JPS63252989A - Production of semiconductor single crystal by pull-up method - Google Patents

Production of semiconductor single crystal by pull-up method

Info

Publication number
JPS63252989A
JPS63252989A JP8631787A JP8631787A JPS63252989A JP S63252989 A JPS63252989 A JP S63252989A JP 8631787 A JP8631787 A JP 8631787A JP 8631787 A JP8631787 A JP 8631787A JP S63252989 A JPS63252989 A JP S63252989A
Authority
JP
Japan
Prior art keywords
crystal
melt
molten
solidified
impurity concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8631787A
Other languages
Japanese (ja)
Inventor
Kazuhisa Matsumoto
和久 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP8631787A priority Critical patent/JPS63252989A/en
Publication of JPS63252989A publication Critical patent/JPS63252989A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To uniformize impurity concentration in a crystal with a simple apparatus, by solidifying a major part of a molten liquid containing doping impurity from below, starting the crystal growth from the upper liquid part and melting the solidified polycrystals in a manner to keep the volume of the molten liquid at a definite level. CONSTITUTION:A molten liquid 2 containing impurities is formed in a crucible 1. The molten liquid 2 is slowly solidified from the lower part of the crucible 1 to leave a molten part 4 above the solid or the molten liquid 2 is completely solidified and a part of the upper part of the solidified polycrystals 3 is melted to form a molten part 4. The crystal growth is started from the molten part 4 and the volume of the molten part 4 is maintained at a definite level by controlling a heating means. The impurity concentration in the polycrystals 3 abruptly decreases toward the lower part when the segregation coefficient K is sufficiently smaller than 1. Accordingly, no considerable change in the impurity concentration occurs in the molten part in the course of growing a crystal from the start of crystal growth. A similar crystal having uniform impurity concentration can be produced when the segregation coefficient is larger than 1.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、不純物のドーピングされた半導体単結晶の
引上法による製造方法の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an improvement in a method for manufacturing a semiconductor single crystal doped with impurities by a pulling method.

[従来の技術] 不純物がドーピングされた融液から結晶を成長させる場
合、この不純物は偏析理論に従って結晶中に分布するこ
とになる。すなわち、 C(g) =Co K (1−g)k−’上式において
、C(g)はg (−W/W、iwOは初期の金融液量
、Wは固化した量を示す。)位置での結晶中の不純物濃
度を示し、Coは初期融液中の不純物濃度を示し、Kは
偏析係数を示す。
[Prior Art] When a crystal is grown from a melt doped with impurities, the impurities are distributed in the crystal according to segregation theory. That is, C(g) = Co K (1-g)k-' In the above formula, C(g) is g (-W/W, iwO is the initial financial liquid amount, and W is the solidified amount.) Co indicates the impurity concentration in the crystal at a given position, Co indicates the impurity concentration in the initial melt, and K indicates the segregation coefficient.

よって、第4図から明らかなように、K−1でない限り
、成長された結晶中の不純物濃度は固化瓜とともに変化
し、したがって不純物が不均一な単結晶しか得られない
Therefore, as is clear from FIG. 4, unless the crystal is K-1, the impurity concentration in the grown crystal changes as the melon solidifies, and therefore only a single crystal with non-uniform impurities can be obtained.

他方、均一な濃度分布の単結晶を得る方法として、二重
るつぼ法が提案されている[たとえば、ソリッド伊ステ
ート・エレクトロニクス(SOIidState El
ectronics ) 、第6巻、第2号、第163
頁〜第165頁]。
On the other hand, the double crucible method has been proposed as a method for obtaining single crystals with uniform concentration distribution [for example, Solid State Electronics (SOIidState El.
electronics), Volume 6, No. 2, No. 163
Pages 165 to 165].

この二重るつぼ法は、結晶成長をその内部で行なう内側
るつぼに加えて、キャピラリにより連通された外側るつ
ぼを用い、内側るつぼと外側るつぼとの間で融液中の不
純物を拡散移動させることにより、内側るつぼ内の融液
中の不純物濃度を均一に保つものである。
This double crucible method uses an outer crucible connected by a capillary in addition to an inner crucible in which crystal growth occurs, and impurities in the melt are diffused and transferred between the inner crucible and the outer crucible. , to maintain a uniform impurity concentration in the melt in the inner crucible.

