JPH09169592A - Method for growing single crystal - Google Patents

Method for growing single crystal

Info

Publication number
JPH09169592A
JPH09169592A JP34986395A JP34986395A JPH09169592A JP H09169592 A JPH09169592 A JP H09169592A JP 34986395 A JP34986395 A JP 34986395A JP 34986395 A JP34986395 A JP 34986395A JP H09169592 A JPH09169592 A JP H09169592A
Authority
JP
Japan
Prior art keywords
crucible
single crystal
crystal
heating device
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34986395A
Other languages
Japanese (ja)
Inventor
Takeshi Kamio
剛 神尾
Yoshinori Kuwabara
由則 桑原
Toshihiko Riyuuou
俊彦 流王
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP34986395A priority Critical patent/JPH09169592A/en
Publication of JPH09169592A publication Critical patent/JPH09169592A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a crystal having a good shape and good quality at a high yield without the twist of the crystal in the second half of growth and the occurrence of cracking by accumulation of thermal strains by regulating the rising speed of a crucible larger than the descending speed of a solid-liquid boundary. SOLUTION: The single crystal is formed by disposing the crucible into which raw material for producing the single crystal are charged movably in a perpendicular direction relatively to a heater, heating and melting the raw material in the crucible with the heater and bringing a seed crystal into contact with the melt thereof. After the single crystal attains a specified crystal diameter, the crucible is risen at the speed higher than the descending speed of the solid-liquid boundary in the crucible relatively to the heater.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ニオブ酸リチウム
単結晶、タンタル酸リチウム単結晶等の酸化物単結晶の
製造方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing an oxide single crystal such as a lithium niobate single crystal and a lithium tantalate single crystal.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】従来、
タンタル酸リチウム或いはニオブ酸リチウムなどの酸化
物単結晶を引上法によって育成する際には高周波加熱炉
が多く用いられている。この場合、得られる単結晶にお
いて、形状の不良や結晶欠陥の発生は坩堝内の融液の液
面近傍の温度勾配により大きく左右される。実際、温度
勾配が緩くなりすぎると結晶の育成後半で捻れを生じた
り、温度勾配がきつすぎると結晶底部より結晶欠陥を発
生しやすい。通常、単結晶を育成する際に坩堝内に収納
される融液は育成と同時に減少していき、坩堝上端に対
する固液界面のレベルは低下していく。これによって坩
堝近傍の温度勾配が育成初期の条件と変化して単結晶の
形状や結晶欠陥など品質に大きく影響する。従来ではこ
れらの問題を解決すべく、特公昭58−25078号公
報に提案されているように、溶融物の液面の低下に応じ
て、加熱装置の坩堝深さ方向中央部の設定位置が溶融物
の深さ方向中央の設定位置に相対的位置関係を保つよう
にする方法が採られ、坩堝内での温度勾配、溶融物の対
流に変化がなく、安定に結晶が育成できる配慮がなされ
ている。
2. Description of the Related Art
When growing an oxide single crystal of lithium tantalate or lithium niobate by a pulling method, a high frequency heating furnace is often used. In this case, in the obtained single crystal, defective shape and generation of crystal defects are greatly influenced by the temperature gradient near the liquid surface of the melt in the crucible. In fact, if the temperature gradient becomes too gentle, twisting will occur in the latter half of the crystal growth, and if the temperature gradient is too tight, crystal defects will be more likely to occur from the bottom of the crystal. Usually, when growing a single crystal, the melt contained in the crucible decreases at the same time as the growth, and the level of the solid-liquid interface with respect to the upper end of the crucible decreases. As a result, the temperature gradient in the vicinity of the crucible changes from the conditions at the initial stage of growth, and the quality such as the shape of the single crystal and crystal defects is greatly affected. Conventionally, in order to solve these problems, as proposed in Japanese Patent Publication No. 58-25078, the set position of the central portion of the heating device in the crucible depth direction melts in accordance with the decrease in the liquid level of the melt. A method was adopted to maintain a relative positional relationship at the set position in the center of the depth direction of the material, and there was no change in the temperature gradient in the crucible or the convection of the melt, and consideration was given to stable crystal growth. There is.

