JP2001106597A - Method and device for producing single crystal - Google Patents

Method and device for producing single crystal

Info

Publication number
JP2001106597A
JP2001106597A JP28456499A JP28456499A JP2001106597A JP 2001106597 A JP2001106597 A JP 2001106597A JP 28456499 A JP28456499 A JP 28456499A JP 28456499 A JP28456499 A JP 28456499A JP 2001106597 A JP2001106597 A JP 2001106597A
Authority
JP
Japan
Prior art keywords
crucible
single crystal
crystal
temperature
growing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28456499A
Other languages
Japanese (ja)
Inventor
Takuya Iwasaki
拓哉 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP28456499A priority Critical patent/JP2001106597A/en
Publication of JP2001106597A publication Critical patent/JP2001106597A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a device for producing a single crystal, which is capable of improving the growing velocity and with which the single crystal stable in characteristics can be produced. SOLUTION: A plate-like seed 19 and a raw material 20 for growing are filled in a crucible 15. When a single crystal is produced, the crucible 15 is gradually raised into a vertical Bridgman furnace 11 by a driving mechanism 16, and a temperature gradient is set by heating with a heater 12 and by cooling with a cooler 14 in order to melt the raw material 20 for growing. When the position P of the solid-liquid interface of lithium tetraborate reaches a position corresponding to the melting point temperature of lithium borate single crystal in the vertical Bridgman furnace 11, raising of the crucible 15 is stopped and the crucible is kept at the position. Thereafter, the crucible is lowered to grow the crystal and, when the crucible 15 is lowered by a prescribed distance, the crucible is stopped, thereby growing of the crystal is completed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、良質なインゴット
を製造する単結晶の製造に用いられる単結晶の製造方法
およびその製造装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a single crystal used for producing a single crystal for producing a high-quality ingot and an apparatus for producing the same.

【0002】[0002]

【従来の技術】一般に、四ほう酸リチウム単結晶(Li
2 4 7 )は、零温度係数と比較的大きな電気機械結
合係数とを有しており、弾性表面波(SAW)デバイス
に広く用いられる材料である。この四ほう酸リチウム単
結晶の育成方法としては、CZ法や垂直ブリッジマン法
などが知られている。
2. Description of the Related Art In general, lithium tetraborate single crystals (Li
2 B 4 O 7 ) has a zero temperature coefficient and a relatively large electromechanical coupling coefficient, and is a material widely used for surface acoustic wave (SAW) devices. Known methods for growing this lithium tetraborate single crystal include the CZ method and the vertical Bridgman method.

【0003】このうちCZ法は、引上げ法ともいわれ、
予め容器となるるつぼ内に充填した原料を加熱すること
により溶融させ、その融液にシードといわれる種結晶を
接触させた後、回転させながら徐々に引き上げる方法で
ある。
[0003] Among them, the CZ method is also called a pulling method,
In this method, a raw material previously filled in a crucible serving as a container is melted by heating, a seed crystal called a seed is brought into contact with the melt, and then gradually pulled up while rotating.

【0004】また、このCZ法は、融液から単結晶イン
ゴットを育成する方法として主要なものであり、育成速
度を比較的高く設定できる利点を有している。しかしな
がら、形状制御が難しく、温度勾配が急なため歪みが生
じて割れやすい。
The CZ method is a major method for growing a single crystal ingot from a melt, and has an advantage that the growth rate can be set relatively high. However, it is difficult to control the shape, and the temperature gradient is steep, so that distortion occurs and cracks easily occur.

