JPH02180789A - Production of si single crystal - Google Patents

Production of si single crystal

Info

Publication number
JPH02180789A
JPH02180789A JP14489A JP14489A JPH02180789A JP H02180789 A JPH02180789 A JP H02180789A JP 14489 A JP14489 A JP 14489A JP 14489 A JP14489 A JP 14489A JP H02180789 A JPH02180789 A JP H02180789A
Authority
JP
Japan
Prior art keywords
ingot
straight body
melt
tail
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14489A
Other languages
Japanese (ja)
Inventor
Kazuhiko Echizenya
一彦 越前谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP14489A priority Critical patent/JPH02180789A/en
Publication of JPH02180789A publication Critical patent/JPH02180789A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an ingot nearly free from defects by previously measuring temp. distribution in the pulling direction of an ingot during pulling from molten Si and by starting the formation of the tail of the ingot when the top of the straight body of the ingot reaches a position at which the top attains to a prescribed temp. CONSTITUTION:Temp. distribution in the pulling direction of an ingot during pulling from molten Si by the Czochralski method is previously measured and the interval between the surface of the molten Si and the top 3a of the straight body 3 of the ingot at the time when the top 3a attains to 900 deg.C is calculated from the temp. distribution. The formation of the tail 2 of the ingot is started before the top 3a is pulled by the interval. The density of crystal defects in the straight body 3 for wafers is reduced.

Description

【発明の詳細な説明】 【産業上の利用分野1 本発明はSi融液(以下メルトと配す)を収容したるつ
ぼよりSi単結晶を成長させて引上げ。
Detailed Description of the Invention [Industrial Application Field 1] The present invention grows and pulls a Si single crystal from a crucible containing Si melt (hereinafter referred to as melt).

Si単結晶インゴット(以下インゴットと記す)を製造
する方法(チョクラルスキー法)に関するものである。
The present invention relates to a method (Czochralski method) for manufacturing a Si single crystal ingot (hereinafter referred to as ingot).

〔従来の技術l チョクラルスキー法によるインゴットの製造は、メルト
にSL種子結晶を接触させてSi単結晶を成長させ、イ
ンゴットとして引上げる方法で、得られたインゴットは
外観を第4図に示した形状をなし、lはインゴット製造
開始時の円錐形状の肩部、2はインゴット製造終了時の
逆円錐形状の尾部、3は円柱状の直胴部、3aは肩部l
と直胴部3との境界をなす直胴部上端、3bは尾部2と
直胴部3との境界をなす直胴部下端である。
[Prior art l] In the production of ingots by the Czochralski method, a Si single crystal is grown by bringing an SL seed crystal into contact with the melt, and then pulled up as an ingot. The appearance of the obtained ingot is shown in Fig. 4. 1 is a conical shoulder at the start of ingot production, 2 is an inverted conical tail at the end of ingot production, 3 is a cylindrical straight body, and 3a is a shoulder l.
3b is the upper end of the straight body part that forms the boundary between the tail part 2 and the straight body part 3, and 3b is the lower end of the straight body part that forms the boundary between the tail part 2 and the straight body part 3.

インゴットのうち、直胴部が厚さ約600umの同根に
切断され、半導体素子製造用ウェハとなる。
The straight body part of the ingot is cut into pieces with a thickness of about 600 um to form wafers for manufacturing semiconductor devices.

インゴットは引上途中で900〜500℃の温度範囲に
約4時間以上滞留すると結晶欠陥の発生密度が高くなる
。このためこのインゴットより切出したウェハを基板と
して製造される半導体素子の歩留りが低下する。
If the ingot remains in a temperature range of 900 to 500° C. for about 4 hours or more during pulling, the density of crystal defects will increase. For this reason, the yield of semiconductor devices manufactured using wafers cut from this ingot as substrates decreases.

