore, the crystal was cut into thin slices, and the concentration of Ga in the sample was examined. Changes in the Ga concentration in the axial direction can be known by measuring the Ga concentration of many thin pieces (wafers). The result is shown in FIG. The horizontal axis is the solidification rate g. The vertical axis represents the Ga concentration.

固化率というのは原料全体の重量で、結晶の重量を割った値のことである。しかし固化率はここでは、結晶の下の端からの距離を表現していると言って良い。固化率gの点というのは、結晶の下からその点までの結晶の重さを、はじめの原料の重さで割った値がgである点ということである。もしも結晶が完全に円柱で、原料がすべて結晶になったとすれば、測定点までの下からの距離をs、結晶半径をr、密度をρ、結晶長さをLとして、g=πρrs/πρrL=s/Lである。 The solidification rate is a value obtained by dividing the weight of the crystal by the weight of the whole raw material. However, it can be said that the solidification rate here expresses the distance from the lower edge of the crystal. The point of the solidification rate g means that g is a value obtained by dividing the weight of the crystal from the bottom of the crystal to the point by the weight of the first raw material. If the crystal is completely cylindrical and all the raw material is crystal, the distance from the bottom to the measurement point is s, the crystal radius is r, the density is ρ, and the crystal length is L, g = πρr 2 s / Πρr 2 L = s / L.

図5に示すように、結晶化の初めに、Ga濃度はかなり高い値になっている。しかし直ぐにGa濃度が下がり以後ほぼ同じ値を保持する。固化率が0.05〜0.7の広い範囲でGa濃度がほとんど変動しない。固化率が0.7を越えると、Ga濃度が一様に低下してゆく。この結晶は、始端部と終端部を除けば一様な混晶比のものとなる。一定混晶比の長さが長いから一定比率の混晶を製造する方法として生産性が高い。それは断熱材によってるつぼを覆ったことにより熱分布の安定性が増したということと、固液界面が上に凸であること、固液界面の位置が不変であるという本発明の効果である。   As shown in FIG. 5, at the beginning of crystallization, the Ga concentration has a fairly high value. However, almost the same value is maintained after the Ga concentration immediately decreases. The Ga concentration hardly fluctuates in a wide range of the solidification rate of 0.05 to 0.7. When the solidification rate exceeds 0.7, the Ga concentration decreases uniformly. This crystal has a uniform mixed crystal ratio except for the start and end portions. Since the length of the constant mixed crystal ratio is long, the productivity is high as a method for manufacturing a mixed crystal with a fixed ratio. This is the effect of the present invention that the stability of the heat distribution is increased by covering the crucible with the heat insulating material, the solid-liquid interface is convex upward, and the position of the solid-liquid interface is unchanged.

[比較例 1]
図1の縦型温度勾配炉から断熱材を除去した結晶成長装置を用い、固液界面の高さを制御しないで、InGaAsの混晶を成長させた。断熱材がないということと固液界面を制御しないという他は、実施例1と同じ条件である。この方法で成長させたInGaAs混晶のGa濃度の軸方向の変動を図6に示した。Ga濃度の変化が著しく、一様濃度である部分が殆どない。たとえ、始端と終端を切り除いてもGa濃度の一様な結晶を得ることができない。
図5と図6の結果を比べてみれば、本発明のように、断熱材でるつぼを覆って温度安定性を増大させ固液界面の高さを一定に保ちながら結晶を低温側へ移動して成長させることが、一様混晶比を得るのに極めて有効であることが分かる。
[Comparative Example 1]
The InGaAs mixed crystal was grown without controlling the height of the solid-liquid interface using the crystal growth apparatus in which the heat insulating material was removed from the vertical temperature gradient furnace of FIG. The conditions are the same as in Example 1 except that there is no heat insulating material and the solid-liquid interface is not controlled. The variation in the axial direction of the Ga concentration of the InGaAs mixed crystal grown by this method is shown in FIG. The change in the Ga concentration is remarkable, and there is almost no portion having a uniform concentration. Even if the start and end are cut off, a uniform Ga concentration crystal cannot be obtained.
Comparing the results of FIG. 5 and FIG. 6, as in the present invention, the crucible is covered with a heat insulating material to increase the temperature stability, and the crystal is moved to the low temperature side while keeping the height of the solid-liquid interface constant. It can be seen that the growth is extremely effective in obtaining a uniform mixed crystal ratio.