【0003】しかし、従来技術のように加熱装置の中心
部と溶融物の中心部の相対位置を保つ方法では、結晶の
育成前半においては坩堝内での温度勾配、溶融物の対流
に変化が生じないにしても、育成の中盤から後半にかけ
ては、育成結晶自体が固液界面からの固化熱放出の遮蔽
となり、結果として温度勾配が緩くなって結晶後半で捻
れなどの形状不良を発生する問題が生じてくる。また、
結晶の育成前半において溶融物の対流には変化が生じな
いとしても、育成後半においては溶融物の量が減少し、
少なくともその対流が変化する。このため結晶の育成点
である固液界面近傍での対流が変化し、結晶欠陥を発生
するという問題が生じる。
However, in the method of maintaining the relative position between the center of the heating device and the center of the melt as in the prior art, the temperature gradient in the crucible and the convection of the melt change in the first half of the crystal growth. Even if it does not exist, from the middle stage to the latter half of the growth, the grown crystal itself blocks the release of solidification heat from the solid-liquid interface, and as a result, the temperature gradient becomes loose and there is a problem that shape defects such as twist occur in the latter half of the crystal. Will occur. Also,
Even if the convection of the melt does not change in the first half of the crystal growth, the amount of the melt decreases in the second half of the growth,
At least that convection changes. For this reason, the convection near the solid-liquid interface, which is the crystal growth point, changes, causing a problem of crystal defects.

【0004】従って、本発明の目的は、形状の良好な酸
化物単結晶を確実に製造し得、捻れや熱歪みによるクラ
ックが生じず、歩留のよい単結晶の製造方法を提供する
ことを目的とする。
Therefore, an object of the present invention is to provide an oxide single crystal having a good shape without fail, and to provide a method for producing a single crystal which is free from cracks due to twisting or thermal strain and has a good yield. To aim.

【0005】[0005]

【課題を解決するための手段及び発明の実施の形態】本
発明者は、上記目的を達成するため鋭意検討を行った結
果、坩堝を加熱装置に対し相対的に坩堝内の固液界面降
下速度より大きい速度で、特には固液界面降下速度の
1.3〜2倍の速度で上昇させることにより、捻れやク
ラックを生じさせることなく、良好なニオブ酸リチウム
単結晶又はタンタル酸リチウム単結晶等の酸化物単結晶
を歩留よく育成し得ることを知見し、本発明をなすに至
った。
Means for Solving the Problems and Modes for Carrying Out the Invention As a result of intensive studies for achieving the above-mentioned object, the present inventor has found that the solid-liquid interface descent rate in the crucible relative to the heating device. By increasing the speed at a higher speed, particularly 1.3 to 2 times the solid-liquid interface lowering speed, good lithium niobate single crystal or lithium tantalate single crystal can be obtained without causing twisting or cracking. The inventors have found that the oxide single crystal of 1) can be grown with high yield, and have completed the present invention.

【0006】従って、本発明は、単結晶製造用原料が投
入される坩堝を加熱装置に対し相対的に垂直方向移動可
能に配設し、上記坩堝内の原料を上記加熱装置で加熱溶
融すると共に、この溶融物に種結晶を接触せしめて単結
晶を育成するに際し、この単結晶が所定の結晶径に達し
た後、加熱装置に対して坩堝を相対的に坩堝内の固液界
面降下速度より大きい速度で上昇させることを特徴とす
る単結晶の製造方法を提供する。
Therefore, according to the present invention, the crucible into which the raw material for producing a single crystal is charged is arranged so as to be vertically movable relative to the heating device, and the raw material in the crucible is heated and melted by the heating device. , When growing a single crystal by bringing a seed crystal into contact with the melt, after the single crystal reaches a predetermined crystal diameter, the crucible is relatively moved relative to the heating device from the solid-liquid interface descent rate in the crucible. Provided is a method for producing a single crystal, which comprises raising the temperature at a high rate.