900〜500℃の温度範囲に滞留する時間を短くする
ために、インゴットを強制的に冷却する手段を引上装置
に付設することが試みられたが、引上装置が複雑となる
ばかりでなく、冷却筒を装置内に設置するため、メルト
とるつぼとの反応生成物であるSiOガスが冷却筒にS
i0粒子として析出し、Si0粒子がメルトに落下する
ことが多く、この粒子がインゴットへ付着すれば成長し
ていたインゴットを多結晶化してしまい、単結晶インゴ
ットの製造が困難となる問題点を有している。
In order to shorten the time that the ingot remains in the temperature range of 900 to 500°C, attempts have been made to attach a means for forcibly cooling the ingot to the pulling device, but this not only complicates the pulling device, but also Since the cooling cylinder is installed in the equipment, SiO gas, which is a reaction product between the melt and the crucible, is stored in the cooling cylinder.
Si0 particles often precipitate as i0 particles and fall into the melt, and if these particles adhere to the ingot, they will polycrystallize the growing ingot, making it difficult to manufacture a single crystal ingot. are doing.

〔発明が解決しようとする課題1 本発明は上記従来技術の問題点を解決し、従来の引上装
置をそのまま使用しながら、結晶欠陥の少いインゴット
を製造しようとするものである。
[Problem to be Solved by the Invention 1] The present invention aims to solve the problems of the above-mentioned prior art and to manufacture an ingot with few crystal defects while using the conventional pulling device as is.

【課題を解決するための手段1 本発明は上記課題を解決するために、 Si融液から引上法にてSi単結晶インゴットを製造す
る方法において: 引上げ中の該インゴットの引上方向の温度分布を予め測
定し: 該温度分布から、該インゴットの直胴部上端の温度が9
00℃となる、Si融液上面と直胴部上端との距離を求
めておき; 直胴部上端とSi融液上面との距離を前記求めた距離以
内として尾部の形成を開始することを特徴とするSi単
結晶の製造方法、 を提供するものである。
[Means for Solving the Problems 1] In order to solve the above problems, the present invention provides a method for manufacturing a Si single crystal ingot from a Si melt by a pulling method: Temperature in the pulling direction of the ingot during pulling Measure the distribution in advance: From the temperature distribution, the temperature at the upper end of the straight body of the ingot is 9.
The distance between the upper surface of the Si melt and the upper end of the straight body part at which the temperature is 00°C is determined; and the formation of the tail is started with the distance between the upper end of the straight body part and the upper surface of the Si melt within the determined distance. The present invention provides a method for manufacturing a Si single crystal.

[作用] 本発明を図面を用いて説明する。[Effect] The present invention will be explained using the drawings.

第1図は引上途中のインゴットの温度分布の一例を示す
図で、メルトからの距離が25cm以内のインゴットの
温度は900℃以上となっていることを示している。
FIG. 1 is a diagram showing an example of the temperature distribution of the ingot during pulling, and shows that the temperature of the ingot within 25 cm from the melt is 900° C. or higher.

すなわちこの例においては、直胴部上端とメルトとの距
離が25cmになった時に直胴部の形成を打切って尾部
の形成を始め、尾部の成形が終了した時点で尾部をメル
トより切断すればよい。
That is, in this example, when the distance between the upper end of the straight body part and the melt reaches 25 cm, the formation of the straight body part is stopped and the formation of the tail part is started, and when the shaping of the tail part is completed, the tail part is cut from the melt. Bye.

尾部成形開始時よりの経過時間とインゴットの温度との
関係を第2図に示した。図中、曲線aは直胴部上端の温
度、曲線部すは直胴部下端の温度である。なお、尾部の
メルトよりの切断は、尾部成形開始時より2時間後であ
った。
FIG. 2 shows the relationship between the elapsed time from the start of tail molding and the ingot temperature. In the figure, curve a represents the temperature at the upper end of the straight body, and curved line a represents the temperature at the lower end of the straight body. Note that the tail was cut from the melt 2 hours after the start of tail molding.

第2図から明らかなように、直胴部下端は勿論、直胴部
上端も、900〜500℃の温度範囲に滞留する時間は
3時間未満で、ウェハとなる直胴部の結晶欠陥密度を低
減できる。
As is clear from Figure 2, not only the lower end of the straight body but also the upper end of the straight body remain in the temperature range of 900 to 500°C for less than 3 hours, which reduces the crystal defect density of the straight body that becomes the wafer. Can be reduced.