[実施例 2]
図2の縦型温度勾配炉を用いてTeド−プGaAsを成長させた。図2の装置は3つの温度センサを用いて、るつぼの3点の温度を監視することにより成長条件を設定するものである。不純物濃度の一様性というのは縦型ブリッジマン法の長所である。29.96gのGaAsと、1.2mgのTeを、内径12mmの石英るつぼに入れて真空に引き密封した。これをチャンバに入れ、下軸上に固定した。チャンバを閉じて真空に引く。ヒ−タに通電し、上が高温、下が低温になるようにする。るつぼを上方に上げておき、るつぼと原料を加熱する。GaAsの原料が融液になる。全体が融液になった後、下軸を4mm/hの速さで下降させ、下方から原料融液を固化させる。成長した後、成長方向と平行な面で結晶を切断した。つまり縦に結晶を切った。切断面を研磨した。研磨面をクロム酸+フッ酸よりなるエッチング液に浸した。エッチングされた面に光を照射し、成長縞を観察した。成長縞は、成長方向に凹となっていた。これは、結晶成長の間、固液界面が融液側へ凸になるような曲面であるということを意味している。つまり図3のような固液界面ができているのである。この結果から本発明によれば、固液界面の形状を制御できることが分かる。
[Example 2]
Te-doped GaAs was grown using the vertical temperature gradient furnace shown in FIG. The apparatus shown in FIG. 2 uses three temperature sensors to set growth conditions by monitoring the temperature at three points of the crucible. The uniformity of impurity concentration is an advantage of the vertical Bridgman method. 29.96 g of GaAs and 1.2 mg of Te were put in a quartz crucible with an inner diameter of 12 mm and sealed under vacuum. This was placed in a chamber and fixed on the lower shaft. Close the chamber and pull a vacuum. Energize the heater so that the top is hot and the bottom is cold. Raise the crucible upward and heat the crucible and the raw material. The raw material of GaAs becomes a melt. After the whole becomes a melt, the lower shaft is lowered at a speed of 4 mm / h to solidify the raw material melt from below. After growing, the crystal was cut along a plane parallel to the growth direction. In other words, the crystal was cut vertically. The cut surface was polished. The polished surface was immersed in an etching solution composed of chromic acid + hydrofluoric acid. The etched surface was irradiated with light, and growth stripes were observed. The growth stripes were concave in the growth direction. This means that it is a curved surface in which the solid-liquid interface becomes convex toward the melt side during crystal growth. That is, a solid-liquid interface as shown in FIG. 3 is formed. From this result, it can be seen that according to the present invention, the shape of the solid-liquid interface can be controlled.

断熱材でるつぼを覆い熱電対を1つ用いる本発明の第1の実施例に係る半導体成長装置の概略断面図。1 is a schematic cross-sectional view of a semiconductor growth apparatus according to a first embodiment of the present invention that covers a crucible with a heat insulating material and uses one thermocouple. 断熱材でるつぼを覆い熱電対を3つ用いる本発明の第2の実施例に係る半導体成長装置の概略断面図。The schematic sectional drawing of the semiconductor growth apparatus based on the 2nd Example of this invention which covers a crucible with a heat insulating material and uses three thermocouples. 望ましい固液界面の形状を示す断面図。Sectional drawing which shows the shape of a desirable solid-liquid interface. 結晶の固液界面近くでの熱流の関係を説明する概略図。Schematic explaining the relationship of the heat flow near the solid-liquid interface of a crystal | crystallization. 断熱材でるつぼを覆って熱電対を1つもつ図1の装置を用い、固液界面の位置を一定高さに保持しながらInGaAsの混晶を成長させた場合の、軸方向のGa濃度分布の測定値を示すグラフ。The Ga concentration distribution in the axial direction when an InGaAs mixed crystal is grown while the position of the solid-liquid interface is maintained at a certain height using the apparatus of FIG. 1 having a thermocouple covered with a heat insulating material. The graph which shows the measured value of. 図1の装置において断熱材を除去し、固液界面の位置を制御せずに、InGaAsの混晶を成長させた場合の、軸方向のGa濃度分布の測定値を示すグラフ。The graph which shows the measured value of Ga concentration distribution of an axial direction at the time of removing a heat insulating material in the apparatus of FIG. 1, and growing the mixed crystal of InGaAs, without controlling the position of a solid-liquid interface.