【0005】一方、垂直ブリッジマン法ないし垂直温度
勾配凝固法では、容器であるるつぼ内の下部にシードを
置き、このシード上に育成用原料を充填した後に、炉の
ヒータによって育成結晶を育成する育成帯域を加熱溶融
させている。炉としては、育成結晶の融点温度位置を基
準に、上方が融点温度より高温に、下方は融点温度より
低温になるような温度勾配に設定されたものを用いてお
り、この炉内にるつぼを下方から上昇させて挿入するこ
とにより、加熱溶融させている。
[0005] On the other hand, in the vertical Bridgman method or the vertical temperature gradient solidification method, a seed is placed in a lower portion of a crucible as a container, and a raw material for growing is filled on the seed, and then a grown crystal is grown by a heater of a furnace. The growth zone is heated and melted. As the furnace, a furnace whose temperature gradient is set so that the upper side is higher than the melting point temperature and the lower side is lower than the melting point temperature based on the melting point temperature of the grown crystal is used. It is heated and melted by ascending it from below and inserting it.

【0006】この場合、融液と固体との固液界面がシー
ド上下方向の任意の位置になるようにるつぼ位置または
温度を調節し、この後、るつぼを徐々に降下させること
により、結晶を成長させている。
In this case, the crystal is grown by adjusting the crucible position or temperature so that the solid-liquid interface between the melt and the solid is at an arbitrary position in the vertical direction of the seed, and then gradually lowering the crucible. Let me.

【0007】また、この垂直ブリッジマン法では、結晶
形状はるつぼの形状に依存することから形状制御が容易
であり、また、歪みも比較的少なく、割れにくい。
In the vertical Bridgman method, since the crystal shape depends on the shape of the crucible, it is easy to control the shape, the distortion is relatively small, and the crystal is hardly broken.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、従来の
垂直ブリッジマン法では、育成帯域の温度勾配はヒータ
による温度差を用いているため、温度勾配はほとんどが
最も温度の高い育成帯域の上部の温度に左右されてしま
う。そして、その育成帯域の上部のヒータの温度は、融
液の組成変動を起こさない程度の温度でなくてはならな
いため、必然的に温度の上限が限られ、結果的に育成帯
の温度勾配もほぼある狭い範囲で決定されてしまう。
However, in the conventional vertical Bridgman method, since the temperature gradient in the growing zone uses the temperature difference due to the heater, the temperature gradient is almost always the upper temperature of the growing zone having the highest temperature. It depends on. Since the temperature of the heater above the growth zone must be a temperature that does not cause the composition change of the melt, the upper limit of the temperature is necessarily limited, and as a result, the temperature gradient of the growth zone is also reduced. It is almost determined in a narrow range.

【0009】このため、ブリッジマン法では、CZ法な
どに比べてかなり温度勾配が緩くなり、育成速度の低下
を招く原因の一つとなっている。
For this reason, in the Bridgman method, the temperature gradient is considerably reduced as compared with the CZ method or the like, and this is one of the causes of lowering the growth rate.

【0010】一方、単結晶の育成過程において、融液が
育成帯域の固液界面にて単結晶化、すなわち凝固し、単
結晶の領域が増えるに従い、単結晶の量と融液の量の比
率変動により、実際に固液界面での温度勾配が変化した
り、囲液界面そのものの位置が変動する現象が起き、単
結晶の話特性が直胴長方向にて異なってしまう問題を有
している。
On the other hand, in the process of growing a single crystal, as the melt crystallizes, that is, solidifies at the solid-liquid interface in the growth zone, and the area of the single crystal increases, the ratio of the amount of the single crystal to the amount of the melt increases. Due to the fluctuation, the temperature gradient at the solid-liquid interface actually changes, or the position of the surrounding liquid interface itself fluctuates, causing the problem that the talking characteristics of the single crystal differ in the straight body length direction. I have.

【0011】本発明は、上記問題点に鑑みなされたもの
で、育成速度を向上させ特性が安定した単結晶インゴッ
トができる単結晶の製造方法およびその製造装置を提供
することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and has as its object to provide a method for producing a single crystal capable of improving the growth rate and producing a single crystal ingot having stable characteristics, and a production apparatus therefor.

