JPH03199191A - Production of single crystal - Google Patents

Production of single crystal

Info

Publication number
JPH03199191A
JPH03199191A JP33899489A JP33899489A JPH03199191A JP H03199191 A JPH03199191 A JP H03199191A JP 33899489 A JP33899489 A JP 33899489A JP 33899489 A JP33899489 A JP 33899489A JP H03199191 A JPH03199191 A JP H03199191A
Authority
JP
Japan
Prior art keywords
single crystal
melt
crystal
composition
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33899489A
Other languages
Japanese (ja)
Inventor
Hiroshi Kawakami
博 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP33899489A priority Critical patent/JPH03199191A/en
Publication of JPH03199191A publication Critical patent/JPH03199191A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To obtain the uniform single crystal which has a stoichiometric compsn. and is free from lattice defects, etc., by specifying the compsn. of single crystal raw materials to a specific compsn. in the method for growing and producing the single crystal of a combined oxide having a solid soln. region contg. plural cations by a pulling up method while supplying the single crystal raw materials. CONSTITUTION:The compsn. of the single crystal raw materials to be supplied is formed to the compsn. which exhibits the value having the m. p. not higher by >=20 deg.C than the m. p. of the crystal growing melt in the process for producing the single crystal by supplying the single crystal raw material to the melt into a crucible and controlling the single crystal growing melt compsn. in the crucible to the specified compsn. simultaneously growing the single crystal of the combined oxide (e.g.: lithium niobate) having the solid soln. region contg. >=2 kinds of cations by a pulling up method.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、結晶成分近傍の組成を有する融液に浸した種
結晶の所定面に単結晶を育成させる単結晶の製造方法に
関し、特に固液領域を有する複合酸化物の単結晶を均一
に育成する方法に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method for producing a single crystal in which a single crystal is grown on a predetermined surface of a seed crystal immersed in a melt having a composition close to that of the crystal components, and in particular, The present invention relates to a method for uniformly growing a single crystal of a composite oxide having a liquid region.

[従来の方法1 従来の単結晶を製造する方法としては、C2法(チョク
ラルスキー法)が知られている。この方法は、結晶成分
融液に浸した種結晶の所定面に単結晶を育成させつつ単
結晶を引き上げる方法であり、ケイ素やガリウム・ヒ素
のような半導体の単結晶においては、不純物(ドーパン
ト)を添加した単結晶をC2法により育成しようとする
試みが行なわれている。
[Conventional Method 1 As a conventional method for producing single crystals, the C2 method (Czochralski method) is known. This method is a method of growing a single crystal on a predetermined surface of a seed crystal immersed in a crystal component melt and pulling the single crystal. Attempts have been made to grow single crystals doped with C2 using the C2 method.

しかしながら、単結晶の育成の進行につれて融液が減少
し、一般に不純物が融液中に濃縮されるためC2法によ
って育成された単結晶は下端に近い部分程不純物濃度が
高くなる。これを解決する方法の一つとして、融液の減
少に応じて新たな結晶原料を供給する方法が採用されて
いる。
However, as the growth of the single crystal progresses, the melt decreases and impurities are generally concentrated in the melt. Therefore, in the single crystal grown by the C2 method, the impurity concentration becomes higher near the lower end. One method to solve this problem is to supply new crystal raw material as the melt decreases.

通常、上記の場合、単結晶は固溶領域を有さないので供
給する原料組成は、育成される単結晶組成と同一にする
ことができる。
Generally, in the above case, since the single crystal does not have a solid solution region, the composition of the supplied raw material can be made the same as the composition of the single crystal to be grown.

しかし、これは固溶領域を有する複合酸化物系では戒り
立たない場合が多い。
However, this is often not a problem in complex oxide systems having a solid solution region.

ニオブ酸リチウムという複合酸化物を例にとって説明す
る。この系の状態図を第2図(LiO2−Nb20s系
; J、 Appl、 Phys、 42.5 (19
71) J、 R,Carrutherset al、
 )及び第3図(LiO2−Nb2O6系; J、 C
rys、 Grow。
This will be explained using a complex oxide called lithium niobate as an example. The phase diagram of this system is shown in Figure 2 (LiO2-Nb20s system; J, Appl, Phys, 42.5 (19
71) J, R, Carruthers et al.
) and Figure 3 (LiO2-Nb2O6 system; J, C
rys, Grow.