符号の説明Explanation of symbols

1 チャンバ
2 ヒ−タ
3 ヒ−タ
4 ヒ−タ
5 ヒ−タ
6 るつぼ
7 原料融液
8 下軸
9 熱電対挿入管
10 熱電対
11 蓋
12 断熱材
13 熱電対
14 熱電対
15 結晶
16 固液界面
1 chamber
2 Heater
3 Heater
4 Heater
5 Heater
6 crucible
7 Raw material melt
8 Lower shaft
9 Thermocouple insertion tube
10 Thermocouple
11 Lid
12 Insulation
13 Thermocouple
14 Thermocouple
15 crystals
16 Solid-liquid interface

Claims (6)

チャンバと、チャンバ内部に設けられ縦方向に並び独立に制御できる複数のヒータと、ヒータで囲まれた縦長筒状の断熱材と、縦長断熱材の内部に設けられ原料融液を保持するための縦長のるつぼと、断熱材とるつぼを支持する下軸とを含む結晶成長装置を用いて半導体結晶を成長させる方法であって、半導体原料をるつぼに入れ、独立した複数のヒータで断熱材とるつぼ内部の原料を加熱し、複数のヒータの出力を調整して断熱材とるつぼの内部に下が低温、上が高温になるよう軸方向に温度勾配のある温度分布を形成し、るつぼ内部の原料を融液とし、下方から原料融液を固化させることによって下から上に半導体結晶を成長させるようにし、複数の独立したヒータの温度を制御することによって、固液界面の上方から原料融液に流入する熱量と、下方へ流出する熱量を調整し、結晶外周で固液界面の上方から原料融液に流入する熱量が下方へ流出する熱量より大きくなるように熱量を調整することを特徴とする半導体結晶の成長方法。 A chamber, a plurality of heaters provided in the chamber and arranged in the vertical direction and independently controllable, a vertically long cylindrical heat insulating material surrounded by the heaters, and a raw material liquid provided inside the vertical heat insulating material for holding the raw material melt A method for growing a semiconductor crystal using a crystal growth apparatus including a vertically long crucible and a lower shaft supporting a heat insulating material crucible, wherein the semiconductor raw material is placed in the crucible and the heat insulating material crucible is obtained by a plurality of independent heaters. Heat the raw material inside and adjust the output of multiple heaters to form a temperature distribution with a temperature gradient in the axial direction so that the bottom is low temperature and the top is high temperature inside the crucible for heat insulation. The semiconductor melt is grown from the bottom by solidifying the raw material melt from below, and the temperature of the plurality of independent heaters is controlled so that the raw material melt is fed from above the solid-liquid interface. Inflow And heat to adjust the amount of heat flowing downwards, semiconductor crystal heat flowing from above the solid-liquid interface in the crystal outer circumference raw material melt and adjusting the amount of heat to be greater than the amount of heat flowing downwardly Growth method. 複数の独立したヒータの温度を制御することによって、固液界面の上方から原料融液に流入する熱量と下方へ流出する熱量を調整し、固液界面の近傍において原料融液および結晶内で中心方向へ流れる熱流の強さを制御し、結晶外周で、固液界面の上方から原料融液に流入する熱量が下方へ流出する熱量より大きくなるように熱量を調整し、固液界面の近傍において原料融液および結晶内で中心方向へ流れる熱流の強さを制御することを特徴とする請求項1に記載の半導体結晶の成長方法。 By controlling the temperature of multiple independent heaters, the amount of heat flowing into the raw material melt from the upper part of the solid-liquid interface and the amount of heat flowing out from the lower part of the solid-liquid interface are adjusted. In the vicinity of the solid-liquid interface, the intensity of heat flowing in the direction is controlled, and the amount of heat flowing into the raw material melt from above the solid-liquid interface is larger than the amount of heat flowing out at the crystal periphery. 2. The method for growing a semiconductor crystal according to claim 1, wherein the strength of the heat flow flowing toward the center in the raw material melt and the crystal is controlled . チャンバと、チャンバ内部に設けられ縦方向に並び独立に制御できる複数のヒータと、ヒータで囲まれた縦長筒状の断熱材と、縦長断熱材の内部に設けられ原料融液を保持するための縦長のるつぼと、断熱材とるつぼを支持する下軸とを含む結晶成長装置を用いて半導体結晶を成長させる方法であって、半導体原料をるつぼに入れ、独立した複数のヒータで断熱材とるつぼ内部の原料を加熱し、複数のヒータの出力を調整して断熱材とるつぼの内部に下が低温、上が高温になるよう軸方向に温度勾配のある温度分布を形成し、るつぼ内部の原料を融液とし、下方から原料融液を固化させることによって下から上に半導体結晶を成長させるようにし、複数の独立したヒータの温度を制御することによって、固液界面の上方から原料融液に流入する熱量と、下方へ流出する熱量を調整し、固液界面の近傍において原料融液および結晶内で中心方向へ流れる熱流の強さを制御することにより、固液界面が上に凸になるようにすることを特徴とする半導体結晶の成長方法。 