JP2720274B2 - Single crystal pulling method - Google Patents

Single crystal pulling method

Info

Publication number
JP2720274B2
JP2720274B2 JP17131493A JP17131493A JP2720274B2 JP 2720274 B2 JP2720274 B2 JP 2720274B2 JP 17131493 A JP17131493 A JP 17131493A JP 17131493 A JP17131493 A JP 17131493A JP 2720274 B2 JP2720274 B2 JP 2720274B2
Authority
JP
Japan
Prior art keywords
melt
temperature
single crystal
density
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17131493A
Other languages
Japanese (ja)
Other versions
JPH0725695A (en
Inventor
斉 佐々木
栄治 時崎
一高 寺嶋
昭 長島
茂行 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Kagaku Gijutsu Shinko Jigyodan
Mitsubishi Materials Corp
Original Assignee
Toshiba Corp
Kagaku Gijutsu Shinko Jigyodan
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Kagaku Gijutsu Shinko Jigyodan, Mitsubishi Materials Corp filed Critical Toshiba Corp
Priority to JP17131493A priority Critical patent/JP2720274B2/en
Priority to EP94104296A priority patent/EP0619387B1/en
Priority to US08/214,496 priority patent/US5476064A/en
Priority to DE69415709T priority patent/DE69415709T2/en
Publication of JPH0725695A publication Critical patent/JPH0725695A/en
Application granted granted Critical
Publication of JP2720274B2 publication Critical patent/JP2720274B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、微小欠陥や転位の導入
を抑制した高品質のSi単結晶を融液から安定して引き
上げる方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for stably pulling a high-quality Si single crystal from a melt in which introduction of minute defects and dislocations is suppressed.

【0002】[0002]

【従来の技術】融液から単結晶を育成する代表的な方法
として、チョクラルスキー法がある。チョクラルスキー
方法では、図1に示すように密閉容器1の内部に配置し
たルツボ2を、回転及び昇降可能にサポート3で支持す
る。ルツボ2の外周には、ヒータ4及び保温材5が同心
円状に設けられ、ルツボ2に収容した原料をヒータ4で
集中的に加熱し、融液6を調製する。融液6は、単結晶
成長に好適な温度に維持される。融液6に種結晶7を接
触させ、種結晶7の結晶方位を倣った単結晶8を成長さ
せる。種結晶7は、ワイヤ9を介して回転巻取り機構1
0から吊り下げられ、単結晶8の成長に応じて回転しな
がら引上げられる。また、ルツボ2も、サポート3を介
して適宜回転しながら下降する。
2. Description of the Related Art A typical method for growing a single crystal from a melt is the Czochralski method. In the Czochralski method, a crucible 2 arranged inside a closed container 1 as shown in FIG. A heater 4 and a heat insulating material 5 are provided concentrically on the outer periphery of the crucible 2, and the raw material contained in the crucible 2 is intensively heated by the heater 4 to prepare a melt 6. Melt 6 is maintained at a temperature suitable for single crystal growth. The seed crystal 7 is brought into contact with the melt 6 to grow a single crystal 8 that follows the crystal orientation of the seed crystal 7. The seed crystal 7 is rotated by a rotary winding mechanism 1 through a wire 9.
It is suspended from 0 and pulled up while rotating according to the growth of the single crystal 8. The crucible 2 also descends while rotating appropriately via the support 3.

【0003】得られた単結晶8は、半導体デバイスの基
板として使用される。ところで、半導体デバイスの高集
積化に伴って、半導体基板に対する品質向上の要求が強
くなってきている。高品質の半導体基板を得るために
は、半導体単結晶に導入される転位,結晶欠陥等を抑制
することが必要である。また、半導体デバイス用基板を
高生産性で得るためには、大口径の単結晶引上げが必要
になる。
[0003] The obtained single crystal 8 is used as a substrate of a semiconductor device. By the way, with the increase in the degree of integration of semiconductor devices, there is an increasing demand for improving the quality of semiconductor substrates. In order to obtain a high-quality semiconductor substrate, it is necessary to suppress dislocations, crystal defects, and the like introduced into the semiconductor single crystal. Further, in order to obtain a semiconductor device substrate with high productivity, it is necessary to pull a large-diameter single crystal.