3、4 (1968) P、 Lerrer et a
l、 )に示す。
3, 4 (1968) P. Lerrer et a.
1, ).

従来、育成されている組成は、第2図中A点近傍の帯−
溶融する組成である。この組成は化学量論組成Li0z
 : NbzOs=50 : 50 (モル比)(第2
図中B点)とは異なり、ニオブ(Nb)過剰型となって
いる。そのためリチウム(Li)原子があるべき格子点
にNbが存在したり、空格子点が存在したりする等の格
子欠陥がおこり、物理化学曲譜特性の不安定が問題とな
っているため、化学量論組成の単結晶の製造が強く望ま
れている。
Conventionally, the composition grown is the band near point A in Figure 2.
It has a melting composition. This composition is the stoichiometric composition Li0z
: NbzOs=50 : 50 (molar ratio) (second
Unlike point B in the figure), it is a niobium (Nb)-excess type. As a result, lattice defects such as the presence of Nb or the presence of vacancies occur at lattice points where lithium (Li) atoms should exist, resulting in instability of physicochemical properties, which is a problem due to the stoichiometric There is a strong desire to produce single crystals with a theoretical composition.

化学量論組成の単結晶を育成するためには、第2図とし
て示した状態図より明らかなように融液組成がLi2O
: Nb2O5= 58:42 (モル比)である融液
(第2図C点)からの育成が必要となる。
In order to grow a single crystal with a stoichiometric composition, the melt composition must be Li2O, as is clear from the phase diagram shown in Figure 2.
:Nb2O5=58:42 (molar ratio) It is necessary to grow from a melt (point C in Figure 2).

[発明が解決しようとする課題1 従来の方法、つまり通常のC2法に従ってこの融液から
結晶を育成すると、融液組成は晶析率、あるいは温度降
下に従って徐々にLi過剰になり、結晶組成もそれに伴
い液相線勾配及び固相線勾配に従ってLi過剰になる。
[Problem to be Solved by the Invention 1] When crystals are grown from this melt according to the conventional method, that is, the normal C2 method, the melt composition gradually becomes Li-excessive as the crystallization rate or temperature decreases, and the crystal composition also increases. Accordingly, Li becomes excessive according to the liquidus line gradient and the solidus line gradient.

それを抑制するためには、融液組成が変わらないように
Nb過剰の結晶原料を供給する必要がある。
In order to suppress this, it is necessary to supply a crystal raw material with an excess of Nb so that the melt composition does not change.

結晶原料が固定であっても液体であっても融液中に供給
するのであるから、結晶原料の温度、融点及び原料供給
部分の融液温度は非常に大切である。なぜなら育成炉が
高周波誘導加熱炉であるにしろ抵抗加熱炉であるにしろ
、半径方向の温度勾配を自在に設計することは非常に難
しいからである。一方、供給法として、育成する結晶組
成および育成速度に合わせて、供給する結晶原料育成及
び量を決めてやると制御が容易である。一般に前述のド
ーパント組成の制御法としてこの方法が採られている。
Since the crystal raw material, whether fixed or liquid, is supplied into the melt, the temperature and melting point of the crystal raw material and the temperature of the melt at the raw material supply section are very important. This is because, regardless of whether the growth furnace is a high-frequency induction heating furnace or a resistance heating furnace, it is extremely difficult to freely design the temperature gradient in the radial direction. On the other hand, as a supply method, it is easy to control if the crystal raw material growth and amount to be supplied are determined in accordance with the crystal composition to be grown and the growth rate. This method is generally adopted as a method for controlling the above-mentioned dopant composition.

