JPH0489398A - Production of lithium niobate single crystal - Google Patents

Production of lithium niobate single crystal

Info

Publication number
JPH0489398A
JPH0489398A JP20089490A JP20089490A JPH0489398A JP H0489398 A JPH0489398 A JP H0489398A JP 20089490 A JP20089490 A JP 20089490A JP 20089490 A JP20089490 A JP 20089490A JP H0489398 A JPH0489398 A JP H0489398A
Authority
JP
Japan
Prior art keywords
melt
crystal
single crystal
crystal growth
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20089490A
Other languages
Japanese (ja)
Inventor
Hiroshi Kawakami
博 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP20089490A priority Critical patent/JPH0489398A/en
Publication of JPH0489398A publication Critical patent/JPH0489398A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To obtain a single crystal without replenishing a melt by coating the circumference of a crucible with a melt and pulling up a single crystal from a melt having a prescribed compsn. by the Czochralski(CZ) method at a prescribed rate of crystal growth with a prescribed temp. gradient of the interface between the melt for crystal growth and the single crystal. CONSTITUTION:When a lithium niobate single crystal is pulled up by the CZ method, the circumference of a crucible 2 is coated with a melt 5 similar in compsn. to a melt 4 for crystal growth so that the melt 5 is prevented from entering the melt 4. The initial compsn. of the melt 4 is composed of LiO2, and Nb2O5 in (54-60):(46-40) molar ratio. The single crystal is pulled up at 0.1-5g/hr rate of crystal growth with 20-60 deg.C/cm temp. gradient of the interface between the melt 4 and the single crystal.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、結晶成分近傍の組成を有する融液に浸した種
結晶の所定面に単結晶を育成させる単結晶の製造方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing a single crystal in which a single crystal is grown on a predetermined surface of a seed crystal immersed in a melt having a composition close to that of the crystal components.

[従来の方法] 従来の単結晶を製造する方法としては、例えばC2法(
チョクラルスキー法)が知られている。この方法は、結
晶成分融液に浸した種結晶の所定面に単結晶を育成させ
つつ単結晶を引き上げる方法である。
[Conventional method] As a conventional method for producing single crystals, for example, the C2 method (
Czochralski method) is known. This method is a method of pulling a single crystal while growing it on a predetermined surface of a seed crystal immersed in a crystal component melt.

ニオブ酸リチウムの状態図を第2図(Li02− Nb
2O5系;J、Appl、Phys、42.5 (19
71) J、R,Carruthers et al。
Figure 2 shows the phase diagram of lithium niobate (Li02-Nb
2O5 system; J, Appl, Phys, 42.5 (19
71) J, R, Carruthers et al.

)及び第3 q (LiCO3−Nb2O5系; J、
 Crys、 Grow、 3.4゜(1968) P
、 Lenner et al、 )に示す。
) and 3rd q (LiCO3-Nb2O5 system; J,
Crys, Grow, 3.4° (1968) P
, Lenner et al. ).

従来、育成されているニオブ酸リチウムは第2図中A点
近傍の帯−溶融する組成のものである。この場合、秤量
ミスあるいは不純物汚染による組成的適冷のみ考慮すれ
ばよく、育成速度50g /時間以上での育成が可能で
ある。
Conventionally grown lithium niobate has a composition that melts in the band near point A in FIG. In this case, only compositional cooling due to weighing errors or impurity contamination needs to be taken into consideration, and growth at a growth rate of 50 g/hour or more is possible.

この組成は化学量論組成LiO2,Nb2O5(モル比
)[第2図中B点]とは異なり、ニオブ(Nb)過剰型
となっている。そのためリチウム(Li)原子があるべ
き格子点にNbが存在したり、空格子点が存在したりす
る等の格子欠陥がおこり、物理化学的緒特性の不安定性
が問題となっているため化学量論組成の単結晶の製造が
強く望まれている。
This composition is different from the stoichiometric composition LiO2, Nb2O5 (molar ratio) [point B in FIG. 2], and has an excess of niobium (Nb). As a result, lattice defects such as the presence of Nb or the presence of vacancies occur at lattice points where lithium (Li) atoms should exist, resulting in instability of physicochemical properties, resulting in stoichiometric There is a strong desire to produce single crystals with a theoretical composition.