【0004】[0004]

【発明が解決しようとする課題】高温の融液から単結晶
を引き上げるチョクラルスキー法では、得られた単結晶
の品質に結晶成長界面近傍にある融液の状態が大きな影
響を与える。たとえば、物性が大きく変動している状態
では、異なった微細構造をもつ集合体であるクラスター
が融液内に共存する。この融液から単結晶を引き上げる
と、結晶中に融液構造の不均一性を反映した微小欠陥や
転位等が導入される確率が高くなる。その結果、一定し
た品質の単結晶が得られる歩留りが低下する。
In the Czochralski method of pulling a single crystal from a high-temperature melt, the state of the melt near the crystal growth interface greatly affects the quality of the obtained single crystal. For example, in a state where the physical properties are largely fluctuated, clusters, which are aggregates having different microstructures, coexist in the melt. When a single crystal is pulled up from this melt, the probability that micro defects or dislocations reflecting the non-uniformity of the melt structure are introduced into the crystal is increased. As a result, the yield for obtaining a single crystal of constant quality is reduced.

【0005】この種の欠点は、融液構造に大きな影響を
与える温度を高精度で制御することによって解消される
ことが予想される。この点、融液構造に及ぼす温度変動
の影響が具体的に把握されていない状況では、極めて高
い精度が要求される。しかし、過度に精度を高めること
は、融液の調製に多大の手数及び時間を必要とし、実用
的な解決策ではない。本発明は、このような問題を解消
すべく案出されたものであり、融液密度の温度変化率に
おける変曲点を基準として融液状態を推定することによ
り、異なった微細構造をもつクラスターに起因する微小
欠陥,転位等を導入することなく、高品質の単結晶を高
い歩留りで育成することを目的とする。
[0005] It is expected that this type of disadvantage will be eliminated by controlling the temperature, which has a significant effect on the melt structure, with high precision. In this regard, in a situation where the influence of temperature fluctuation on the melt structure is not specifically grasped, extremely high accuracy is required. However, excessively high precision requires a great deal of work and time to prepare the melt, and is not a practical solution. The present invention has been devised to solve such a problem, and by estimating the melt state based on the inflection point in the temperature change rate of the melt density, clusters having different microstructures are obtained. It is an object of the present invention to grow a high-quality single crystal at a high yield without introducing micro defects, dislocations, and the like caused by GaN.

【0006】[0006]

【課題を解決するための手段】本発明の単結晶引上げ方
法は、その目的を達成するため、単結晶が引き上げられ
るSi融液について融液密度の温度変化率を予め求め、
該温度変化率が大から小に変わる温度t1 (≒1440
℃)以下の温度にSi融液全体を維持し、前記温度t1
以下に維持されたSi融液から単結晶の引き上げること
を特徴とする。
In order to achieve the object, the single crystal pulling method of the present invention obtains in advance the rate of temperature change of the melt density of a Si melt from which a single crystal is pulled,
The temperature t 1 at which the temperature change rate changes from large to small (≒ 1440)
° C.) to maintain the overall Si melt temperature below the temperature t 1
It is characterized in that a single crystal is pulled from the Si melt maintained below.

【0007】[0007]

【作用】多結晶原料を溶融してSi融液を調製すると
き、溶融状態の初期段階では、多結晶原料の結晶異方性
や界面状態等の不規則な微細構造が融液に取り込まれて
いる。従来の融液調製においては、この微細構造を除去
するため、溶融後の融液を所定時間溶融状態に保持する
均質化加熱工程が採用されている。しかし、融液構造が
定量的に把握されていない状態では、十分な時間をかけ
て均質化加熱することが必要になり、引上げ開始までに
長時間を必要とする。本発明者等は、融液の状態に関し
て種々の観点から調査・研究してきた。その過程で、融
液密度の温度変化率に融液構造の変化が反映されている
ことを見い出した。
When a polycrystalline raw material is melted to prepare a Si melt, an irregular microstructure such as crystal anisotropy and interface state of the polycrystalline raw material is taken into the melt in an initial stage of the molten state. I have. In the conventional melt preparation, in order to remove this fine structure, a homogenization heating step of keeping the melt after melting for a predetermined time is adopted. However, in a state where the structure of the melt is not grasped quantitatively, it is necessary to perform the homogenization heating for a sufficient time, and it takes a long time to start pulling. The present inventors have investigated and studied the state of the melt from various viewpoints. In the process, it was found that the change in the melt structure was reflected in the temperature change rate of the melt density.