しかし、この方法に従うと、第3図から明らかなように
、育成しようとする化学量論育成の結晶(Li20 :
 Nb206= 50 :50 (モル比))の融点は
約1250℃1融液(Li20 : Nb2O5= 5
8:42 (モル比))の融点は約1180〜1190
℃であるため、゛化学量論組成あるいはその近傍の組成
の結晶を育成するには、原料供給部分の温度を育成部分
の温度に比べて60℃以上高くする必要がある。この数
字は、ホットゾーン構成上困難な値であった。
However, if this method is followed, as is clear from Figure 3, the stoichiometrically grown crystal (Li20:
The melting point of Nb206 = 50:50 (molar ratio) is approximately 1250℃ 1 melt (Li20:Nb2O5 = 5
8:42 (molar ratio)) has a melting point of about 1180-1190
℃, in order to grow crystals with a stoichiometric composition or a composition close to it, it is necessary to raise the temperature of the raw material supply portion by 60° C. or more compared to the temperature of the growth portion. This number was difficult due to the hot zone configuration.

[課題を解決するための手段] 本発明者は、陽イオンを2種以上含有する固溶領域を有
する複合酸化物の単結晶を均一に育成する方法について
鋭意検討した結果、供給する結晶供給する結晶原料の組
成を育成しようとする結晶組成と同一にするのではなく
、特定の融点を有する結晶原料組成とすればよいことを
見出し、本発明に到達した。
[Means for Solving the Problems] As a result of intensive study on a method for uniformly growing a single crystal of a composite oxide having a solid solution region containing two or more types of cations, the present inventor has developed a method for supplying crystals. The present invention was achieved by discovering that the composition of the crystal raw material should not be the same as the crystal composition to be grown, but rather a crystal raw material composition having a specific melting point.

即ち、本発明の要旨は、陽イオンを2種類以上含有する
複合酸化物の単結晶を引き上げ法で育成すると同時に、
るつぼ内の融液に単結晶原料を供給し、るつぼ内の結晶
育成融液組成を一定に制御する単結晶の製造法において
、供給する単結晶原料の組成として、その融点が結晶育
成融液の融点より20℃以上高くない値を示ず組成とす
ることを特徴とする単結晶の製造法に存する。
That is, the gist of the present invention is to grow a single crystal of a composite oxide containing two or more types of cations by a pulling method, and at the same time,
In a single crystal production method in which a single crystal raw material is supplied to a melt in a crucible and the composition of the crystal growth melt in the crucible is controlled constant, the composition of the supplied single crystal raw material is such that its melting point is that of the crystal growth melt. The present invention relates to a method for producing a single crystal, characterized in that the composition has a value not higher than the melting point by 20°C or more.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明において育成しようとする単結晶は、陽イオンを
2種類以上含有する固液領域を有する複合酸化物の単結
晶である。陽イオンとしては例えばLi、 Nb、 T
aが挙げられる。本発明は、特にニオブ酸リチウムの単
結晶を育成するのに好適である。
The single crystal to be grown in the present invention is a single crystal of a composite oxide having a solid-liquid region containing two or more types of cations. Examples of cations include Li, Nb, and T.
Examples include a. The present invention is particularly suitable for growing single crystals of lithium niobate.

本発明においては、供給する結晶原料の融点が、結晶育
成融液の融点より20℃以上高くない値であることを特
徴とする。
The present invention is characterized in that the melting point of the supplied crystal raw material is not higher than the melting point of the crystal growth melt by 20° C. or more.

供給する結晶原料の融点は、結晶育成融液の融点と等し
いか又はそれより低い値であるものが好適である。これ
により、ホットゾーンの構成が容易になり、結晶育成が
可能になるからである。
The melting point of the supplied crystal raw material is preferably equal to or lower than the melting point of the crystal growth melt. This is because the configuration of the hot zone becomes easy and crystal growth becomes possible.

例えば、ニオブ酸リチウムの単結晶を育成する場合には
、Li2O: Nb2O5= 36 :64 (モル比
)であるような組成(第2図中E点、第3図中F点)を
選択するのが好ましい。
For example, when growing a single crystal of lithium niobate, a composition such as Li2O:Nb2O5 = 36:64 (molar ratio) (point E in Figure 2, point F in Figure 3) is selected. is preferred.