[発明が解決しようとする問題点コ 従来の単なる引上法では、上述したとおり、結晶成長と
ともにドーピング不純物濃度が大きく変化する。したが
って、実際に結晶として使用し得る不純物濃度範囲が限
られているので、結晶歩留りが低いものとなり、結晶コ
ストが非常に高くつく。
[Problems to be Solved by the Invention] In the conventional simple pulling method, as described above, the doping impurity concentration changes greatly as the crystal grows. Therefore, the impurity concentration range that can actually be used as a crystal is limited, resulting in a low crystal yield and a very high crystal cost.

他方、上記した二重るつぼ法では、内側るつぼおよび外
側るつぼ等の複雑な設備を必要とし、さらに内側るつぼ
内の融液中の不純物濃度を一定とするために煩雑な制御
作業を必要とする。よって、やはり結晶コストがかなり
高くつくことになり、工業的に実施し得るものでなかっ
た。
On the other hand, the double crucible method described above requires complicated equipment such as an inner crucible and an outer crucible, and also requires complicated control work to keep the impurity concentration in the melt in the inner crucible constant. Therefore, the crystal cost would be quite high, and it could not be implemented industrially.

よって、この発明の目的は、比較的簡単な設備で不純物
濃度が均一な半導体単結晶を安価に得ることを可能とす
る方法を提供することにある。
Therefore, an object of the present invention is to provide a method that makes it possible to obtain a semiconductor single crystal with a uniform impurity concentration at a low cost using relatively simple equipment.

[問題点を解決するための手段] この発明の製造方法は、るつぼ内に所定量の不純物を含
む融液を生成する工程と、 この融液の少なくとも大部分を下方から−L方へ向かっ
て固化させ、上方の一部が融液状態となっておりかつド
ーピング不純物が下方から上方へ向かって偏析に従って
分布された固化多結晶を得る工程と、 −L方の融液状態部分から結晶成長を開始し、接融12
がほぼ一定となるように同化多結晶を溶融させつつ成長
させる工程とを備える。
[Means for Solving the Problems] The manufacturing method of the present invention includes the steps of generating a melt containing a predetermined amount of impurities in a crucible, and directing at least most of the melt from below in the -L direction. A step of solidifying to obtain a solidified polycrystal in which the upper part is in a molten state and doping impurities are distributed according to segregation from the bottom to the top, and crystal growth from the molten part in the -L direction. Start and weld 12
and growing the assimilated polycrystal while melting it so that the polycrystal is approximately constant.

同化多結晶の上方に形成される融液状態部分は、るつぼ
内の融液の全部を一度固化させた後に上方の一部を再溶
融させることにより形成してもよく、あるいは上方に融
液状態部分が形成されるように該融液状態部分となる部
分を残して融液の大部分を下方から上方へ向かって固化
させてもよい。
The molten state portion formed above the assimilated polycrystal may be formed by once solidifying all of the melt in the crucible and then remelting the upper part; Most of the melt may be solidified from the bottom to the top, leaving a portion that will become the melt state.

[作用] この発明の原理を、第1図を参照して説明する。[Effect] The principle of this invention will be explained with reference to FIG.

第1図に示す方法は、上述した固化を、るつぼ内の融液
の全部を固化させるように行ない、しかる後に上方の一
部を再加熱することにより融液状態とするものである。
In the method shown in FIG. 1, the solidification described above is carried out so as to solidify all of the melt in the crucible, and then the upper part is reheated to form a melt.

すなわち、第1図(a)に示すように、るつぼ1内に不
純物を金側した融液2を生成する。次に、第1図(b)
に示すように、融液2をるつぼ1の下方側からゆっくり
と固化させ、その全体を固化し、固化多結晶を得る(第
1図(、c)参照)。次に、第1図(d)に示すように
、固化多結晶3の上部の一部を溶かして融液状態部分4
を生成する。この融液状態部分4から、第1図(e)に
示すように結晶成長を開始し、この場合加熱手段を制御
することにより融液状態部分4の量を一定とする。
That is, as shown in FIG. 1(a), a melt 2 with impurities on the gold side is produced in a crucible 1. Next, Figure 1(b)
As shown in FIG. 1, the melt 2 is slowly solidified from the lower side of the crucible 1, and the entire melt is solidified to obtain solidified polycrystals (see FIG. 1(, c)). Next, as shown in FIG. 1(d), a part of the upper part of the solidified polycrystal 3 is melted to form a melted part 4.
generate. From this melt state portion 4, crystal growth is started as shown in FIG. 1(e), and in this case, the amount of the melt state portion 4 is kept constant by controlling the heating means.