【0008】多結晶Siから調製された融液について温
度と密度との関係を調査したところ、両者の間に図2に
示す関係が成立していた。すなわち、温度t1 (≒14
40℃)までの領域では、温度上昇に伴って融液密度
が大きく低下する。温度t1からt2 (≒1530℃)
までの領域では、融液密度の上昇率が小さくなる。ま
た、温度t2 を超える領域では、融液密度の上昇率が
再び大きくなる。領域〜で融液密度の温度変化率が
変わることは、領域〜のそれぞれに異なる微細構造
をもったクラスターが生成しているものと推察される。
或いは、領域で領域及びと異なる微細構造のクラ
スターが生成し、領域又は領域で生成したクラスタ
ーに混在しているものと推察される。そのため、ルツボ
に収容しているSi融液が領域〜の複数にまたがる
温度にあるとき、異種のクラスターが引上げ中のSi単
結晶に取り込まれる虞れがある。
When the relationship between the temperature and the density of the melt prepared from polycrystalline Si was examined, the relationship shown in FIG. 2 was established between the two. That is, the temperature t 1 (≒ 14
In the region up to 40 ° C.), the melt density is greatly reduced with the temperature rise. Temperature t 1 to t 2 (≒ 1530 ° C)
In the region up to, the rate of increase of the melt density becomes small. Further, in a region exceeding the temperature t 2, the increase rate of the melt density is increased again. The fact that the temperature change rate of the melt density changes in the region 〜 is presumed to be due to the formation of clusters having different microstructures in each of the region 〜.
Alternatively, it is presumed that a cluster having a fine structure different from that of the region is generated in the region, and is mixed with the cluster generated in the region or the region. Therefore, when the Si melt contained in the crucible is at a temperature that extends over a plurality of regions, there is a possibility that heterogeneous clusters may be taken into the Si single crystal being pulled.

【0009】たとえば、融液の表面層が単結晶引き上げ
に適した領域に維持されているが、融液の下層部が領
域の温度にあるとき、ルツボ内に生じている対流によ
って異種の微細構造をもつクラスターが液面に上昇し、
引上げ中のSi単結晶に取り込まれることが予想され
る。この点、従来の引上げでは、Si融液の表層部近傍
の温度管理に重点がおかれ、下層部までを含めてSi融
液を所定温度以下に維持することに関して詳細に報告さ
れた例が少ない。本発明者等は、このような推論の下
で、単結晶を引き上げる各Si融液について予め温度t
1 ,t2 を求めておき、温度t1 以下の領域にSi融
液全体を保持した。このSi融液から単結晶の引き上げ
を行うと、異種の微細構造をもったクラスタの取込みに
起因した微小欠陥や転位の導入が少なくなることが予想
される。このことは、後述する実施例によって確認され
た。
For example, while the surface layer of the melt is maintained in a region suitable for pulling a single crystal, when the lower layer of the melt is at the temperature of the region, convection generated in the crucible causes different microstructures. Cluster rises to the liquid level,
It is expected that it will be incorporated into the Si single crystal being pulled. In this regard, in the conventional pulling, the emphasis has been placed on the temperature control in the vicinity of the surface layer of the Si melt, and few examples have been reported in detail regarding maintaining the Si melt at a predetermined temperature or lower including the lower layer. . Under such inference, the present inventors preliminarily set the temperature t for each Si melt for pulling a single crystal.
1 and t 2 were obtained, and the entire Si melt was held in a region at a temperature of t 1 or lower. When a single crystal is pulled up from this Si melt, it is expected that the introduction of minute defects and dislocations due to the incorporation of clusters having different microstructures will be reduced. This was confirmed by the examples described later.