【0007】以下、本発明につき更に詳しく説明する
と、本発明の単結晶の製造方法は、ニオブ酸リチウム単
結晶やタンタル酸リチウム単結晶等の酸化物単結晶の育
成に有効に使用されるもので、上述したように、単結晶
製造用原料が投入される坩堝を加熱装置に対し相対的に
垂直方向移動可能に配設し、上記坩堝内の原料を上記加
熱装置で加熱溶融すると共に、この溶融物に種結晶を接
触せしめて単結晶を育成するに際し、この単結晶が所定
の結晶径に達した後、加熱装置に対して坩堝を相対的に
坩堝内の固液界面降下速度より大きい速度で上昇させる
ものである。
The present invention will be described in more detail below. The method for producing a single crystal of the present invention is effectively used for growing an oxide single crystal such as a lithium niobate single crystal or a lithium tantalate single crystal. As described above, the crucible into which the raw material for producing a single crystal is placed is arranged so as to be movable in the vertical direction relative to the heating device, and the raw material in the crucible is heated and melted by the heating device, and this melting is performed. When growing a single crystal by bringing a seed crystal into contact with an object, after the single crystal reaches a predetermined crystal diameter, the crucible is relatively moved with respect to the heating device at a speed higher than the solid-liquid interface descent rate in the crucible. To raise.

【0008】このように、本発明は、固液界面のレベル
が低下する速度よりも大きい速度で坩堝を上昇させるも
ので、固液界面低下の速度を坩堝上昇速度が上回ること
で加熱装置に対する溶融物の液面が上昇し、図1に示す
ように育成前半での融液近傍の温度勾配が融液中にシフ
トしていくことになる。このために融液直上での温度勾
配が従来の条件に比べてきつくなることで、捻れなどの
形状不良を発生することなく、良好な結晶を得ることが
できる。この場合、坩堝の上昇する速度は固液界面低下
速度の1.3〜2倍がよく、2倍を大きく超えると温度
勾配がきつくなり、熱歪みによるクラックを生じる場合
がある。
As described above, according to the present invention, the crucible is raised at a rate higher than the rate at which the level of the solid-liquid interface is lowered, and when the rate of the solid-liquid interface is lowered by the rate of rise of the crucible, melting to the heating device is performed. The liquid level of the product rises, and the temperature gradient near the melt in the first half of the growth shifts into the melt as shown in FIG. For this reason, the temperature gradient immediately above the melt becomes larger than that under the conventional conditions, and good crystals can be obtained without causing shape defects such as twisting. In this case, the ascending speed of the crucible is preferably 1.3 to 2 times the solid-liquid interface lowering speed, and if it exceeds 2 times, the temperature gradient becomes tight and cracks due to thermal strain may occur.

【0009】ここで、坩堝の上昇は高周波加熱機等の加
熱装置に対し相対的に上昇するもので、坩堝自身を上昇
させても、加熱装置を下降させてもよい。
Here, the raising of the crucible rises relative to a heating device such as a high-frequency heater, and the crucible itself may be raised or the heating device may be lowered.

【0010】本発明は、特にタンタル酸リチウムやニオ
ブ酸リチウム単結晶の製造に好適であるが、これは両結
晶がいずれも従来より比較的温度勾配のきつい条件下で
育成され、本発明で挙げた固液界面の降下速度を坩堝上
昇速度が上回り、融液直上での温度勾配が多少きつくな
っても育成に問題がでない素材であるからである。
The present invention is particularly suitable for the production of lithium tantalate or lithium niobate single crystals, both of which have been grown under a condition with a comparatively steeper temperature gradient than conventional ones. This is because the crucible ascending speed exceeds the descending speed at the solid-liquid interface and the material has no problem in growth even if the temperature gradient just above the melt becomes slightly tight.

【0011】なお、本発明の単結晶のその他の育成条件
や製造装置は、その単結晶の種類に応じた通常の条件、
装置を使用することができる。
The other single crystal growth conditions and manufacturing apparatus of the present invention are the same as those for normal conditions according to the type of single crystal.
The device can be used.

【0012】[0012]

【実施例】以下、実施例と比較例を示し、本発明を具体
的に説明するが、本発明は下記の実施例に制限されるも
のではない。
EXAMPLES The present invention will be described below in detail with reference to examples and comparative examples, but the present invention is not limited to the following examples.