上記工程において、第1図(c)に示す固化多結晶3の
上下方向の不純物濃度分布を第2図に示す。なお、ここ
で示した分布は、偏析係数Kが1より十分に小さい場合
の例である。第2図から明らかなように、不純物の濃度
はるつぼの下方側になるほど急激に低くなっている。
In the above process, the impurity concentration distribution in the vertical direction of the solidified polycrystalline 3 shown in FIG. 1(c) is shown in FIG. Note that the distribution shown here is an example when the segregation coefficient K is sufficiently smaller than 1. As is clear from FIG. 2, the concentration of impurities decreases rapidly toward the bottom of the crucible.

−1−記のような前提において、第1図(d)−(e)
のプロセスに従って結晶成長が進む場合、成る時点にお
ける融液状態部分4中の不純物濃度は、(以前の融液状
態部分中の不純物量)+(新たに溶けた固化多結晶中の
不純物W(B))−成長に伴って固化された結晶中に取
り込まれた不純物量(A))となる。
-1- Under the premise as shown in Figure 1(d)-(e)
When crystal growth proceeds according to the process, the impurity concentration in the melt state portion 4 at the time point is (the amount of impurities in the previous melt state portion) + (the impurity W(B) in the newly melted solidified polycrystal. )) - the amount of impurities incorporated into the solidified crystal as it grows (A)).

したがって、結晶成長が進み、第1図(d)および(e
)に示す融液状態部分4がるつぼ1の下方側になるにつ
れて、溶融時点で混入してくる不純物量は減少すること
になる。また、結晶成長に伴い生成された結晶中に取り
込まれる分だけ、融液状態部分中の不純物量が減少する
。さらに、上述したように融液状態部分4の融液量はほ
ぼ一定となるように制御される。よって、結晶成長開始
から、成長を続けていく間、融液状態部分4の融液中の
不純物濃度は大きく変化しないことがわかる。
Therefore, crystal growth progresses, and FIGS. 1(d) and (e)
) The amount of impurities mixed in at the time of melting decreases as the melt state portion 4 moves toward the lower side of the crucible 1. Furthermore, the amount of impurities in the melt state portion is reduced by the amount of impurities that are incorporated into the crystals generated as the crystal grows. Further, as described above, the amount of melt in the melt state portion 4 is controlled to be approximately constant. Therefore, it can be seen that the impurity concentration in the melt in the melt state portion 4 does not change significantly from the start of crystal growth until the crystal growth continues.

すなわち、この発明は、融液状態部分中の融液量を一定
とした上で、偏析に従って不純物濃度の変化する原料固
化多結晶中から混入してくる不純物量の変化を、成長さ
れた結晶中に取り込まれる不純物量の変化により緩衝さ
せ、それによって崖液状態部分中の不純物濃度の変化を
ほぼ一定とするものである。
In other words, the present invention maintains a constant amount of melt in the molten portion, and adjusts the change in the amount of impurities mixed in from the solidified raw material polycrystal, whose impurity concentration changes according to segregation, into the grown crystal. This buffers the change in the amount of impurities taken into the cliff liquid, thereby making the change in impurity concentration in the cliff liquid state almost constant.

なお、上述した説明は、偏析係数Kが1より十分に小さ
い場合であるが、偏析係数Kが1より大きい場合も同様
に本発明の方法により不純物濃度の均一な結晶を得るこ
とができる。また、前述したように、融液状態部分の形
成は、当初の融液を固化するにあたり、その大部分だけ
を固化し、一部を融液状態部分とするようにして形成す
ることもできる。すなわち、第1図の(b)に示した状
態から、第1図(d)に示す状態までで固化を停止し、
その状態で結晶成長を開始させてもよい。
Note that the above explanation is for the case where the segregation coefficient K is sufficiently smaller than 1, but even when the segregation coefficient K is larger than 1, a crystal with a uniform impurity concentration can be similarly obtained by the method of the present invention. Furthermore, as described above, the molten portion can be formed by solidifying the initial melt by solidifying only most of it and leaving part of it as the molten portion. That is, solidification is stopped from the state shown in FIG. 1(b) to the state shown in FIG. 1(d),
Crystal growth may be started in this state.