化学量論組成の単結晶を育成するためには一1第2図と
して示した状態図より明らかなように融液組成がL12
0 Nb205= 58 :42 (モル比)である融
液(第2図C点)からの育成が必要となる。
In order to grow a single crystal with a stoichiometric composition, the melt composition must be L12, as is clear from the phase diagram shown in Figure 2.
It is necessary to grow from a melt (point C in Fig. 2) with a molar ratio of 0 Nb205 = 58:42.

[発明が解決しようとする課題] 通常のC2法に従ってこの融液から結晶を育成すると、
融液組成は晶析率あるいは温度降下に従って徐々にLi
過剰になり、結晶組成もそれに伴ない液相線勾配および
固相線勾配に従ってLi過剰になる。
[Problem to be solved by the invention] When crystals are grown from this melt according to the usual C2 method,
The melt composition gradually changes depending on the crystallization rate or temperature drop.
Li becomes excessive, and the crystal composition also becomes excessive according to the liquidus gradient and solidus gradient.

それを抑制するためには、融液組成が変わらないように
Nb過剰の結晶原料を補給する必要がある。
In order to suppress this, it is necessary to replenish the crystal raw material with excess Nb so that the melt composition does not change.

また、融液組成と育成結晶組成とが大きく異なっている
ため、組成的過冷却が発生し易く、高品質な単結晶を得
ることは難しい。
Furthermore, since the melt composition and the grown crystal composition are significantly different, compositional supercooling is likely to occur, making it difficult to obtain a high-quality single crystal.

組成的過冷却の発生を防ぐためには、結晶育成速度を遅
くする、融液界面の温度勾配を大きくする、融液界面の
結晶成長速度のミクロ的な変動を抑える等の手段が考え
られるが、例えば、融液界面の温度勾配を大きくすると
結晶にクラックが生じ易く、高品質な単結晶を得ること
は難しい。
In order to prevent the occurrence of compositional supercooling, measures such as slowing the crystal growth rate, increasing the temperature gradient at the melt interface, and suppressing microscopic fluctuations in the crystal growth rate at the melt interface can be considered. For example, if the temperature gradient at the melt interface is increased, cracks are likely to occur in the crystal, making it difficult to obtain a high-quality single crystal.

[課題を解決するための手段1 本発明者は、化学量論組成近傍のニオブ酸リチウムの単
結晶を引き上げ法で製造する方法について鋭意検討した
結果、るつぼの周囲を特定の融液で包囲し、特定の初期
融液組成、結晶育成速度及び融液界面の温度勾配を選択
することにより、結晶育成融液を補給することなく、ク
ラックの発生および組成変動のほとんどない高品質の単
結晶が得られることを見出し、本発明に到達した。
[Means for Solving the Problems 1] As a result of intensive study on a method for producing a single crystal of lithium niobate with a near stoichiometric composition by a pulling method, the present inventor discovered that the crucible is surrounded by a specific melt. By selecting a specific initial melt composition, crystal growth rate, and temperature gradient at the melt interface, high-quality single crystals with almost no cracks or compositional fluctuations can be obtained without replenishing the crystal growth melt. The present invention was achieved based on the discovery that

即ち、本発明の要旨は、ニオブ酸リチウム単結晶を引き
上げ法で育成する方法において、るつぼの周囲を結晶育
成融液中に混入することのない状態で結晶育成融液の近
傍組成を有する融液で包囲し、かつ結晶育成融液の初期
組成を酸化リチウム(Li2O) :酸化ニオブ(Nb
2O5)= 54〜60 :46〜40(モル比)とし
、結晶の育成速度を0.1〜5g/時間とし、融液界面
の温度勾配を20〜60°C/cmとすることを特徴と
するニオブ酸リチウム単結晶の製造方法に存する。
That is, the gist of the present invention is to provide a method for growing a lithium niobate single crystal by a pulling method, in which a melt having a composition close to that of the crystal growth melt is produced without mixing the surroundings of the crucible into the crystal growth melt. and the initial composition of the crystal growth melt is lithium oxide (Li2O):niobium oxide (Nb
2O5) = 54-60:46-40 (molar ratio), the crystal growth rate is 0.1-5 g/hour, and the temperature gradient at the melt interface is 20-60°C/cm. The present invention relates to a method for producing a lithium niobate single crystal.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明において育成するニオブ酸リチウム単結晶は、化
学量論組成、即ちLi02Nb205= 50 : 5
0 (モル比)、近傍の組成を有するものである。
The lithium niobate single crystal grown in the present invention has a stoichiometric composition, that is, Li02Nb205 = 50:5.
0 (molar ratio).