【0012】[0012]

【課題を解決するための手段】本発明は、容器内の下部
に種結晶を収容し、この種結晶上に育成用原料を充填
し、育成する結晶の融点温度位置を基準に上方をこの融
点温度より高温に、下方をこの融点温度より低温に冷却
した温度勾配の炉によって加熱し溶融させ、この溶融の
後、結晶を成長させるもので、上方は温度の上限がある
ため、下方を冷却することにより、上方と下方の温度勾
配を大きくして、育成速度を速める。
According to the present invention, a seed crystal is accommodated in a lower portion of a container, a raw material for growth is filled on the seed crystal, and the melting point of the crystal to be grown is determined based on the melting point of the crystal to be grown. It is heated and melted by a furnace with a temperature gradient cooled to a temperature higher than the temperature and lower to a temperature lower than the melting point temperature, and after this melting, the crystal grows. This increases the temperature gradient between the upper part and the lower part, thereby increasing the growing speed.

【0013】また、温度勾配は、可変可能であるもの
で、結晶の初期育成から徐々に温度勾配がずれていく現
象に対しても、冷却する量を任意に可変することによ
り、温度勾配をほぼ一定に保つことでき、直胴長方向に
おいても結晶が均一になる。
Further, the temperature gradient is variable, and even if the temperature gradient gradually shifts from the initial growth of the crystal, the temperature gradient can be substantially changed by arbitrarily changing the cooling amount. It can be kept constant, and the crystal becomes uniform even in the straight body length direction.

【0014】[0014]

【発明の実施の形態】以下、本発明の一実施の形態を図
面を参照して説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to the drawings.

【0015】図1に示すように、11は単結晶の製造装置
としての垂直ブリッジマン炉で、この垂直ブリッジマン
炉11は、縦方向に配置された筒状のヒータ12を有し、こ
のヒータ12は上下方向の温度設定を任意にできるもの
で、ヒータ12の内側部分にはアルミナなどの炉心管13が
一体的に取り付けられている。また、このヒータ12の下
方には、このヒータ12と同様に筒状の冷却装置としての
工業用のクーラ14が設けられている。
As shown in FIG. 1, reference numeral 11 denotes a vertical Bridgman furnace as a single crystal manufacturing apparatus. The vertical Bridgman furnace 11 has a cylindrical heater 12 arranged in a vertical direction. Numeral 12 designates an arbitrary temperature setting in the vertical direction, and a furnace tube 13 made of alumina or the like is integrally attached to an inner portion of the heater 12. Below the heater 12, an industrial cooler 14 as a cylindrical cooling device is provided similarly to the heater 12.

【0016】さらに、15は容器としてのるつぼで、この
るつぼ15は駆動機構16によって上下動可能に構成された
土台17上に一体的に取り付けられ、このるつぼ15の下方
内には四ほう酸リチウムで厚さが約10mm程度の円盤
状の種結晶であるいわゆるシード19が置かれており、こ
のシード19上には育成用原料20が充填されている。
Further, reference numeral 15 denotes a crucible as a container, and the crucible 15 is integrally mounted on a base 17 which can be moved up and down by a drive mechanism 16, and a lithium tetraborate is provided below the crucible 15 inside. A so-called seed 19, which is a disc-shaped seed crystal having a thickness of about 10 mm, is placed, and the seed 19 is filled with a growing material 20.

【0017】また、ヒータ12は、四ほう酸リチウム単結
晶の融点917℃が生じる温度位置を基準として、上方
が約1000℃程度になるように加熱量を調節し、下方
はクーラ14により冷却し、温度勾配は10℃/cmない
し40℃/cm程度の範囲で可変して設定される。
The heating amount of the heater 12 is adjusted so that the upper portion thereof is about 1000 ° C. with reference to a temperature position at which the melting point of lithium tetraborate single crystal 917 ° C. occurs, and the lower portion is cooled by the cooler 14. The temperature gradient is set variably in the range of about 10 ° C./cm to 40 ° C./cm.