〔実施例] 冷却筒を付設しないチョクラルスキー法インゴット製造
装置を用い、直径的150mm(6インチ)のインゴッ
トを引上げ、インゴットの温度分布を測定した。直胴部
上端は、メルト上面からの距離が25cmとなった時に
900℃となつ、た。
[Example] An ingot having a diameter of 150 mm (6 inches) was pulled up using a Czochralski method ingot manufacturing apparatus without a cooling cylinder, and the temperature distribution of the ingot was measured. The temperature of the upper end of the straight body reached 900° C. when the distance from the upper surface of the melt was 25 cm.

よって、直胴部の長さが25cmのインゴットを製造し
た。
Therefore, an ingot having a straight body portion length of 25 cm was manufactured.

得られたインゴットから、長手方向、上端部。From the obtained ingot, in the longitudinal direction, the upper end.

中央部、下端部よりそれぞれ円板状試料を採取し、10
50℃X116hrの熱処理を行い、その中心部の欠陥
密度をジルトルエッチ法で測定し、各位置での平均値を
第3図に示した。なお、直胴部の長さを75cmとした
他は実施例と同様にした比較例(従来法)についての測
定値を第3図に併記した。
Disk-shaped samples were taken from the center and bottom, respectively, and 10
Heat treatment was performed at 50° C. for 116 hours, and the defect density at the center was measured by the Zirtle etch method, and the average value at each position is shown in FIG. Incidentally, the measured values of a comparative example (conventional method), which was the same as the example except that the length of the straight body part was 75 cm, are also shown in FIG.

本発明の方法により、従来法に比して欠陥密度の少いイ
ンゴットを製造することができた。
By the method of the present invention, it was possible to produce an ingot with a lower defect density than the conventional method.

〔発明の効果J 本発明により、結晶欠陥の少ないインゴットを、従来の
装置に特別な装置を付加することなく製造することがで
きる。
[Effect of the Invention J According to the present invention, an ingot with few crystal defects can be produced without adding any special equipment to the conventional equipment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はメルトからのインゴットの距離とインゴットの
温度との関係を示す図、第2図は尾部成形開始時よりの
時間とインゴットの温度との関係を示す図、第3図は実
施例および比較例におけるインゴットの長平方向位置と
欠陥密度との関係を示す図、第4図はインゴットの外観
を示す図である。 l・・・肩部 2・・・尾部 3・・−直胴部 3a・・・直胴部上端 3b・・・直胴部下端 出 願 人 J! 崎 製 鉄 株 式
Figure 1 is a diagram showing the relationship between the distance of the ingot from the melt and the ingot temperature, Figure 2 is a diagram showing the relationship between the time from the start of tail molding and the ingot temperature, and Figure 3 is a diagram showing the relationship between the ingot temperature and the distance of the ingot from the melt. FIG. 4 is a diagram showing the relationship between the longitudinal position of the ingot and the defect density in a comparative example, and FIG. 4 is a diagram showing the appearance of the ingot. l...shoulder part 2...tail part 3...-straight body part 3a...straight body part upper end 3b...straight body lower end Applicant J! Saki Steel Co., Ltd.

Claims (1)

【特許請求の範囲】 1 Si融液から引上法にてSi単結晶インゴットを製
造する方法において: 引上げ中の該インゴットの引上方向の温度 分布を予め測定し: 該温度分布から、該インゴットの直胴部上 端の温度が900℃となる、Si融液上面と直胴部上端
との距離を求めておき: 直胴部上端とSi融液上面との距離を前記 求めた距離以内として尾部の形成を開始することを特徴
とするSi単結晶の製造方法。
[Claims] 1. In a method for producing a Si single crystal ingot from a Si melt by a pulling method: The temperature distribution in the pulling direction of the ingot during pulling is measured in advance: From the temperature distribution, the ingot The distance between the top surface of the Si melt and the top end of the straight body part, such that the temperature at the top end of the straight body part becomes 900°C, is determined: Assuming that the distance between the top end of the straight body part and the top surface of the Si melt is within the distance determined above, the tail part 1. A method for producing a Si single crystal, the method comprising starting the formation of a Si single crystal.
JP14489A 1989-01-05 1989-01-05 Production of si single crystal Pending JPH02180789A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14489A JPH02180789A (en) 1989-01-05 1989-01-05 Production of si single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14489A JPH02180789A (en) 1989-01-05 1989-01-05 Production of si single crystal