[実施例の説明コ 直径10.16cm(4インチ径)のpBNのるつぼに
、1kgのGaAs多結晶と、所定量のInおよび約2
00gの8203を充填した後、炉内にセットした。こ
れを、真空排気し、N2ガスを用いて加圧した後昇温し
、融液を生成した。
[Example Description] In a pBN crucible with a diameter of 10.16 cm (4 inches), 1 kg of GaAs polycrystal, a predetermined amount of In, and about 2
After filling with 00g of 8203, it was set in the furnace. This was evacuated, pressurized using N2 gas, and then heated to produce a melt.

次に、るつぼ位置を移動させ、るつぼの下方から同化を
開始した。同化は、十分遅い速度で進むようにし、全量
を固化させるまで続けた。
Next, the crucible position was moved and assimilation was started from below the crucible. Assimilation was made to proceed at a sufficiently slow rate and continued until the entire volume was solidified.

次に、るつぼ位置および加熱手段を調整し、固化多結晶
の上部約20%部分だけを再び溶融した後、この融液状
態部分に種結晶を接触させ、次に該種結晶を回転しつつ
引上げ、結晶を成長させた。
Next, by adjusting the crucible position and heating means, only the upper 20% of the solidified polycrystal is melted again, and then a seed crystal is brought into contact with this molten part, and then the seed crystal is pulled up while rotating. , grew crystals.

結晶成長に際しては、融液状態部分の表面は常に同位置
となるように、るつぼ位置を調整した。また、融液は、
固化多結晶が残存している間は常にほぼ同じ量(初期金
融液量の約20%)が存在した。
During crystal growth, the crucible position was adjusted so that the surface of the molten portion was always at the same position. In addition, the melt is
Approximately the same amount (approximately 20% of the initial financial liquid volume) was always present while the solidified polycrystals remained.

成長させた結晶のIn濃度の分布を長さ方向に測定した
ところ、第3図に実線で示す結果が得られた。第3図か
ら明らかなように、不純物濃度は均一であり、g−0と
g−0,8とでは、約20%の差しか見られなかった(
なお、通常の引上方法では、第3図に破線で示すように
偏析理論に従ってドーピングされるので、g−0,8で
はg−0位置に対し、4倍以上の濃度になる。)。
When the distribution of the In concentration of the grown crystal was measured in the length direction, the results shown by the solid line in FIG. 3 were obtained. As is clear from Figure 3, the impurity concentration was uniform, and there was only a difference of about 20% between g-0 and g-0,8 (
In addition, in the usual pulling method, doping is performed according to the segregation theory as shown by the broken line in FIG. 3, so the concentration at g-0, 8 is more than four times that at the g-0 position. ).

この実施例により成長させた結晶は、上述のとおりg−
0,8まですべて低転位密度の高品質結晶であった。
The crystal grown according to this example was g-
All crystals up to 0.8 were high quality crystals with low dislocation densities.

なお、g−0,8から以降は不純物濃度が著しく高くな
るが、これは、固化多結晶がこの時点でなくなるので、
融液量が減少し、通常の偏析理論に従って結晶成長した
ためである。
Note that the impurity concentration increases significantly from g-0.8 onwards, but this is because the solidified polycrystals disappear at this point.
This is because the amount of melt decreased and crystals grew according to the normal segregation theory.

[発明の効果] 以上のように、この発明では、従来の引上法に比べて、
結晶中不純物濃度を飛輩的に均一化し得るので、結晶品
質を均一化することができる。また、良品の結晶の歩留
りが著しく改善されるので、安価に半導体単結晶を得る
ことができる。
[Effect of the invention] As described above, in this invention, compared to the conventional pulling method,
Since the impurity concentration in the crystal can be made uniform in a uniform manner, the quality of the crystal can be made uniform. Furthermore, since the yield of good crystals is significantly improved, semiconductor single crystals can be obtained at low cost.