【0018】そして、るつぼ15内には板状のシード19と
このシード19上に位置する育成用原料20が充填されてお
り、単結晶を製造する際は、このるつぼ15を駆動機構16
によって垂直ブリッジマン炉11内に徐々に上昇させ、ヒ
ータ12の加熱およびクーラ14の冷却に従い温度勾配を設
定して内部の育成用原料20を溶融させる。
The crucible 15 is filled with a plate-like seed 19 and a growing material 20 located on the seed 19. When a single crystal is produced, the crucible 15 is driven by a driving mechanism 16.
As a result, the temperature is gradually raised into the vertical Bridgman furnace 11, a temperature gradient is set in accordance with the heating of the heater 12 and the cooling of the cooler 14, and the internal growth material 20 is melted.

【0019】ここで、四ほう酸リチウムの固液界面位置
Pが、垂直ブリッジマン炉11内の四ほう酸リチウム単結
晶の融点温度位置に達すると、るつぼ15の上昇を停止さ
せ、その位置で保持させる。この後、るつぼ15を降下さ
せて結晶を成長させ、るつぼ15を所定距離低下させた時
点で停止させ、育成を完了させる。
Here, when the solid-liquid interface position P of lithium tetraborate reaches the melting point temperature of the lithium tetraborate single crystal in the vertical Bridgman furnace 11, the rise of the crucible 15 is stopped and held at that position. . Thereafter, the crucible 15 is lowered to grow crystals, and when the crucible 15 is lowered a predetermined distance, the crucible 15 is stopped to complete the growth.

【0020】上記実施の形態のクーラ14を用いたもの
と、クーラを有さない比較例とを比べると、クーラを有
さないものの育成帯域の温度勾配は、10℃/cmない
し20℃/cmの範囲にしか設定できないのに対し、ク
ーラ14を有するものでは10℃/cmないし40℃/c
mの範囲に任意に設定でき、比較例で製造したもの以上
の均質な単結晶インゴットを、比較例の0.3mm/h
にくらベ0.5mm/hの速度で育成できた。
Comparing the above-described embodiment using the cooler 14 with the comparative example having no cooler, the temperature gradient of the growing zone without the cooler is 10 ° C./cm to 20 ° C./cm. Can be set only in the range of 10 ° C./cm to 40 ° C./c with the cooler 14.
m can be set arbitrarily, and a homogeneous single crystal ingot equal to or greater than that produced in the comparative example is 0.3 mm / h of the comparative example.
It was able to grow at a speed of 0.5 mm / h.

【0021】また、単結晶の育成速度が全体的に速めら
れるのみならず、直胴長方向においても均一な単結晶イ
ンゴットの育成が可能となる。
Further, not only the growth rate of the single crystal can be increased as a whole, but also a single crystal ingot can be grown uniformly in the straight body length direction.

【0022】[0022]

【発明の効果】本発明によれば、上方は温度の上限があ
るため、下方を冷却することにより、上方と下方の温度
勾配を大きくして、単結晶の育成速度を速めることがで
きる。
According to the present invention, since the upper part has an upper temperature limit, by cooling the lower part, the temperature gradient between the upper part and the lower part can be increased, and the growth rate of the single crystal can be increased.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の単結晶の製造方法の一実施の形態に用
いる装置を示す断面図である。
FIG. 1 is a cross-sectional view showing an apparatus used in an embodiment of the method for producing a single crystal of the present invention.

【符号の説明】[Explanation of symbols]

11 単結晶の製造装置としての垂直ブリッジマン炉 12 ヒータ 14 冷却装置としてのクーラ 15 容器としてのるつぼ 19 種結晶であるシード 20 育成用原料 11 Vertical Bridgman furnace as single crystal production equipment 12 Heater 14 Cooler as cooling device 15 Crucible as container 19 Seed as seed crystal 20 Raw material for growing