Publications (1)

Publication Number Publication Date
JPH02180789A true JPH02180789A (en) 1990-07-13

Family

ID=11465831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14489A Pending JPH02180789A (en) 1989-01-05 1989-01-05 Production of si single crystal

Country Status (1)

Country Link
JP (1) JPH02180789A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5419786A (en) * 1993-07-02 1995-05-30 Mitsubishi Denki Kabushiki Kaisha Semiconductor substrate for bipolar element
DE19603136A1 (en) * 1995-02-27 1996-08-29 Mitsubishi Material Silicon Silicon@ single crystal block with uniform quality over whole length
EP0823497A1 (en) * 1996-08-08 1998-02-11 MEMC Electronic Materials, Inc. Process for controlling thermal history of Czochralski-grown silicon
WO2000000674A2 (en) * 1998-06-26 2000-01-06 Memc Electronic Materials, Inc. Process for growth of defect free silicon crystals of arbitrarily large diameters
WO2000022196A1 (en) * 1998-10-14 2000-04-20 Memc Electronic Materials, Inc. Process for preparing defect free silicon crystals which allows for variability in process conditions
US6190631B1 (en) 1997-04-09 2001-02-20 Memc Electronic Materials, Inc. Low defect density, ideal oxygen precipitating silicon
US6236104B1 (en) 1998-09-02 2001-05-22 Memc Electronic Materials, Inc. Silicon on insulator structure from low defect density single crystal silicon
US6254672B1 (en) 1997-04-09 2001-07-03 Memc Electronic Materials, Inc. Low defect density self-interstitial dominated silicon
US6284039B1 (en) 1998-10-14 2001-09-04 Memc Electronic Materials, Inc. Epitaxial silicon wafers substantially free of grown-in defects
US6312516B2 (en) 1998-10-14 2001-11-06 Memc Electronic Materials, Inc. Process for preparing defect free silicon crystals which allows for variability in process conditions
US6379642B1 (en) 1997-04-09 2002-04-30 Memc Electronic Materials, Inc. Vacancy dominated, defect-free silicon
US6416836B1 (en) 1998-10-14 2002-07-09 Memc Electronic Materials, Inc. Thermally annealed, low defect density single crystal silicon
US6846539B2 (en) 2001-01-26 2005-01-25 Memc Electronic Materials, Inc. Low defect density silicon having a vacancy-dominated core substantially free of oxidation induced stacking faults
US6858307B2 (en) 2000-11-03 2005-02-22 Memc Electronic Materials, Inc. Method for the production of low defect density silicon
US7105050B2 (en) 2000-11-03 2006-09-12 Memc Electronic Materials, Inc. Method for the production of low defect density silicon
US8216362B2 (en) 2006-05-19 2012-07-10 Memc Electronic Materials, Inc. Controlling agglomerated point defect and oxygen cluster formation induced by the lateral surface of a silicon single crystal during CZ growth