特に、不純物としてInをドーピングして低転位密度結
晶を成長させる場合には、In濃度が高くなるとセル成
長を起こし、多結晶化し、歩留りを低下させるが、この
発明の方法では、結晶尾部で急激にIn濃度が高くなる
までは、セル成長を発生しない結晶を得ることができる
ので、歩留りの向上およびコストの低減効果は著しく大
きい。
In particular, when growing a low-dislocation-density crystal by doping In as an impurity, a high In concentration causes cell growth, polycrystalline formation, and a decrease in yield. Since it is possible to obtain a crystal that does not cause cell growth until the In concentration becomes high, the yield improvement and cost reduction effects are significant.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の詳細な説明するための工程図であ
り、第2図は固化された多結晶中の不純物濃度分布を示
す図であり、第3図は実施例により得られた半導体単結
晶中の不純物濃度分布を示す図であり、第4図は偏析に
よる不純物濃度分布を説明するための図である。 図において、1はるつぼ、2は融液、3は固化された多
結晶、4は融液状態部分を示す。 特許出願人 住友電気工業株式会社  、、1諷−’(
は力1′lるン
FIG. 1 is a process diagram for explaining the present invention in detail, FIG. 2 is a diagram showing the impurity concentration distribution in the solidified polycrystal, and FIG. 3 is a diagram showing the impurity concentration distribution in the solidified polycrystal. FIG. 4 is a diagram showing the impurity concentration distribution in a single crystal, and FIG. 4 is a diagram for explaining the impurity concentration distribution due to segregation. In the figure, 1 is a crucible, 2 is a melt, 3 is a solidified polycrystal, and 4 is a portion in a melt state. Patent applicant: Sumitomo Electric Industries, Ltd.
The force is 1'lrun

Claims (3)

【特許請求の範囲】[Claims] (1)るつぼ内に所定量の不純物を含む融液を生成する
工程と、 前記融液の少なくとも大部分を下方から上方へ向かって
固化させ、上方の一部が融液状態となっており、かつド
ーピング不純物が下方から上方へ向かって偏析に従って
分布された固化多結晶を得る工程と、 前記上方の融液状態部分から結晶成長を開始し、該融液
状態部分の融液量がほぼ一定となるように固化多結晶を
溶融させつつ成長させていく工程とを備える、引上法に
よる半導体単結晶の製造方法。
(1) a step of generating a melt containing a predetermined amount of impurities in a crucible, and solidifying at least a large portion of the melt from the bottom to the top, with the upper part being in a melt state; and a step of obtaining a solidified polycrystal in which doping impurities are distributed according to segregation from the bottom to the top, and crystal growth is started from the upper melt state portion, and the amount of melt in the melt state portion is almost constant. A method for manufacturing a semiconductor single crystal by a pulling method, which comprises a step of growing a solidified polycrystal while melting it so that the solidified polycrystal is grown.
(2)前記固化は、るつぼ内の融液の全部を固化させる
ように行ない、前記上方の一部の融液状態部分は固化後
に再溶融することにより形成する、特許請求の範囲第1
項記載の引上法による半導体単結晶の製造方法。
(2) The solidification is performed so as to solidify all of the melt in the crucible, and the upper part of the melt is formed by remelting after solidification.
A method for manufacturing a semiconductor single crystal by the pulling method described in .
(3)前記固化は、上方に融液状態部分を残すように行
なう、特許請求の範囲第1項記載の引上法による半導体
単結晶の製造方法。
(3) A method for manufacturing a semiconductor single crystal by a pulling method according to claim 1, wherein the solidification is performed so as to leave a portion in a molten state above.
JP8631787A 1987-04-08 1987-04-08 Production of semiconductor single crystal by pull-up method Pending JPS63252989A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8631787A JPS63252989A (en) 1987-04-08 1987-04-08 Production of semiconductor single crystal by pull-up method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8631787A JPS63252989A (en) 1987-04-08 1987-04-08 Production of semiconductor single crystal by pull-up method

Publications (1)

Publication Number Publication Date
JPS63252989A true JPS63252989A (en) 1988-10-20

Family

ID=13883456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8631787A Pending JPS63252989A (en) 1987-04-08 1987-04-08 Production of semiconductor single crystal by pull-up method

Country Status (1)