【0013】〔実施例1〜4,比較例1〜3〕直径15
0mm、高さ150mm、厚さ2mmの坩堝にタンタル
酸リチウム焼成原料を入れ、高周波加熱装置によりこの
原料を加熱し、溶融させた。次いで、種子結晶をこの溶
融物に入れ、直径80mmのタンタル酸リチウム単結晶
を成長させると共に、育成速度6mm/hrで引上げを
行い、直径80mm、直胴長150mmのタンタル酸リ
チウム単結晶を育成した。この場合、上記引上げに伴う
固液界面降下速度は2.3mm/hrであり、この速度
に対して表1に示す速度で坩堝を上昇させた。なお、図
2に坩堝の移動距離と溶融物の液面降下距離との関係を
示す。
[Examples 1 to 4, Comparative Examples 1 to 3] Diameter 15
A lithium tantalate firing raw material was placed in a crucible having a thickness of 0 mm, a height of 150 mm and a thickness of 2 mm, and the raw material was heated by a high frequency heating device to be melted. Then, seed crystals were put into this melt, and a lithium tantalate single crystal having a diameter of 80 mm was grown and pulled up at a growth rate of 6 mm / hr to grow a lithium tantalate single crystal having a diameter of 80 mm and a straight body length of 150 mm. . In this case, the solid-liquid interface descending speed associated with the pulling was 2.3 mm / hr, and the crucible was raised at the speed shown in Table 1 with respect to this speed. Note that FIG. 2 shows the relationship between the moving distance of the crucible and the liquid level lowering distance of the melt.

【0014】このようにして得られた単結晶の形状及び
歩留の結果を表1に併記する。
Table 1 also shows the shape and yield of the single crystal thus obtained.

【0015】[0015]

【表1】 [Table 1]

【0016】〔実施例5〜8,比較例4〜6〕上記実施
例1〜4,比較例1〜3と同様の条件でニオブ酸リチウ
ム単結晶の育成を行った。その結果を表2に示す。な
お、図2に坩堝の移動距離と溶融物の液面降下距離との
関係を併記する。
Examples 5 to 8 and Comparative Examples 4 to 6 Lithium niobate single crystals were grown under the same conditions as in Examples 1 to 4 and Comparative Examples 1 to 3. Table 2 shows the results. Note that FIG. 2 also shows the relationship between the moving distance of the crucible and the liquid level lowering distance.

【0017】[0017]

【表2】 [Table 2]

【0018】表1,2の結果より、本発明法に従った単
結晶育成方法は、歩留よく欠陥のない良好な形状の単結
晶を製造できることが認められる。これに対し、坩堝の
上昇速度が小さい場合は単結晶に捻れが生じ、坩堝の上
昇速度が小さい場合は単結晶に捻れが生じ、坩堝の上昇
速度が大きすぎると歪みによるクラックが生じ、またい
ずれの場合も歩留が低いものであった。
From the results shown in Tables 1 and 2, it is recognized that the method for growing a single crystal according to the method of the present invention can produce a single crystal having a good yield and a good shape without defects. On the other hand, when the rising speed of the crucible is small, the single crystal is twisted, when the rising speed of the crucible is small, the single crystal is twisted, and when the rising speed of the crucible is too large, cracks due to strain occur, and eventually In the case of, the yield was low.

【0019】[0019]

【発明の効果】本発明によれば、固液界面降下速度より
大きく坩堝上昇速度を規定することによって、育成後半
で結晶が捻れたり、熱歪みの蓄積によるクラックを生じ
ることなく、形状の良好な、かつ良質な結晶を高歩留で
得ることができ、その効果は極めて大きい。
EFFECTS OF THE INVENTION According to the present invention, by defining the crucible ascending rate larger than the solid-liquid interface descending rate, the crystal is not twisted in the latter half of the growth and cracks due to the accumulation of thermal strain are not generated, and the shape is good. In addition, high quality crystals can be obtained with a high yield, and the effect is extremely large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】加熱装置に対する溶融物の液面が上昇すること
による温度勾配の変化を示す図で、(A)は育成初期、
(B)は育成後期の図である。
FIG. 1 is a diagram showing a change in a temperature gradient due to a rise in a liquid level of a melt with respect to a heating device.
(B) is a diagram of the latter half of the breeding.