このような組成を有するニオブ酸リチウム単結晶は、第
2図から明らかなように、Li02Nb206:58:
42(モル比)の組成を有する融液から育成される。
As is clear from FIG. 2, the lithium niobate single crystal having such a composition is Li02Nb206:58:
It is grown from a melt having a composition of 42 (molar ratio).

この融液から結晶成長を行うと、結晶の成長に伴ない融
液組成は徐々に変化し、その結果育成する結晶組成も変
化する。
When crystal growth is performed from this melt, the composition of the melt gradually changes as the crystal grows, and as a result, the composition of the grown crystal also changes.

本発明においては、結晶の生産性、結晶組成の変化、歩
留り等を考慮して、結晶を育成させる内るつぼ内の融液
組成はLi02Nb20s = 54〜58 :46〜
42(モル比)とする。融液組成が帯−溶融組成に近い
ほど結晶の高歩留、高生産性が期待できるが、結晶組成
は化学量論組成からずれる。この組成領域であれば、育
成結晶の組成の変化は比較的少ない。
In the present invention, in consideration of crystal productivity, changes in crystal composition, yield, etc., the composition of the melt in the inner crucible in which crystals are grown is Li02Nb20s = 54-58:46-
42 (molar ratio). The closer the melt composition is to the band-melt composition, the higher the yield and productivity of crystals can be expected, but the crystal composition deviates from the stoichiometric composition. In this composition range, there is relatively little change in the composition of the grown crystal.

本発明においては、るつぼを少なくとも2重に構成し、
内側るつぼの周囲を結晶育成融液に混入することのない
状態で融液で包囲する。これにより、ホイドの発生等欠
陥の発生が大幅に減少するので好ましい。通常、2重る
つぼを用い、内るつぼと外るつぼの間を融液で満たず。
In the present invention, the crucible is configured in at least two layers,
The inner crucible is surrounded by the melt without being mixed with the crystal growth melt. This is preferable because it greatly reduces the occurrence of defects such as the formation of hoids. Usually, a double crucible is used, and the space between the inner and outer crucibles is not filled with melt.

各るつぼ間を満たす融液は、内るつぼ内の結晶育成融液
の汚染等を防止するため、結晶育成融液と同一組成ある
いはその近傍の組成を有するものが用いられる。通常、
融点が1160〜1250°Cの範囲であり、結晶育成
融液の融点より30°C以上高くない組成であるもの、
例えばLi2ONb2O5= 36〜60 :64〜4
0(モル比)の組成のものが用いられる。
The melt filling between each crucible has the same composition as the crystal growth melt or a composition close to that of the crystal growth melt in order to prevent contamination of the crystal growth melt in the inner crucible. usually,
The composition has a melting point in the range of 1160 to 1250°C and is not higher than the melting point of the crystal growth melt by 30°C or more,
For example, Li2ONb2O5 = 36-60:64-4
A composition having a composition of 0 (molar ratio) is used.

このようにるつぼの周囲を融液で包囲すると、結晶育成
融液表面の温度分布及び温度の時間的変化が緩やかにな
るため、結晶成長のミクロ的な変動が減少し、欠陥発生
が大幅に減少すると思われる。この効果は、抵抗加熱炉
より高周波加熱炉を用いた場合に顕著に現われる。
Surrounding the crucible with melt in this way slows down the temperature distribution on the surface of the crystal growth melt and the temporal changes in temperature, reducing microscopic fluctuations in crystal growth and greatly reducing the occurrence of defects. It seems that it will. This effect is more pronounced when a high-frequency heating furnace is used than a resistance heating furnace.