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5419786A (en) * 1993-07-02 1995-05-30 Mitsubishi Denki Kabushiki Kaisha Semiconductor substrate for bipolar element
DE19603136A1 (en) * 1995-02-27 1996-08-29 Mitsubishi Material Silicon Silicon@ single crystal block with uniform quality over whole length
DE19603136C2 (en) * 1995-02-27 1998-07-02 Mitsubishi Material Silicon Silicon single crystal ingot and method of manufacturing the same
EP1148158A2 (en) * 1996-08-08 2001-10-24 MEMC Electronic Materials, Inc. Process for controlling thermal history of czochralski-grown silicon
EP0823497A1 (en) * 1996-08-08 1998-02-11 MEMC Electronic Materials, Inc. Process for controlling thermal history of Czochralski-grown silicon
EP1148158A3 (en) * 1996-08-08 2003-08-27 MEMC Electronic Materials, Inc. Process for controlling thermal history of czochralski-grown silicon
US6287380B1 (en) 1997-04-09 2001-09-11 Memc Electronic Materials, Inc. Low defect density silicon
US6379642B1 (en) 1997-04-09 2002-04-30 Memc Electronic Materials, Inc. Vacancy dominated, defect-free silicon
US6254672B1 (en) 1997-04-09 2001-07-03 Memc Electronic Materials, Inc. Low defect density self-interstitial dominated silicon
US6555194B1 (en) 1997-04-09 2003-04-29 Memc Electronic Materials, Inc. Process for producing low defect density, ideal oxygen precipitating silicon
US6605150B2 (en) 1997-04-09 2003-08-12 Memc Electronic Materials, Inc. Low defect density regions of self-interstitial dominated silicon
US6190631B1 (en) 1997-04-09 2001-02-20 Memc Electronic Materials, Inc. Low defect density, ideal oxygen precipitating silicon
US6896728B2 (en) 1997-04-09 2005-05-24 Memc Electronic Materials, Inc. Process for producing low defect density, ideal oxygen precipitating silicon
US6632278B2 (en) 1997-04-09 2003-10-14 Memc Electronic Materials, Inc. Low defect density epitaxial wafer and a process for the preparation thereof
US7442253B2 (en) 1997-04-09 2008-10-28 Memc Electronic Materials, Inc. Process for forming low defect density, ideal oxygen precipitating silicon
US7229693B2 (en) 1997-04-09 2007-06-12 Memc Electronic Materials, Inc. Low defect density, ideal oxygen precipitating silicon
US6409826B2 (en) 1997-04-09 2002-06-25 Memc Electronic Materials, Inc. Low defect density, self-interstitial dominated silicon
US6409827B2 (en) 1997-04-09 2002-06-25 Memc Electronic Materials, Inc. Low defect density silicon and a process for producing low defect density silicon wherein V/G0 is controlled by controlling heat transfer at the melt/solid interface
US6328795B2 (en) 1998-06-26 2001-12-11 Memc Electronic Materials, Inc. Process for growth of defect free silicon crystals of arbitrarily large diameters
WO2000000674A3 (en) * 1998-06-26 2002-10-10 Memc Electronic Materials Process for growth of defect free silicon crystals of arbitrarily large diameters
WO2000000674A2 (en) * 1998-06-26 2000-01-06 Memc Electronic Materials, Inc. Process for growth of defect free silicon crystals of arbitrarily large diameters
US6913647B2 (en) 1998-06-26 2005-07-05 Memc Electronic Materials, Inc. Process for cooling a silicon ingot having a vacancy dominated region to produce defect free silicon
US6562123B2 (en) 1998-06-26 2003-05-13 Memc Electronic Materials, Inc. Process for growing defect-free silicon wherein the grown silicon is cooled in a separate chamber
US6849901B2 (en) 1998-09-02 2005-02-01 Memc Electronic Materials, Inc. Device layer of a silicon-on-insulator structure having vacancy dominated and substantially free of agglomerated vacancy-type defects
US6342725B2 (en) 1998-09-02 2002-01-29 Memc Electronic Materials, Inc. Silicon on insulator structure having a low defect density handler wafer and process for the preparation thereof
US6236104B1 (en) 1998-09-02 2001-05-22 Memc Electronic Materials, Inc. Silicon on insulator structure from low defect density single crystal silicon
US6312516B2 (en) 1998-10-14 2001-11-06 Memc Electronic Materials, Inc. Process for preparing defect free silicon crystals which allows for variability in process conditions
US6284039B1 (en) 1998-10-14 2001-09-04 Memc Electronic Materials, Inc. Epitaxial silicon wafers substantially free of grown-in defects
US6743289B2 (en) 1998-10-14 2004-06-01 Memc Electronic Materials, Inc. Thermal annealing process for producing low defect density single crystal silicon
WO2000022196A1 (en) * 1998-10-14 2000-04-20 Memc Electronic Materials, Inc. Process for preparing defect free silicon crystals which allows for variability in process conditions
US6416836B1 (en) 1998-10-14 2002-07-09 Memc Electronic Materials, Inc. Thermally annealed, low defect density single crystal silicon
US6500255B2 (en) 1998-10-14 2002-12-31 Memc Electronic Materials, Inc. Process for growing silicon crystals which allows for variability in the process conditions while suppressing the formation of agglomerated intrinsic point defects
US6565649B2 (en) 1998-10-14 2003-05-20 Memc Electronic Materials, Inc. Epitaxial wafer substantially free of grown-in defects
US6652646B2 (en) 1998-10-14 2003-11-25 Memc Electronic Materials, Inc. Process for growing a silicon crystal segment substantially free from agglomerated intrinsic point defects which allows for variability in the process conditions
US7097718B2 (en) 1998-10-14 2006-08-29 Memc Electronic Materials, Inc. Single crystal silicon wafer having an epitaxial layer substantially free from grown-in defects
US7105050B2 (en) 2000-11-03 2006-09-12 Memc Electronic Materials, Inc. Method for the production of low defect density silicon
US6858307B2 (en) 2000-11-03 2005-02-22 Memc Electronic Materials, Inc. Method for the production of low defect density silicon
US7217320B2 (en) 2001-01-26 2007-05-15 Memc Electronics Materials, Inc. Low defect density silicon having a vacancy-dominated core substantially free of oxidation induced stacking faults
US6846539B2 (en) 2001-01-26 2005-01-25 Memc Electronic Materials, Inc. Low defect density silicon having a vacancy-dominated core substantially free of oxidation induced stacking faults
US8216362B2 (en) 2006-05-19 2012-07-10 Memc Electronic Materials, Inc. Controlling agglomerated point defect and oxygen cluster formation induced by the lateral surface of a silicon single crystal during CZ growth
US8673248B2 (en) 2006-05-19 2014-03-18 Memc Electronic Materials, Inc. Silicon material with controlled agglomerated point defects and oxygen clusters induced by the lateral surface