【図2】坩堝上昇速度と溶融物の液面降下距離との関係
を示すグラフである。
FIG. 2 is a graph showing the relationship between the crucible ascending speed and the liquid level descending distance of the melt.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 単結晶製造用原料が投入される坩堝を加
熱装置に対し相対的に垂直方向移動可能に配設し、上記
坩堝内の原料を上記加熱装置で加熱溶融すると共に、こ
の溶融物に種結晶を接触せしめて単結晶を育成するに際
し、この単結晶が所定の結晶径に達した後、加熱装置に
対して坩堝を相対的に坩堝内の固液界面降下速度より大
きい速度で上昇させることを特徴とする単結晶の製造方
法。
1. A crucible into which a raw material for producing a single crystal is charged is arranged so as to be movable in a vertical direction relative to a heating device, and the raw material in the crucible is heated and melted by the heating device, and the melt When a single crystal is grown by bringing the seed crystal into contact with, the single crystal reaches a predetermined crystal diameter, and then the crucible is raised at a speed higher than the solid-liquid interface descent rate in the crucible relative to the heating device. A method for producing a single crystal, which comprises:
【請求項2】 坩堝の加熱装置に対する相対的な上昇速
度が、坩堝内の固液界面降下速度の1.3〜2倍である
請求項1記載の方法。
2. The method according to claim 1, wherein the rising speed of the crucible relative to the heating device is 1.3 to 2 times the falling speed of the solid-liquid interface in the crucible.
【請求項3】 単結晶がニオブ酸リチウム単結晶又はタ
ンタル酸リチウム単結晶である請求項1又は2記載の製
造方法。
3. The production method according to claim 1, wherein the single crystal is a lithium niobate single crystal or a lithium tantalate single crystal.
JP34986395A 1995-12-21 1995-12-21 Method for growing single crystal Pending JPH09169592A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34986395A JPH09169592A (en) 1995-12-21 1995-12-21 Method for growing single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34986395A JPH09169592A (en) 1995-12-21 1995-12-21 Method for growing single crystal

Publications (1)

Publication Number Publication Date
JPH09169592A true JPH09169592A (en) 1997-06-30

Family

ID=18406636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34986395A Pending JPH09169592A (en) 1995-12-21 1995-12-21 Method for growing single crystal

Country Status (1)

Country Link
JP (1) JPH09169592A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111270302A (en) * 2019-12-26 2020-06-12 南京晶升能源设备有限公司 High-quality semiconductor silicon material consumable growth method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111270302A (en) * 2019-12-26 2020-06-12 南京晶升能源设备有限公司 High-quality semiconductor silicon material consumable growth method

Similar Documents

Publication Publication Date Title
CN104619893A (en) Silicon single crystal growing apparatus and silicon single crystal growing method
KR100799362B1 (en) Method for producing silicon single crystal
EP1199387B1 (en) Method for growing single crystal of semiconductor
JPH02180789A (en) Production of si single crystal
JP3698080B2 (en) Single crystal pulling method
US5173270A (en) Monocrystal rod pulled from a melt
JP2973917B2 (en) Single crystal pulling method
JP3531333B2 (en) Crystal manufacturing apparatus by Czochralski method, crystal manufacturing method, and crystal manufactured by this method
JPH09249492A (en) Seed crystal for pulling up single crystal and pulling-up of single crystal using the same
JPH09169592A (en) Method for growing single crystal
US5196086A (en) Monocrystal rod pulled from a melt
JPS5825078B2 (en) Single crystal manufacturing method
JP2019094251A (en) Method for manufacturing single crystal
JPH04139092A (en) Production of silicon single crystal and seed crystal
JPH07187880A (en) Production of oxide single crystal
JPS63252989A (en) Production of semiconductor single crystal by pull-up method
JP2004262723A (en) Single crystal pulling unit and single crystal pulling method
KR940003422Y1 (en) Apparatus for continuous growing single crystals
JP2008260663A (en) Growing method of oxide single crystal
JP2004217504A (en) Graphite heater, apparatus and method for producing single crystal
JPS6126519B2 (en)
JPH09227280A (en) Method for growing single crystal
JPS5997591A (en) Method and apparatus for growing single crystal
JPS58140387A (en) Production of single crystal
JPS5852293Y2 (en) Ferrite single crystal production equipment