本発明においては、融液界面の温度勾配を20〜60°
C/cmとする。融液界面の温度勾配は、組成的過冷却
を抑えるという観点から考えると大きいほうが望ましい
が、60°C/amを越えると結晶育成中の結晶自身に
加わる歪みのために結晶にクラックが発生し、20°C
/cmより小さいと結晶形状を制御できなくなる。
In the present invention, the temperature gradient at the melt interface is set to 20 to 60°.
C/cm. A large temperature gradient at the melt interface is desirable from the perspective of suppressing compositional supercooling, but if it exceeds 60°C/am, cracks will occur in the crystal due to strain applied to the crystal itself during crystal growth. , 20°C
If it is smaller than /cm, the crystal shape cannot be controlled.

本発明においては、結晶育成速度を0.1〜5g/時間
とする。結晶育成速度は、組織的過冷却を抑えるという
観点から考えると遅い方が望ましいが、0.1g/時間
よりも遅いと結晶育成に長時間装してしまうため有効に
育成させることができず、5g/時間より速いとセル成
長が起きてクラックが発生したり、多結晶が育成してし
まう。
In the present invention, the crystal growth rate is 0.1 to 5 g/hour. A slower crystal growth rate is desirable from the perspective of suppressing structural supercooling, but if it is slower than 0.1 g/hour, crystal growth will take a long time and cannot be grown effectively. If it is faster than 5 g/hour, cell growth will occur and cracks will occur, or polycrystals will grow.

また、本発明においては、結晶育成が進むと融液が減少
し、融液の温度勾配が大きくなりすぎ、結晶にクラック
が発生することがあるが、これは、加熱炉等を調節して
温度勾配を小さくすることにより解決できる。温度勾配
を調整しない場合でも、本発明によれば30%近い歩留
りで単結晶を育成することが可能である。
In addition, in the present invention, as crystal growth progresses, the melt decreases and the temperature gradient of the melt becomes too large, which may cause cracks in the crystal. This can be solved by reducing the slope. Even when the temperature gradient is not adjusted, according to the present invention, it is possible to grow single crystals with a yield of nearly 30%.

本発明において、引き上げ法としては特に限定されず、
例えば、CZ法、キロプラス法等が挙げられる。
In the present invention, the pulling method is not particularly limited,
Examples include the CZ method and the kiloplus method.

[実施例J 以下、本発明を実施例により更に詳細に説明するが、本
発明はその要旨を越えない限り実施例に限定されるもの
ではない。
[Example J Hereinafter, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to the Examples unless the gist thereof is exceeded.

実施例1 第1図に示すように、110KHzの高周波誘導加熱炉
内に直径80mm、高さ80mm、厚さ1mmの白金(
Pt)製るつぼを設置し、更にその内側に直径70mm
、高さ50mm、厚さ1mmのpt製るつぼを設置した
Example 1 As shown in Fig. 1, a platinum (diameter 80 mm, height 80 mm, thickness 1 mm) was placed in a 110 KHz high frequency induction heating furnace.
A crucible made of Pt) was installed, and a diameter of 70 mm was placed inside it.
A PT crucible with a height of 50 mm and a thickness of 1 mm was installed.

外るつぼには、酸化リチウム(Li2O)36モル%、
酸化−1−t フ(VX Nb2O5)64モル%(7
)原料を650g、内るつぼにはLi2O57モル%、
Nb2O543モル%の原料を540g入れ、1220
°Cまで加熱してLi2O及びNb2O5を融解した。
In the outer crucible, 36 mol% of lithium oxide (Li2O),
Oxidation-1-t fu(VX Nb2O5) 64 mol% (7
) 650g of raw materials, 57 mol% of Li2O in the inner crucible,
Add 540g of raw material containing 43 mol% of Nb2O, and
Heating to °C melted Li2O and Nb2O5.

内るつぼ内の融液を融点近くまで降温し、LiNbO3
の種結晶(111)方位を浸した。このとき、融液界面
の温度勾配は40°C/cmであった。ネッキング及び
肩出し後、結晶回転数20rpm、結晶育成速度1.2
g/時間、直径32mmで結晶育成を行った。
The temperature of the melt in the inner crucible is lowered to near the melting point, and LiNbO3
The seed crystal (111) orientation was immersed. At this time, the temperature gradient at the melt interface was 40°C/cm. After necking and shoulder lifting, crystal rotation speed 20 rpm, crystal growth rate 1.2
Crystal growth was performed at a rate of 32 mm in diameter.