また、結晶原料の供給量は次式によって与えられる。Further, the supply amount of the crystal raw material is given by the following equation.

C旨o(C櫂−C計+C益XY)= C北(C第0−C
共Y + C:uXY)即ち、X==(CRoXCGL
CW%XCR)/ c鵬xc VM−CC%+C注)(
式中、C比及びCH3は初期融液組成中のLizO及び
Nb2O5の重量比率をそれぞれ表し、cW及びC5は
育成結晶組成中のLi2O及びNb2O5の重量比率を
それぞれ表し、CFE及びCFEは供給する結晶原料組
成中のLi2O及びNb20aの重量比率をそれぞれ表
わす。Xは結晶育成量に対する供給する結晶原料の重量
比率、Yは融液量1gに対する結晶育成量の重量比率を
表わす。) 例えば、組成がLi2O: Nb2O5= 58 :4
2 (モル比)である融液から化学量論組成の単結晶を
育成するときに、Li2O: Nb2O5= 36 :
42 (モル比)の組成を有する結晶原料を供給する場
合は、 CyaL=0.58X(6,939X2+16)CHo
=0.42X(92,906X2+ 16X5)C昂=
0.36X(6,939X2+16)Cシ0.64 X
 (92,906X 2 + 16 X 5)より、X
=0.445となり、即ち結晶育成量に対する供給する
結晶原料の比率は0.445である。
C o (C paddle - C total + C gain XY) = C north (C 0 - C
coY + C:uXY), that is, X==(CRoXCGL
CW%XCR)/cpengxc VM-CC%+CNote)(
In the formula, C ratio and CH3 represent the weight ratios of LizO and Nb2O5 in the initial melt composition, respectively, cW and C5 represent the weight ratios of Li2O and Nb2O5 in the grown crystal composition, respectively, and CFE and CFE represent the weight ratios of Li2O and Nb2O5 in the grown crystal composition, respectively. Each represents the weight ratio of Li2O and Nb20a in the raw material composition. X represents the weight ratio of the supplied crystal raw material to the amount of crystal growth, and Y represents the weight ratio of the amount of crystal growth to 1 g of melt. ) For example, the composition is Li2O: Nb2O5 = 58:4
When growing a single crystal with a stoichiometric composition from a melt with a molar ratio of 2 (molar ratio), Li2O: Nb2O5 = 36:
When supplying a crystal raw material having a composition of 42 (molar ratio), CyaL=0.58X(6,939X2+16)CHo
=0.42X(92,906X2+16X5)C=
0.36X (6,939X2+16)Cshi0.64X
From (92,906X 2 + 16 X 5), X
=0.445, that is, the ratio of the supplied crystal raw material to the amount of crystal growth is 0.445.

供給する結晶原料は、固体であっても液体であってもよ
いが、融液の温度安定性の点から液体であることが好ま
しい。
The crystal raw material to be supplied may be either solid or liquid, but is preferably liquid from the viewpoint of temperature stability of the melt.

本発明において用いる加熱炉は、高周波誘導加熱炉、抵
抗加熱炉等の引き上げ法による単結晶育成に通常用いら
ている加熱炉であれば特に限定されない。
The heating furnace used in the present invention is not particularly limited as long as it is a heating furnace commonly used for single crystal growth by a pulling method, such as a high frequency induction heating furnace or a resistance heating furnace.

[実施例1 以下、本発明を実施例により更に詳細に説明するが、本
発明はその要旨を越えない限り実施例に限定されるもの
ではない。
[Example 1] Hereinafter, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to the Examples unless the gist thereof is exceeded.

実施例1 110KHzの高周波誘導加熱炉内に第1図に示すよう
に直径80mm、高さ80mm、厚さ2mmのプラチナ
(pt)製るつぽを設置し、更にその内側に直径70m
m、高さ50mm、厚さ1mmのpt製るつぼを設置し
た。
Example 1 A platinum (PT) crucible with a diameter of 80 mm, a height of 80 mm, and a thickness of 2 mm was installed in a 110 KHz high-frequency induction heating furnace as shown in Fig.
A PT crucible with a height of 50 mm and a thickness of 1 mm was installed.