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 容器内の下部に種結晶を収容し、 この種結晶上に育成用原料を充填し、育成する結晶の融
点温度位置を基準に上方をこの融点温度より高温に、下
方をこの融点温度より低温に冷却した温度勾配の炉によ
って加熱し溶融させ、 この溶融の後、結晶を成長させることを特徴とする単結
晶の製造方法。
1. A seed crystal is accommodated in a lower portion of a container, and a seeding material is filled on the seed crystal. An upper portion is higher than the melting point temperature and a lower portion is lower than a melting point temperature of the crystal to be grown. A method for producing a single crystal, comprising heating and melting in a furnace having a temperature gradient cooled to a temperature lower than the melting point, and growing the crystal after the melting.
【請求項2】 温度勾配は、可変可能であることを特徴
とする請求項1記載の単結晶の製造方法。
2. The method according to claim 1, wherein the temperature gradient is variable.
【請求項3】 下部に種結晶を収容しこの種結晶上に育
成用原料が充填される容器と、 育成する結晶の融点温度位置を基準に上方をこの融点温
度より高温に、下方をこの融点温度より低温に設定した
温度勾配で容器内を加熱するヒータと、 育成する結晶の下部の容器内を冷却する冷却装置とを具
備したことを特徴とする単結晶の製造装置。
3. A container in which a seed crystal is accommodated in a lower part and a seeding material is filled on the seed crystal, an upper part having a temperature higher than the melting point and a lower part having a melting point based on the melting point position of the crystal to be grown. An apparatus for producing a single crystal, comprising: a heater for heating the inside of a container with a temperature gradient set to a temperature lower than the temperature; and a cooling device for cooling the inside of the container below a crystal to be grown.
【請求項4】 ヒータおよび冷却装置により設定される
温度勾配は、可変可能であることを特徴とする請求項3
記載の単結晶の製造装置。
4. A temperature gradient set by a heater and a cooling device is variable.
An apparatus for producing a single crystal according to the above.
JP28456499A 1999-10-05 1999-10-05 Method and device for producing single crystal Pending JP2001106597A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28456499A JP2001106597A (en) 1999-10-05 1999-10-05 Method and device for producing single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28456499A JP2001106597A (en) 1999-10-05 1999-10-05 Method and device for producing single crystal

Publications (1)

Publication Number Publication Date
JP2001106597A true JP2001106597A (en) 2001-04-17

Family

ID=17680105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28456499A Pending JP2001106597A (en) 1999-10-05 1999-10-05 Method and device for producing single crystal

Country Status (1)

Country Link
JP (1) JP2001106597A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005213114A (en) * 2004-01-30 2005-08-11 Kyocera Kinseki Corp Apparatus for growing oxide single crystal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005213114A (en) * 2004-01-30 2005-08-11 Kyocera Kinseki Corp Apparatus for growing oxide single crystal

Similar Documents

Publication Publication Date Title
CN105506731A (en) Monocrystalline silicon growth oxygen content control technology
JPH09175889A (en) Single crystal pull-up apparatus
JPS5825078B2 (en) Single crystal manufacturing method
JP2001106597A (en) Method and device for producing single crystal
JP2739556B2 (en) Method for manufacturing piezoelectric crystal
JP3659693B2 (en) Method for producing lithium borate single crystal
JPH0920596A (en) Device for producing lithium tetraborate single crystal
JP2733898B2 (en) Method for manufacturing compound semiconductor single crystal
JP2000053484A (en) Production of single crystal
JPS6385082A (en) Method for growing single crystal and apparatus thereof
JP2542434B2 (en) Compound semiconductor crystal manufacturing method and manufacturing apparatus
KR20110077261A (en) Ampule to reduce stress between the ampule and single crystal and single crystal growing apparatus having the same
JP2000169280A (en) Production of single crystal
JPH05319973A (en) Single crystal production unit
JP4091762B2 (en) Single crystal manufacturing method
JP2012036015A (en) Crystal growth method
CN115537911A (en) Method and equipment for preparing large-size crystal by Czochralski method
JPH10287492A (en) Growth of lithium borate single crystal
JPH0380180A (en) Device for producing single crystal
JPS6126519B2 (en)
JPH0341432B2 (en)
JP3647964B2 (en) Single crystal substrate manufacturing method and apparatus
JP2773441B2 (en) Method for producing GaAs single crystal
JPH0380181A (en) Device for producing single crystal
JPH0742196B2 (en) Single crystal growth method