Country Link
JP (1) JPS63252989A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02233581A (en) * 1989-03-07 1990-09-17 Sumitomo Metal Ind Ltd Crystal growth
JPH04214091A (en) * 1990-04-11 1992-08-05 Sumitomo Metal Ind Ltd Method for growing crystal
DE4409296A1 (en) * 1993-03-22 1994-09-29 Sumitomo Sitix Corp Method for producing silicon single crystals
US5363796A (en) * 1991-02-20 1994-11-15 Sumitomo Metal Industries, Ltd. Apparatus and method of growing single crystal
US5402747A (en) * 1992-06-16 1995-04-04 Sumitomo Metal Industries, Ltd. Method of growing crystal
US5435263A (en) * 1993-03-29 1995-07-25 Sumitomo Sitix Corporation Method of producing single crystal
EP0674027A1 (en) * 1994-03-25 1995-09-27 Ngk Insulators, Ltd. Optoelectric articles and a process for producing the same
EP0675214A1 (en) * 1994-03-31 1995-10-04 Sumitomo Sitix Corporation Method of growing crystals

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60112686A (en) * 1983-11-22 1985-06-19 Nec Corp Manufacture of solid-solution single crystal
JPS61205691A (en) * 1985-03-06 1986-09-11 Sumitomo Metal Ind Ltd Method for crystal growth
JPS61205692A (en) * 1985-03-06 1986-09-11 Sumitomo Metal Ind Ltd Method for crystal growth

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60112686A (en) * 1983-11-22 1985-06-19 Nec Corp Manufacture of solid-solution single crystal
JPS61205691A (en) * 1985-03-06 1986-09-11 Sumitomo Metal Ind Ltd Method for crystal growth
JPS61205692A (en) * 1985-03-06 1986-09-11 Sumitomo Metal Ind Ltd Method for crystal growth

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02233581A (en) * 1989-03-07 1990-09-17 Sumitomo Metal Ind Ltd Crystal growth
JPH04214091A (en) * 1990-04-11 1992-08-05 Sumitomo Metal Ind Ltd Method for growing crystal
US5363796A (en) * 1991-02-20 1994-11-15 Sumitomo Metal Industries, Ltd. Apparatus and method of growing single crystal
US5402747A (en) * 1992-06-16 1995-04-04 Sumitomo Metal Industries, Ltd. Method of growing crystal
DE4409296A1 (en) * 1993-03-22 1994-09-29 Sumitomo Sitix Corp Method for producing silicon single crystals
US5477806A (en) * 1993-03-22 1995-12-26 Sumitomo Sitix Corporation Method of producing silison single crystal
US5435263A (en) * 1993-03-29 1995-07-25 Sumitomo Sitix Corporation Method of producing single crystal
US5551978A (en) * 1993-03-29 1996-09-03 Sumitomo Sitix Corporation Apparatus for producing single crystal
EP0674027A1 (en) * 1994-03-25 1995-09-27 Ngk Insulators, Ltd. Optoelectric articles and a process for producing the same
EP0675214A1 (en) * 1994-03-31 1995-10-04 Sumitomo Sitix Corporation Method of growing crystals
US5840116A (en) * 1994-03-31 1998-11-24 Sumitomo Sitix Corporation Method of growing crystals

Similar Documents

Publication Publication Date Title
JPH05194083A (en) Method for manufacture of silicon rod
JPS63252989A (en) Production of semiconductor single crystal by pull-up method
US4944925A (en) Apparatus for producing single crystals
JPS647040B2 (en)
JPH04104988A (en) Growth of single crystal
JPH09227273A (en) Production of silicon single crystal by continuous-charge method
US5840115A (en) Single crystal growth method
JPH09309791A (en) Method for producing semiconducting single crystal
GB1365724A (en) Methods of manufacturing single crystals of semiconductor mater ial
JPH07133185A (en) Production of single crystal
JP2531875B2 (en) Method for producing compound semiconductor single crystal
US3776703A (en) Method of growing 1-0-0 orientation high perfection single crystal silicon by adjusting a focus coil
JPS5964591A (en) Apparatus for pulling up single crystal
JPH09227280A (en) Method for growing single crystal
JPH0341432B2 (en)
JPH03183685A (en) Silicon single crystal rod and production thereof
JP2757865B2 (en) Method for producing group III-V compound semiconductor single crystal
JPS61174189A (en) Method and device for production of single crystal
JPS62197400A (en) Production of gallium arsenide single crystal
JPS63190797A (en) Production of compound semiconductor single crystal and device
JP2864808B2 (en) III-V compound semiconductor single crystal
JP2004010467A (en) Method for growing compound semiconductor single crystal
JPH05155685A (en) Production of compound semiconductor single crystal
JPH08104591A (en) Apparatus for growing single crystal
JPH02217393A (en) Production of compound semiconductor single crystal