Similar Documents

Publication Publication Date Title
JPH02180789A (en) Production of si single crystal
JP5137670B2 (en) Method for producing polycrystalline silicon rod
JPS6046998A (en) Pulling up of single crystal and its device
WO2003089697A1 (en) Single crystal silicon producing method, single crystal silicon wafer producing method, seed crystal for producing single crystal silicon, single crystal silicon ingot, and single crystal silicon wafer
JP4803784B2 (en) Method for producing quartz glass crucible for pulling silicon single crystal
US20120279438A1 (en) Methods for producing single crystal silicon ingots with reduced incidence of dislocations
US20090038537A1 (en) Method of pulling up silicon single crystal
JP2973917B2 (en) Single crystal pulling method
JPH09249486A (en) Method for pulling up single crystal
JPH0788269B2 (en) Crucible for pulling silicon single crystal
TW201005131A (en) Method of growing silicon single crystals
KR100848549B1 (en) Method of manufacturing silicon single crystal
JP5223513B2 (en) Single crystal manufacturing method
JPH03177388A (en) Method and device for manufacture of silicate ingot of high oxygen content by zone tensile process devoid of crucible
JP3773973B2 (en) Precursor for silicon molding
JP2720274B2 (en) Single crystal pulling method
JP4403679B2 (en) Method for producing langasite type single crystal
JPH1095688A (en) Production of single crystal
JP2749016B2 (en) Method for cleaning container for producing single crystal and method for producing single crystal
JPH03193698A (en) Silicon single crystal and its production
JPS62167213A (en) Production of silicon polycrystalline ingot
JPH07291783A (en) Silicon single crystal and production thereof
JPH04187585A (en) Device of growing crystal
JPH09249493A (en) Seed crystal for pulling-up single crystal and pulling-up of single crystal using the same
JPH01208396A (en) Production of compound semiconductor single crystal