外るつぼには酸化リチウム(Li20) 36モル%、
酸化ニオブ(V ) (Nb205) 64モル%の原
料を650g、内るつぼにはLi2O58モル%、Nb
20642モル%の原料を540g入れ、1300℃ま
で加熱してLi2O及びNb2O5を溶解した。内ルツ
ボ内の融液を融点近くまで降温し、LiNb0aの種結
晶を浸し、30rpmで回転させながら約3mm/時間
の速度で引き上げ、ネッキング、肩出し及び定径育成を
行なった。結晶育成中、外るつぼの上端から融液をオー
バーフローさせて内るつぼ内の融液組成を一定に保持し
た。
In the outer crucible, 36 mol% of lithium oxide (Li20),
650 g of niobium oxide (V) (Nb205) 64 mol% raw material, 58 mol% Li2O, Nb in the inner crucible
540 g of 20642 mol % raw material was added and heated to 1300°C to dissolve Li2O and Nb2O5. The temperature of the melt in the inner crucible was lowered to near the melting point, a seed crystal of LiNb0a was immersed, and the crystal was pulled up at a speed of about 3 mm/hour while rotating at 30 rpm to perform necking, shouldering, and constant diameter growth. During crystal growth, the melt composition in the inner crucible was kept constant by overflowing the melt from the upper end of the outer crucible.

直径約25mmの結晶を130g育成した後、結晶を融
液表面から10mm離し、冷却して結晶を取り出した。
After growing 130 g of crystals with a diameter of about 25 mm, the crystals were separated from the melt surface by 10 mm, cooled, and taken out.

得られた結晶を示差熱天秤分析法によるキュリー温度測
定により分析したところ、Li20=49.8〜50モ
ル%であり、はぼ一定の組成で育成されていることがわ
かった。
When the obtained crystals were analyzed by Curie temperature measurement using differential calorimetry, it was found that Li20 was 49.8 to 50 mol%, indicating that the crystals were grown with a nearly constant composition.

比較例1 外るつぼ内の原料組成をLi2O50モル%、Nb20
550モル%としたこと以外は実施例1と同様にして結
晶の育成を行なったが、ネッキング後結晶の直径を大き
くするために徐々に温度を下げていくと外るつぼ内の融
液が固化し始めてしまい、原料融液を供給しなから結晶
を育成することはできなかった。
Comparative Example 1 The raw material composition in the outer crucible was Li2O50 mol%, Nb20
Crystals were grown in the same manner as in Example 1 except that the amount was 550 mol%, but when the temperature was gradually lowered to increase the diameter of the crystals after necking, the melt in the outer crucible solidified. However, it was not possible to grow crystals without supplying the raw material melt.

[発明の効果] 本発明によると、陽イオンを2種類以上含有するような
固溶領域を有する複合酸化物において、化学量論組成を
有し、格子欠陥等がなく物理化学的特性が安定である均
一な単結晶を得ることができるため工業的に有用である
[Effects of the Invention] According to the present invention, a composite oxide having a solid solution region containing two or more types of cations has a stoichiometric composition, has no lattice defects, and has stable physicochemical properties. It is industrially useful because a uniform single crystal can be obtained.