【0010】融液密度の温度変化率が変わる温度t1
2 を求めるためには、融液密度の正確な測定を前提と
する。この点、本発明者等が先に開発した液体密度測定
子(特願平4−317900号参照)を使用して融液密
度を測定することが好ましい。この液体密度測定子は、
表面張力の影響を受けることなく、融液密度を高精度で
測定できる長所をもっている。事実、この液体密度測定
子を使用して融液密度を測定したとき、初めて図2に示
した変曲点が融液密度の温度変化率に明確に観察され
た。
The temperature t 1 at which the temperature change rate of the melt density changes,
To determine t 2 , it is assumed that the melt density is accurately measured. In this regard, it is preferable to measure the melt density using a liquid density measuring element developed by the present inventors (see Japanese Patent Application No. 4-317900). This liquid density probe is
It has the advantage that the melt density can be measured with high accuracy without being affected by surface tension. In fact, when the melt density was measured using this liquid density gauge, the inflection point shown in FIG. 2 was first clearly observed in the rate of temperature change of the melt density.

【0011】本発明においては、単結晶を引き上げる融
液原料について先ず融液密度の温度変化率が変わる温度
1 ,t2 を求める。そして、図3に示すように、温度
1,t2 が判っている融液原料をルツボ2に収容し、
温度計11u,11dで融液6の温度を測定しながら、
融液6を調製する。温度計11u,11dで検出された
融液6の温度情報は、制御機構12に入力される。制御
機構12で入力値に基づき必要な加熱電流を演算し、上
部ヒータ4u及び下部ヒータ4dそれぞれに制御信号を
出力する。温度計11u,11dで測定された融液6の
温度が何れも温度t1 以下にあるとき、種結晶7を融液
6の液面に接触させ、単結晶8の引上げを開始する。引
き上げられた単結晶8は、クラスターに起因する欠陥の
取り込みがなく、結晶方位の揃った製品となる。
In the present invention, temperatures t 1 and t 2 at which the rate of temperature change of the melt density changes are first determined for the melt raw material from which the single crystal is pulled. Then, as shown in FIG. 3, the melt raw material whose temperatures t 1 and t 2 are known is accommodated in the crucible 2,
While measuring the temperature of the melt 6 with the thermometers 11u and 11d,
A melt 6 is prepared. Temperature information of the melt 6 detected by the thermometers 11u and 11d is input to the control mechanism 12. The control mechanism 12 calculates a required heating current based on the input value, and outputs a control signal to each of the upper heater 4u and the lower heater 4d. When the temperatures of the melt 6 measured by the thermometers 11 u and 11 d are both lower than or equal to the temperature t 1 , the seed crystal 7 is brought into contact with the liquid surface of the melt 6 and the pulling of the single crystal 8 is started. The pulled single crystal 8 does not take in defects caused by clusters, and is a product having a uniform crystal orientation.

【0012】[0012]

【実施例】多結晶Siの溶解によって調製した融液の密
度は、温度との間に図2に示す関係を持っていた。すな
わち、融点(約1420℃)から温度t1 (≒1440
℃)までの領域における融液密度の温度変化率は、温
度t1 以上の領域における温度変化率と明らかに異な
っている。この相違は、領域で異種のクラスタが生成
していることを示唆する。
EXAMPLE The density of a melt prepared by dissolving polycrystalline Si had the relationship shown in FIG. 2 with temperature. That is, from the melting point (about 1420 ° C.) to the temperature t 1 (≒ 1440)
The temperature change rate of the melt density in the region up to (° C.) is clearly different from the temperature change rate in the region above the temperature t 1 . This difference suggests that heterogeneous clusters are generated in the region.