A chamber, a plurality of heaters provided in the chamber and arranged in the vertical direction and independently controllable, a vertically long cylindrical heat insulating material surrounded by the heaters, and a raw material liquid provided inside the vertical heat insulating material for holding the raw material melt A method for growing a semiconductor crystal using a crystal growth apparatus including a vertically long crucible and a lower shaft supporting a heat insulating material crucible, wherein the semiconductor raw material is placed in the crucible and the heat insulating material crucible is obtained by a plurality of independent heaters. Heat the raw material inside and adjust the output of multiple heaters to form a temperature distribution with a temperature gradient in the axial direction so that the bottom is low temperature and the top is high temperature inside the crucible for heat insulation. The semiconductor melt is grown from the bottom by solidifying the raw material melt from below, and the temperature of the plurality of independent heaters is controlled so that the raw material melt is fed from above the solid-liquid interface. Inflow Adjusting the amount of heat and the amount of heat that flows downward, and controlling the strength of the heat flow that flows in the center direction in the raw material melt and crystal in the vicinity of the solid-liquid interface, so that the solid-liquid interface becomes convex upward A method for growing a semiconductor crystal, comprising: 複数の独立したヒータの温度を制御することによって、結晶外周で、固液界面の上方から原料融液に流入する熱量が下方へ流出する熱量より大きくなるように熱量を調整し、固液界面の近傍において原料融液および結晶内で中心方向へ流れる熱流の強さを制御することにより、固液界面が上に凸になるようにすることを特徴とする請求項に記載の半導体結晶の成長方法。 By controlling the temperature of multiple independent heaters, the amount of heat is adjusted so that the amount of heat flowing into the raw material melt from above the solid-liquid interface is greater than the amount of heat flowing downward at the outer periphery of the crystal. 4. The growth of a semiconductor crystal according to claim 3 , wherein the solid-liquid interface is convex upward by controlling the strength of the raw material melt and the heat flow flowing toward the center in the crystal. Method. 断熱材はるつぼの外周に接触するように設けてある事を特徴とする請求項1〜4の何れかに記載の半導体結晶の成長方法。 The method for growing a semiconductor crystal according to any one of claims 1 to 4 , wherein the heat insulating material is provided so as to contact the outer periphery of the crucible. 断熱材との接触部分に近い固液界面の端部において原料融液の上方から固液界面へ流入する熱量と、下方の固体へ流出する熱量に対して、断熱材を横切って流れる熱量が小さくて、上方から固液界面へ流れる熱量と固液界面から固体中を下方へ流れる熱量を調整して熱流が固体部で中心へ向かって流れるようにしたことを特徴とする請求項1〜5の何れかに記載の半導体結晶の成長方法。 The amount of heat that flows across the insulation is small compared to the amount of heat that flows from above the raw material melt to the solid-liquid interface at the end of the solid-liquid interface near the contact portion with the insulation, and the amount of heat that flows out to the solid below. Te, of claims 1 to 5 heat flow by adjusting the amount of heat flowing from the heat and the solid-liquid interface which flows from above to the solid-liquid interface of the solid downward, characterized in that to flow towards the center in the solid portion The growth method of the semiconductor crystal in any one.
JP2004124930A 2004-04-21 2004-04-21 Semiconductor crystal growth method Expired - Fee Related JP3812573B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004124930A JP3812573B2 (en) 2004-04-21 2004-04-21 Semiconductor crystal growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004124930A JP3812573B2 (en) 2004-04-21 2004-04-21 Semiconductor crystal growth method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP11600394A Division JP3569954B2 (en) 1994-05-02 1994-05-02 Semiconductor crystal growth method