特に、ニオブ酸リチウムのように育成時の温度勾配が大
きく単結晶の割れが生じやすい単結晶を育成する場合に
有用である。
It is particularly useful when growing single crystals such as lithium niobate, which have a large temperature gradient during growth and are prone to single crystal cracking.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の実施例で使用した高周波誘導加熱炉
の概略断面図である。第1図中、1は育成した単結晶、
2は内るつぼ、3は外るつぼ、4は単結晶育成融液、5
は供給用単結晶融液、6は種結晶、7はヒーター、8は
アフターヒーター、9は耐火物を示す。 第2図は、Li2O−Nb2O5系のニオブ酸リチウム
の状態図(J、 Appl、 Phys、 42.5 
(1971) J、 R,Carruthers et
al、)である。 第3図は、Li2O−NbzOs系のニオブ酸リチウム
の状態図(J、 Crys、 Grow、 3.4 (
1968) P、 Lerrer et al、 )で
ある。
FIG. 1 is a schematic sectional view of a high frequency induction heating furnace used in an example of the present invention. In Figure 1, 1 is the grown single crystal;
2 is an inner crucible, 3 is an outer crucible, 4 is a single crystal growth melt, 5
1 indicates a single crystal melt for supply, 6 indicates a seed crystal, 7 indicates a heater, 8 indicates an after-heater, and 9 indicates a refractory. Figure 2 shows the phase diagram of Li2O-Nb2O5 system lithium niobate (J, Appl, Phys, 42.5
(1971) J. R. Carruthers et.
al, ). Figure 3 shows the phase diagram of Li2O-NbzOs-based lithium niobate (J, Crys, Grow, 3.4 (
(1968) P., Lerrer et al.

Claims (1)

【特許請求の範囲】[Claims] (1)陽イオンを2種類以上含有する固溶領域を有する
複合酸化物の単結晶を引き上げ法で育成すると同時に、
るつぼ内の融液に単結晶原料を供給し、るつぼ内の結晶
育成融液組成を一定に制御する単結晶の製造法において
、供給する単結晶原料の組成としての、その融点が結晶
育成融液の融点より20℃以上高くない値を示す組成で
あることを特徴とする単結晶の製造法。
(1) At the same time, growing a single crystal of a composite oxide having a solid solution region containing two or more types of cations by a pulling method,
In a single crystal production method in which a single crystal raw material is supplied to a melt in a crucible and the composition of the crystal growth melt in the crucible is controlled constant, the melting point of the supplied single crystal raw material is determined by the crystal growth melt. A method for producing a single crystal, characterized in that the composition exhibits a value not more than 20°C higher than the melting point of
JP33899489A 1989-12-27 1989-12-27 Production of single crystal Pending JPH03199191A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33899489A JPH03199191A (en) 1989-12-27 1989-12-27 Production of single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33899489A JPH03199191A (en) 1989-12-27 1989-12-27 Production of single crystal

Publications (1)

Publication Number Publication Date
JPH03199191A true JPH03199191A (en) 1991-08-30

Family

ID=18323263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33899489A Pending JPH03199191A (en) 1989-12-27 1989-12-27 Production of single crystal

Country Status (1)

Country Link
JP (1) JPH03199191A (en)

Similar Documents

Publication Publication Date Title
JPH0152359B2 (en)
WO2004106597A1 (en) Indium phosphide substrate, indium phosphide single crystal and process for producing them
JP2002293693A (en) Terbium-aluminum-garnet single crystal and method of manufacturing for the same
JPH03261693A (en) Production of single crystal
JPS6046993A (en) Device for pulling up single crystal
JPS5825078B2 (en) Single crystal manufacturing method
JPH03199191A (en) Production of single crystal
EP0187843B1 (en) Growth of single crystal cadmium-indium-telluride
JPH04305087A (en) Method and device for producing single crystal
JP2507910B2 (en) Method for producing oxide single crystal
JPH03208882A (en) Production of single crystal
JPS589800B2 (en) Manufacturing method of oxide single crystal
JPH0489398A (en) Production of lithium niobate single crystal
JPH05310494A (en) Growth of single crystal
JP2647052B2 (en) Method for producing rare earth vanadate single crystal
JPS62182190A (en) Production of compound semiconductor single crystal
SU1740505A1 (en) Process for growing single crystals of hematite @@@
KR970007336B1 (en) Process for the preparation of single crystal for radioelectronics and piezotechnology
JP3208603B2 (en) How to make a single crystal
JPH0465399A (en) Production of lithium niobate single crystal
KR930000903B1 (en) Temperature control method of low temperature part in simple crystal manufacture of iii-v compound semiconductor
JPS6042293A (en) Manufacture of single crystal
JP2012036015A (en) Crystal growth method
JPH07247200A (en) Production of titanium oxide single crystal
JPS5938183B2 (en) Single crystal manufacturing method