【0013】温度計11u,11dによって測定された
融液6の温度が何れも温度t1 以下にある状態で、単結
晶8の引上げを開始した。この時点における融液6の温
度変動幅は、15℃以下であった。得られた単結晶は、
表1に示すように転位等の欠陥が少ない高品質のもので
あった。なお、表1においては、温度が部分的に温度t
1 よりも最高で約20℃高い状態の融液6から引き上げ
た単結晶を比較例として示す。また、温度変動は、最大
60℃であり、温度計11u,11dによる検出値を制
御機構12で処理することにより求めた。
[0013] thermometer 11u, while the temperature both in the temperature t 1 following melt 6 measured by 11d, it began pulling of the single crystal 8. At this time, the temperature fluctuation range of the melt 6 was 15 ° C. or less. The obtained single crystal is
As shown in Table 1, it was of high quality with few defects such as dislocations. Note that in Table 1, the temperature was partially changed to the temperature t.
A single crystal pulled from the melt 6 at a temperature higher than 1 by about 20 ° C. at the maximum is shown as a comparative example. The temperature fluctuation was 60 ° C. at the maximum, and was obtained by processing the detection values by the thermometers 11 u and 11 d by the control mechanism 12.

【0014】[0014]

【表1】 [Table 1]

【0015】[0015]

【発明の効果】以上に説明したように、本発明において
は、Si融液について融液密度の温度変化率を予め求め
ておき、温度変化率が変わる温度t1 以下にSi融液全
体の温度を維持し、この状態のSi融液から単結晶を引
き上げている。これにより、融液中に分散されている異
種の微細構造をもったクラスターの取込みに起因するも
のと推察される微小欠陥や転位の導入がなく、高品質の
製品が安定条件下で得られる。
As described above, in the present invention, the temperature change rate of the melt density of the Si melt is determined in advance, and the temperature of the entire Si melt is reduced to a temperature t 1 or less at which the temperature change rate changes. Is maintained, and the single crystal is pulled up from the Si melt in this state. As a result, there is no introduction of micro defects or dislocations presumed to be caused by the incorporation of clusters having different microstructures dispersed in the melt, and a high quality product can be obtained under stable conditions.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 チョクラルスキー法による単結晶引上げFig. 1 Single crystal pulling by Czochralski method

【図2】 Si融液の密度が温度依存性をもつことを示
すグラフ
FIG. 2 is a graph showing that the density of a Si melt has temperature dependence.

【図3】 本発明で採用される引上げ装置FIG. 3 is a drawing device employed in the present invention.

【符号の説明】[Explanation of symbols]

1:密閉容器 2:ルツボ 3:サポート 4,
4u,4d:ヒータ 5:保温材 6:融液 7:種結晶 8:単結晶
9:ワイヤ 10:回転巻取り機構 11u,
11d:温度計 12:制御機構
1: Closed container 2: Crucible 3: Support 4,
4u, 4d: heater 5: heat insulating material 6: melt 7: seed crystal 8: single crystal 9: wire 10: rotary winding mechanism 11u,
11d: thermometer 12: control mechanism

───────────────────────────────────────────────────── フロントページの続き (72)発明者 時崎 栄治 茨城県つくば市東光台1−15−4スカイ ハイツB−202 (72)発明者 寺嶋 一高 神奈川県海老名市中野206−3 (72)発明者 長島 昭 東京都武蔵野市吉祥寺北町4−13−12 (72)発明者 木村 茂行 茨城県つくば市竹園3−712 (56)参考文献 特開 平2−97475(JP,A) 特開 平3−60491(JP,A) 特開 平4−317494(JP,A) ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Eiji Tokizaki 1-15-4 Tokodai, Tsukuba City, Ibaraki Prefecture Sky Heights B-202 (72) Inventor Kazutaka Terashima 206-3 Nakano, Ebina City, Kanagawa Prefecture (72) Inventor Akira Nagashima 4-13-12 Kitamachi, Kichijoji, Musashino-shi, Tokyo (72) Inventor Shigeyuki Kimura 3-712 Takezono, Tsukuba-shi, Ibaraki (56) References JP-A-2-97475 (JP, A) JP-A-3 60491 (JP, A) JP-A-4-317494 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 単結晶が引き上げられるSi融液につい
て融液密度の温度変化率を予め求め、該温度変化率が大
から小に変わる温度t1 (≒1440℃)以下の温度に
Si融液全体を維持し、前記温度t1 以下に維持された
Si融液から単結晶の引き上げることを特徴とする単結
晶引上げ方法。
1. A temperature change rate of a melt density of a Si melt from which a single crystal is pulled is obtained in advance, and the temperature of the Si melt is lowered to a temperature not higher than a temperature t 1 (≒ 1440 ° C.) at which the temperature change rate changes from large to small. A single crystal pulling method comprising pulling a single crystal from a Si melt maintained at the temperature t 1 or lower while maintaining the whole.
JP17131493A 1993-03-29 1993-07-12 Single crystal pulling method Expired - Fee Related JP2720274B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP17131493A JP2720274B2 (en) 1993-07-12 1993-07-12 Single crystal pulling method
EP94104296A EP0619387B1 (en) 1993-03-29 1994-03-18 Pull method for growth of Si single crystal using density detector and apparatus therefor
US08/214,496 US5476064A (en) 1993-03-29 1994-03-18 Pull method for growth of single crystal using density detector and apparatus therefor
DE69415709T DE69415709T2 (en) 1993-03-29 1994-03-18 Method and device for pulling a Si single crystal by means of a density detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17131493A JP2720274B2 (en) 1993-07-12 1993-07-12 Single crystal pulling method