Publications (2)

Publication Number Publication Date
JP2004210638A JP2004210638A (en) 2004-07-29
JP3812573B2 true JP3812573B2 (en) 2006-08-23

Family

ID=32822453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004124930A Expired - Fee Related JP3812573B2 (en) 2004-04-21 2004-04-21 Semiconductor crystal growth method

Country Status (1)

Country Link
JP (1) JP3812573B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101069911B1 (en) * 2004-12-24 2011-10-05 주식회사 엘지실트론 a silicon single crystal ingot grower used czochralski method and controlling method of the same
CN107541769A (en) * 2016-06-29 2018-01-05 安徽中科镭泰激光科技有限公司 A kind of apparatus and method for preparing gem crystal

Also Published As

Publication number Publication date
JP2004210638A (en) 2004-07-29

Similar Documents

Publication Publication Date Title
JP4582149B2 (en) Single crystal manufacturing equipment
US5714004A (en) Process for producing polycrystalline semiconductors
KR100831044B1 (en) An Apparatus Of Growing High Quality Silicon Single Crystalline Ingot, A Growing method Using The Same
US7416603B2 (en) High quality single crystal and method of growing the same
KR100800253B1 (en) Producing method of silicon single crystal ingot
JP3812573B2 (en) Semiconductor crystal growth method
JP3569954B2 (en) Semiconductor crystal growth method
JP2002104896A (en) Method of growing single crystal and growing device
KR100714215B1 (en) High quality silicon single crystal ingot and high quality silicon wafer manufactured from the same
JP3498330B2 (en) Single crystal growth equipment
KR100749938B1 (en) High quality silicon single crystal ingot growing apparatus and method
KR100788018B1 (en) Silicon single crystal ingot and silicon wafer manufactured therefrom
JPH01317188A (en) Production of single crystal of semiconductor and device therefor
JP3788077B2 (en) Semiconductor crystal manufacturing method and manufacturing apparatus
KR100793371B1 (en) Growing method of silicon single crystal and apparatus for growing the same
JP2010030868A (en) Production method of semiconductor single crystal
JP2733898B2 (en) Method for manufacturing compound semiconductor single crystal
KR101597207B1 (en) Silicon single crystalline ingot, method and apparatus for manufacturing the ingot
JP2010030847A (en) Production method of semiconductor single crystal
JP2014156373A (en) Manufacturing apparatus for sapphire single crystal
JPH03193689A (en) Production of compound semiconductor crystal
JP2023064374A (en) Single crystal growth apparatus
JPS62119198A (en) Device for rotating and pulling up single crystal provided with magnetic field impressing device
JPH11130578A (en) Growth of single crystal and apparatus therefor
JP3154351B2 (en) Single crystal growth method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050816

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060522

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090609

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100609

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees