JPS5825078B2 - Single crystal manufacturing method - Google Patents

Single crystal manufacturing method

Info

Publication number
JPS5825078B2
JPS5825078B2 JP7440777A JP7440777A JPS5825078B2 JP S5825078 B2 JPS5825078 B2 JP S5825078B2 JP 7440777 A JP7440777 A JP 7440777A JP 7440777 A JP7440777 A JP 7440777A JP S5825078 B2 JPS5825078 B2 JP S5825078B2
Authority
JP
Japan
Prior art keywords
crucible
single crystal
melt
crystal
heating device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7440777A
Other languages
Japanese (ja)
Other versions
JPS549174A (en
Inventor
松村禎夫
福田承生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP7440777A priority Critical patent/JPS5825078B2/en
Publication of JPS549174A publication Critical patent/JPS549174A/en
Publication of JPS5825078B2 publication Critical patent/JPS5825078B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は単結晶の製造方法に関する。[Detailed description of the invention] The present invention relates to a method for producing a single crystal.

本発明は成長された単結晶の直径を一定は保つためにる
つぼ温度を下げねばならぬ単結晶の作成方法で、特に温
度勾配をゆるくして作成することが要求されるタンタル
酸リチウム(−L i T a03 )やニオブ酸リチ
ウム(LiNb03)等の大形単結晶の作成に適用して
有利な製造方法を提供するものである。
The present invention is a method for producing a single crystal in which the temperature of the crucible must be lowered in order to maintain a constant diameter of the grown single crystal. The present invention provides an advantageous manufacturing method that can be applied to the production of large single crystals such as i T a03 ) and lithium niobate (LiNb03).

大形単結晶を作成する場合結晶が引上げられるにつれて
溶融物の表面位置が低下する。
When producing large single crystals, the surface position of the melt decreases as the crystal is pulled up.

特に温度勾配をゆるくしないとクラックが入ってしまう
表面波応用用X軸引上げのL iT a 03単結晶で
は溶融物の約50%を引上げるとるつぼ底から結晶が晶
出してしまい、50%以上引上げることは困難である。
In particular, in the case of X-axis pulled LiT a 03 single crystal for surface wave applications where cracks will appear unless the temperature gradient is made gentler, if approximately 50% of the melt is pulled, crystals will crystallize from the bottom of the crucible, resulting in more than 50% It is difficult to raise it.

このことは結晶製造コストを考えると大きな障害である
This is a major obstacle when considering crystal manufacturing costs.

■ 1回の作成で出来る結晶長さが、溶融物の約50%
と決ってしまうので溶融物の約100%に相当する長尺
結晶を作成するには2回結晶作成を行わなければならな
いので、非常にコスト高になる。
■ The crystal length that can be created in one time is approximately 50% of that of the melt.
Therefore, in order to create long crystals corresponding to approximately 100% of the melt, crystal creation must be performed twice, resulting in extremely high costs.

■ るつぼの中に引上げられなかった残りの溶融物が約
50%と大きくあるので、るつぼの変形が大きく、るつ
ぼの耐使用回数が少くなる。
■ Since the remaining melt that was not pulled into the crucible is as large as about 50%, the crucible is greatly deformed and the number of times the crucible can be used is reduced.

■ 大形長尺結晶を作成するためには、より大形のるつ
ぼが要求されるので、非常に非効率的で高コストとなる
■ In order to create large elongated crystals, a larger crucible is required, which is very inefficient and costly.

本発明は上記点に鑑みなされたもので、加熱炉を用いて
単結晶成長するに際し、るつぼ内の溶融物の大部分(約
8割以上)を高品質単結晶として成長出来る単結晶の製
造方法を提供するものである。
The present invention has been made in view of the above points, and is a method for producing a single crystal that can grow most of the melt in the crucible (approximately 80% or more) as a high-quality single crystal when growing a single crystal using a heating furnace. It provides:

即ちるつぼ自溶融物の液面の降下に応じて相対的に加熱
装置の加熱実効位置例えば高周波加熱炉を降下移動させ
るものである。
That is, the effective heating position of the heating device, for example, a high frequency heating furnace, is moved downward relative to the lowering of the liquid level of the self-molten material in the crucible.

次に図面を参照して本発明分法の実施例を説明する。Next, an embodiment of the method of the present invention will be described with reference to the drawings.

、大きさ9omml 、高さ80mm、厚さ2朋の白金
ロジュームるつぼ1にL iT a 03の焼結体20
oOgを入れて、加熱装置例えば第1図に示すような炉
でワークコイル2を用いて高周波加熱して溶融する。
A sintered body 20 of LiT a 03 is placed in a platinum rhodium crucible 1 having a size of 9 omml, a height of 80 mm, and a thickness of 2 mm.
oOg is put therein and melted by high frequency heating using a work coil 2 in a heating device such as a furnace as shown in FIG.

この場合、ワークコイル2の加熱実効位置の中間部例え
ば中心位置Aをるつぼの深さ方向の予め設定した位置例
えば深さ方向中心位置B(いずれも縦方向の高さ位置関
係を表す)にくるように調節する。
In this case, the middle part of the effective heating position of the work coil 2, for example, center position A, is brought to a preset position in the depth direction of the crucible, for example, depth direction center position B (both represent the height positional relationship in the vertical direction). Adjust as follows.

融解後X軸(=a軸)方位を持った種子結晶5を用いて
、結晶径例えば50闘ダの単結晶を引上げ成長する。
After melting, a single crystal having a crystal diameter of, for example, 50 Da is pulled and grown using the seed crystal 5 having the X-axis (=a-axis) orientation.

この成長結晶は割れ易いので第1図に示すように反射板
3を用い、炉内温度勾配をゆるくなるように調整する。
Since this grown crystal is easily broken, a reflector plate 3 is used as shown in FIG. 1 to adjust the temperature gradient in the furnace to be gentle.

結晶の作成は引上げ速度3 m、rn1時(h)2回転
数3 Orpm”r行い、発振機の出力を徐々に下ろし
、即ちるつぼ内の温度を徐々に下ろしながら行った。
The crystal was produced at a pulling speed of 3 m, rn: 1 hour (h), 2 revolutions: 3 orpm"r, and the output of the oscillator was gradually lowered, that is, the temperature inside the crucible was gradually lowered.

結晶は引上げるにつれて融液面が下るので、成長速度は
例えば約5mm/hである。
Since the melt level falls as the crystal is pulled up, the growth rate is, for example, about 5 mm/h.

約601n1ft長さ下がったところで、るつぼ底から
結晶が晶出し、作成結晶とぶつかり始めて、これ以上結
晶の長さを長くすることが出来ない。
When the length has decreased by about 601n1ft, crystals begin to crystallize from the bottom of the crucible and collide with the produced crystal, making it impossible to increase the length of the crystal any further.

これは結晶が引上げられるにつれて融液面が下がり、従
って溶融物の中心位置が結晶作成開始時の中心位置より
本実験ではワークコイル2の中心位置AAから相対的に
下ってきたため(第1図(b)の「位置)、るつぼ内の
温度勾配及び融液内の対流等が変わり、るつぼ1底部の
温度が引上げ結晶の固液界面より温度が低くなり、結晶
がるつぼ底部から晶出してきたためである。
This is because the melt surface lowers as the crystal is pulled up, and therefore the center position of the melt is relatively lower from the center position AA of the work coil 2 in this experiment than the center position at the start of crystal creation (see Figure 1). b), the temperature gradient in the crucible, the convection in the melt, etc. changed, and the temperature at the bottom of the crucible 1 became lower than the solid-liquid interface of the pulled crystal, and the crystals began to crystallize from the bottom of the crucible. be.

従って融液面が下るにつれ、るつぼ1内の溶融物の中心
位置を結晶作成開始時の中心位置にくるようにるつぼ1
を上げるか又はワークコイル2を下げるかすれば、るつ
ぼ1内の温度勾配、溶融物内の対流も殆んど変らずに安
定に結晶が出来る。
Therefore, as the melt level descends, the crucible 1 is moved so that the center position of the melt in the crucible 1 comes to the center position at the start of crystal creation.
If the work coil 2 is raised or the work coil 2 is lowered, the temperature gradient inside the crucible 1 and the convection within the melt hardly change, and crystals can be stably formed.

即ちるつぼ1又はワークコイル2の降下速度を融液面の
降下速度の14にすれば、安定に結晶を引き上げられる
That is, if the descending speed of the crucible 1 or work coil 2 is set to 14 times the descending speed of the melt surface, the crystal can be pulled stably.

従来結晶引上げによって液面の降下により固液界面の温
度勾配変化に伴う結晶品質の劣化を防ぐ方法として特公
昭45−15604号公報に公表されているように、る
つぼ又は加熱部との間に相対的下降運動が同時に行われ
、加熱部の上部が溶融物の上面とたえず同一レベル(る
つぼ又は加熱部の降下速度と融液面の降下速度を同一)
に保持されることを特徴とする方法が報告されている。
Conventionally, as published in Japanese Patent Publication No. 15604/1983, as a method of preventing deterioration of crystal quality due to a change in temperature gradient at the solid-liquid interface due to a drop in the liquid level due to crystal pulling, there is The downward movement of the target is carried out at the same time, and the top of the heating section is always at the same level as the top surface of the melt (the descending speed of the crucible or heating section is the same as the descending speed of the melt surface)
A method has been reported that is characterized in that the

この方法と本発明方法との違いを第2図を用いて説明す
る。
The difference between this method and the method of the present invention will be explained using FIG. 2.

第2図1aでルツボ1内溶融物の深さ中心部B、ワーク
コイルの中心位置Aである。
In FIG. 2 1a, the depth center B of the melt in the crucible 1 is the center position A of the work coil.

結晶が引上げられ溶融物の量がるつぼの半分になったと
きの従来の方法の場合の位置関係を第2図C1本発明方
法の場合の位置関係を第2図すに示す。
The positional relationship in the case of the conventional method when the crystal is pulled and the amount of the melt becomes half of the amount in the crucible is shown in FIG.

第2図すではAとB′がほぼ一致している。In FIG. 2, A and B' almost match.

第2図CではAがB′より大巾に下にきている。In Figure 2C, A is much lower than B'.

即ちワークコイルがるつぼの下方に位置している。That is, the work coil is located below the crucible.

特公昭45−15604号公報の方法ではるつぼの底部
から結晶は晶出しないが、るつぼの底部の温度が高くな
り、るつぼ内の温度分布及び対流が大きく変ってしまい
、高品質結晶を得ることは困難になる。
Although the method disclosed in Japanese Patent Publication No. 45-15604 does not crystallize crystals from the bottom of the crucible, the temperature at the bottom of the crucible becomes high and the temperature distribution and convection inside the crucible change greatly, making it difficult to obtain high-quality crystals. It becomes difficult.

これに比べて本発明方法は、るつぼ底部からの結晶晶出
がなくなるばかりでなく、るつぼ内の温度分布、及び対
流が殆んど変らないので高品質結晶が出来る。
In contrast, the method of the present invention not only eliminates the crystallization from the bottom of the crucible, but also hardly changes the temperature distribution and convection within the crucible, resulting in high quality crystals.

上記と同じ条件で本発明方法の実施例は次の通りである
An example of the method of the invention under the same conditions as above is as follows.

実施例 1 50mrr/zの単結晶を引上げ速度3mm/h回転数
3Orpmで作成を行い、ワークコイルは結晶の肩が出
来た以後1 mm/ hでワークコイルを下げながら行
った。
Example 1 A single crystal of 50 mrr/z was pulled at a pulling speed of 3 mm/h and a rotational speed of 3 rpm, and the work coil was lowered at a speed of 1 mm/h after the shoulder of the crystal was formed.

その結果50ynm91 X 110mtnilの単結
晶が出来、るつぼ内溶融物の約8割も単結晶化すること
が出来た。
As a result, a single crystal of 50 ynm91 x 110 mtnil was obtained, and about 80% of the melt in the crucible was also able to be made into a single crystal.

実施例 2 上記と全く同じ条件で、ワークコイルの下げ開始時期を
結晶肩作成直後でなく 50g91 X30mm1作成
後即ちるつぼ内溶融物の約3割作成後行った。
Example 2 Under exactly the same conditions as above, the lowering of the work coil was started not immediately after the creation of the crystal shoulder, but after the creation of 50g91 x 30mm1, that is, after about 30% of the melt in the crucible was created.

上記の実施例と同様50mw91 X 100H1の単
結晶を作成することが出来た。
As in the above example, a single crystal of 50 mw91 x 100 H1 could be produced.

実施例 3 大きさ70mdp高さ707n’llt厚さ1m11L
の白金るつぼ上に白金で出来た反射板をおいた炉で、る
つぼ中に入れた原料例えば炭酸リチューム215.2g
五酸化ニオブ819gを高周波加熱により融解した。
Example 3 Size: 70mdp Height: 707n'llt Thickness: 1m11L
215.2 g of a raw material, such as lithium carbonate, placed in a platinum crucible with a reflective plate made of platinum placed on top of the crucible.
819 g of niobium pentoxide was melted by high frequency heating.

引上げ速度4mm/h、回転数25 rpmで結晶径4
0yの単結晶を引上げた。
Crystal diameter 4 at a pulling speed of 4 mm/h and a rotation speed of 25 rpm.
A single crystal of 0y was pulled.

ワークコイルは結晶の肩が出来た直径約2tnrrt/
hで下げながら作成を行った結果るつぼ内の溶融物の
約8割にあたる40mdX115mailの単結晶を作
成することが出来た。
The work coil has a diameter of about 2tnrrt/with crystal shoulders.
As a result of making the crystal while lowering the crucible, a single crystal of 40 md x 115 mail, which is about 80% of the melt in the crucible, could be made.

ワークコイルを下げずに上記と全く同じ実験を行ったと
ころ溶融物の約50%に相当する長さ70mm1!で、
るつぼの底部から晶出してきた結晶とぶつかって、長く
することが出来なかった。
When the same experiment as above was carried out without lowering the work coil, the length was 70 mm1, which corresponds to about 50% of the melt! in,
It collided with the crystals that had crystallized from the bottom of the crucible, so it could not be made longer.

以上説明したように本発明方法によれば次のような効果
が得られる。
As explained above, according to the method of the present invention, the following effects can be obtained.

■ るつぼ内の溶融物の大部分(約80%以上)が単結
晶化出来、従来の方法に比べて約2倍長く引上げられる
ようになった。
■ Most of the melt in the crucible (approximately 80% or more) was able to become a single crystal, and it was now possible to pull the melt for about twice as long as in the conventional method.

■ 大形長尺結晶を従来の方法に比べてるつぼ溶精で従
来の約5以下の小形るつぼが出来るようになった。
■ Comparing large and long crystals to conventional methods, crucible melting has made it possible to produce smaller crucibles smaller than the conventional method.

■ るつぼ内に引上げられなかった残りの溶融物が従来
ノ約1/ 以下になったためるつぼの変形が少く、るつ
ぼの耐使用回数が約30%多くなった。
- The amount of remaining melt that was not pulled into the crucible was reduced to about 1/2 that of the conventional crucible, so the crucible deformed less and the number of times the crucible could be used increased by about 30%.

上記実施例ではワークコイル位置とるつぼの間との相対
的位置を、ワークコイルの位置を下げることによって行
ったが、要するにワークコイルと溶融物の相対位置を設
定すれば良く例えばるつぼの位置をワークコイルと同様
な関係で上げても同じ効果が得られる。
In the above embodiment, the relative position between the work coil position and the crucible was adjusted by lowering the position of the work coil, but in short, it is sufficient to set the relative position of the work coil and the melt. The same effect can be obtained by raising it in the same way as the coil.

この発明でいう加熱装置のるつぼ深さ方向中心位置とる
つぼ内の溶融物の深さ方向中心位置とは、夫々深さ方向
の中心を基準に中間位置の予め設定した位置であること
が重要であることをいう。
It is important that the center position of the heating device in the depth direction of the crucible and the center position of the melt in the crucible in the depth direction are respectively preset intermediate positions with respect to the center in the depth direction. say something.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の実施例を説明するための略図、第
2図は従来の方法と本発明方法との比較説明図である。 1・・・・・・るつぼ、2・・・・・・ワークコイル、
3・・・・・・種子結晶、4・・・・・・種子結晶ホル
ダー、6・・・・・・るつぼ自溶融物、7・・・・・・
作成結晶、8・・・・・・アルミするつぼ、9・・・・
・・バブルアルミナ、A・・・・・・ワークコイルの中
心位置高さ、B・・・・・・るつぼ内溶融物中心高さ位
置、B′・・・・・・るつぼ内溶融物中心高さ位置(結
晶を作成して融液面高さが下ったとき)。
FIG. 1 is a schematic diagram for explaining an embodiment of the method of the present invention, and FIG. 2 is a comparative diagram of the conventional method and the method of the present invention. 1... Crucible, 2... Work coil,
3... Seed crystal, 4... Seed crystal holder, 6... Crucible self-melting material, 7...
Creation crystal, 8... Aluminum crucible, 9...
...Bubble alumina, A...Height of the center of the work coil, B...Height of the center of the melt in the crucible, B'...Height of the center of the melt in the crucible position (when a crystal is created and the melt surface height is lowered).

Claims (1)

【特許請求の範囲】 1 るつぼの周囲に設けられている加熱装置によって前
記るつぼ内の原料を加熱溶融する工程と、前記溶融物に
種結晶を入れ単結晶を成長させることによる溶融物の液
面の低下に応じて前記加熱装置のるつぼ深さ方向中間部
の予め設定位置が前記溶融物の深さ方向中間部の予め設
定位置に相対的位置関係を保つようにする工程とを具備
してなることを特徴とする単結晶の製造方法。 2 前記加熱装置は高周波加熱装置である特許請求の範
囲第1項記載の製造方法。 3 前記予め設定位置は前記加熱装置および前記溶融物
共に前記るつぼの深さ方向中心位置である特許請求の範
囲第1項記載の単結晶の製造方法。 4 前記の相対的位置関係を保つようにする工程は、結
晶作成開始後融液の約3割以上引上げられた後、開始す
ることを特徴とする特許請求の範囲第1項記載の単結晶
の製造方法。 5 前記単結晶はL I N b Os単結晶である特
許請求の範囲第1項記載の単結晶の製造方法。 6 前記単結晶はLiTaO3単結晶である特許請求の
範囲第1項記載の単結晶の製造方法。
[Claims] 1. A step of heating and melting the raw material in the crucible using a heating device provided around the crucible, and increasing the liquid level of the melt by placing a seed crystal in the melt and growing a single crystal. and a step of maintaining a preset position of the heating device at a depthwise intermediate portion of the heating device relative to a preset position of the depthwise intermediate portion of the melt in response to a decrease in the temperature. A method for producing a single crystal characterized by the following. 2. The manufacturing method according to claim 1, wherein the heating device is a high frequency heating device. 3. The method for producing a single crystal according to claim 1, wherein the preset position is a center position in the depth direction of the crucible for both the heating device and the melt. 4. The single crystal according to claim 1, wherein the step of maintaining the relative positional relationship is started after about 30% or more of the melt has been pulled up after the start of crystal creation. Production method. 5. The method for producing a single crystal according to claim 1, wherein the single crystal is a L I N b Os single crystal. 6. The method for producing a single crystal according to claim 1, wherein the single crystal is a LiTaO3 single crystal.
JP7440777A 1977-06-24 1977-06-24 Single crystal manufacturing method Expired JPS5825078B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7440777A JPS5825078B2 (en) 1977-06-24 1977-06-24 Single crystal manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7440777A JPS5825078B2 (en) 1977-06-24 1977-06-24 Single crystal manufacturing method

Publications (2)

Publication Number Publication Date
JPS549174A JPS549174A (en) 1979-01-23
JPS5825078B2 true JPS5825078B2 (en) 1983-05-25

Family

ID=13546295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7440777A Expired JPS5825078B2 (en) 1977-06-24 1977-06-24 Single crystal manufacturing method

Country Status (1)

Country Link
JP (1) JPS5825078B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5715756B2 (en) * 1974-06-05 1982-04-01
JPS5720947B2 (en) * 1974-06-05 1982-05-04
JPS57183394A (en) * 1981-05-06 1982-11-11 Nippon Telegr & Teleph Corp <Ntt> Method and apparatus for pulling single crystal
US4439265A (en) * 1981-07-17 1984-03-27 Bell Telephone Laboratories, Incorporated Fabrication method for LiNbO3 and LiTaO3 integrated optics devices
US4511428A (en) * 1982-07-09 1985-04-16 International Business Machines Corporation Method of controlling oxygen content and distribution in grown silicon crystals
JPS59203792A (en) * 1983-04-30 1984-11-17 Fujitsu Ltd Process for growing single crystal
JPS61151098A (en) * 1984-12-24 1986-07-09 Shin Etsu Chem Co Ltd Single crystal wafer of lithium tantalate
CN108456927A (en) * 2018-04-24 2018-08-28 安徽晶宸科技有限公司 A kind of large scale LiTaO3The Automatic Control growing method of crystal
CN111206282A (en) * 2019-10-30 2020-05-29 德清晶辉光电科技股份有限公司 Production method of 8-inch lithium niobate crystal

Also Published As

Publication number Publication date
JPS549174A (en) 1979-01-23

Similar Documents

Publication Publication Date Title
JPS5825078B2 (en) Single crystal manufacturing method
JPH08175896A (en) Method and device for producing single crystal
JP2507910B2 (en) Method for producing oxide single crystal
JP3255753B2 (en) Method of growing rutile rod-shaped single crystal
JP2783624B2 (en) Single crystal manufacturing method
JPS589800B2 (en) Manufacturing method of oxide single crystal
KR101942320B1 (en) An apparatus for growing a crystal ingot and a method for growing a crystal ingot using the same
JP2001106597A (en) Method and device for producing single crystal
RU1445270C (en) Process of growing crystals of corundum
JPS6126519B2 (en)
JP3208603B2 (en) How to make a single crystal
JPH0377159B2 (en)
RU1382052C (en) Device for growing profiled crystals
JPS61266395A (en) Preparation of single crystal of oxide piezoelectric body
JP2810975B2 (en) Single crystal manufacturing method
JPH0742196B2 (en) Single crystal growth method
JPH078754B2 (en) Single crystal manufacturing method
JPS5921595A (en) Production of single crystal
JPH01126294A (en) Production of single crystal
JPH03199191A (en) Production of single crystal
JPH09169592A (en) Method for growing single crystal
JPH0380181A (en) Device for producing single crystal
JPS5848520B2 (en) Method for pulling lithium niobate single crystal
JPH0367995B2 (en)
JPH04182392A (en) Production of silicon single crystal