Publications (2)

Publication Number Publication Date
JPH0725695A JPH0725695A (en) 1995-01-27
JP2720274B2 true JP2720274B2 (en) 1998-03-04

Family

ID=15920963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17131493A Expired - Fee Related JP2720274B2 (en) 1993-03-29 1993-07-12 Single crystal pulling method

Country Status (1)

Country Link
JP (1) JP2720274B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5229017B2 (en) * 2009-03-11 2013-07-03 信越半導体株式会社 Single crystal manufacturing method
JP6515853B2 (en) * 2016-04-04 2019-05-22 住友金属鉱山株式会社 Method of manufacturing single crystal and apparatus therefor

Also Published As

Publication number Publication date
JPH0725695A (en) 1995-01-27

Similar Documents

Publication Publication Date Title
JP3992816B2 (en) Method of manufacturing single crystal silicon ingot and wafer by adjusting pulling speed profile in hot zone, ingot and wafer manufactured thereby
US4417943A (en) Method for controlling the oxygen level of silicon rods pulled according to the Czochralski technique
JP5204415B2 (en) Method for producing Si single crystal ingot by CZ method
US7456082B2 (en) Method for producing silicon single crystal and silicon single crystal
KR101032593B1 (en) METHOD FOR MANUFACTURING Si SINGLE CRYSTAL INGOT BY CZ METHOD
JPS61163188A (en) Process for doping impurity in pulling method of silicon single crystal
US20160160388A1 (en) Silicon single crystal ingot and wafer for semiconductor
JP4701738B2 (en) Single crystal pulling method
EP1650332A1 (en) Method for producing single crystal and single crystal
WO1992005579A1 (en) Semiconductor wafer heat treatment method
KR101862157B1 (en) Method and apparatus for manufacturing silicon monocrystalline ingot
JP2720274B2 (en) Single crystal pulling method
WO2005001170A1 (en) Process for producing single crystal and single crystal
EP1591566B1 (en) Method of producing p-doped silicon single crystal and p-doped n-type silicon single crystal wafe
US5089082A (en) Process and apparatus for producing silicon ingots having high oxygen content by crucible-free zone pulling, silicon ingots obtainable thereby and silicon wafers produced therefrom
JP5223513B2 (en) Single crystal manufacturing method
JP2720275B2 (en) Single crystal pulling method
JP2005015287A (en) Method and apparatus for manufacturing single crystal
JP2000044387A (en) Production of silicon single crystal
JP2005015290A (en) Method for manufacturing single crystal, and single crystal
JP2720268B2 (en) Single crystal pulling method and apparatus
JP2002057160A (en) Manufacturing method of silicon wafer
US5476064A (en) Pull method for growth of single crystal using density detector and apparatus therefor
JP2007182361A (en) Semi-insulating galium-arsenic wafer and its manufacturing method
JP2002234794A (en) Method of puling up silicon single crystal and silicon wafer

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19971021

LAPS Cancellation because of no payment of annual fees