結晶を130g育成した後、結晶を融液表面から10m
m離し、約24時間かけて冷却して結晶を取り出した。
After growing 130g of crystals, grow the crystals 10m from the melt surface.
The crystals were taken out after cooling for about 24 hours.

得られた結晶は、ボイドやクラックのない単結晶であり
、示差熱天秤分析法により、キュリー温度測定を行った
ところ、Tc = 1193−1200°Cであり、組
成に換算すると、Li2ONb205= 49.8〜5
0:50.2〜50(モル比)であり、はぼ一定の組成
で育成されていた。
The obtained crystal was a single crystal with no voids or cracks, and when the Curie temperature was measured by differential thermal balance analysis, it was found to be Tc = 1193-1200°C, and when converted to a composition, Li2ONb205 = 49. 8-5
The ratio was 0:50.2 to 50 (molar ratio), and it was grown with a nearly constant composition.

比較例1 直径60mm、高さ50mm、厚さ1mmのpt製るつ
ぼを1個使用し、Li2O57モル%、Nb2O,43
モル%の原料を310g融解したこと以外は、実施例1
と同様にして結晶育成を行った。
Comparative Example 1 Using one PT crucible with a diameter of 60 mm, a height of 50 mm, and a thickness of 1 mm, Li2O57 mol%, Nb2O,43
Example 1 except that 310 g of the raw material of mol % was melted.
Crystals were grown in the same manner.

結晶を73g育成した後、結晶を融液表面から10mm
離し、約24時間かけて冷却して結晶を取り出した。
After growing 73g of crystals, place the crystals 10mm from the melt surface.
It was separated, cooled for about 24 hours, and the crystals were taken out.

得られた結晶には、全面にボイドが発生しており、また
、ボイドを起点としたクラックも発生していた。
In the obtained crystal, voids were generated all over the surface, and cracks were also generated starting from the voids.

比較例2 結晶育成速度を10g/時間としたこと以外は実施例1
と同様にして結晶を育成した。
Comparative Example 2 Example 1 except that the crystal growth rate was 10 g/hour
Crystals were grown in the same manner.

得られた結晶は、セル成長が原因と思われるクラックが
全面に発生していた。
The obtained crystal had cracks all over it, which were thought to be caused by cell growth.

参考例1 結晶育成量を260gとしたこと以外は実施例1と同様
にして結晶を育成した。
Reference Example 1 Crystals were grown in the same manner as in Example 1 except that the amount of crystal growth was 260 g.

得られた結晶は、初期の約160gは透明なボイドのな
い結晶であったが、それ以降育成された結晶は白色をし
たセラミック状であった。これは、結晶育成量が多くな
って融液の温度勾配が大きくなりすぎたことに起因して
いる。
About 160 g of the obtained crystals were initially transparent without voids, but the crystals grown thereafter were white and ceramic-like. This is because the amount of crystal growth has increased and the temperature gradient of the melt has become too large.

透明部の結晶を実施例1と同様にして組成分析したとこ
ろ、LizONb2O5= 49.8〜50 : 50
.2〜50(モル比)であり、はぼ一定の組成で育成さ
れていた。
When the crystal in the transparent part was analyzed for composition in the same manner as in Example 1, LizONb2O5 = 49.8-50:50
.. 2 to 50 (molar ratio), and was grown with a nearly constant composition.

単結晶育成の歩留りは約30%であった。The yield of single crystal growth was about 30%.

[発明の効果] 本発明によると、結晶育成融液の補給をすることなく、
クラックがなく均質な化学量論組成近傍4゜ のニオブ酸リチウムの単結晶を得ることができるため工
業的に有用である。
[Effect of the invention] According to the present invention, without replenishing the crystal growth melt,
This method is industrially useful because it is possible to obtain a single crystal of lithium niobate with a homogeneous stoichiometric composition of 4° without cracks.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の実施例で使用した高周波誘導加熱炉
の概略断面図である。第1図中、1は育成した単結晶、
2は内るつぼ、3は外るつぼ、4は単結晶育成融液、5
はるつぼ間の融液、6は種結晶、7はヒーター、8はア
フターヒーター、9は耐火物を示す。 第2図は、Li2O−Nb2O5系のニオブ酸リチウム
の状態図(J、 Appl、 Phys、 42.5(
1971) J、 R,Carruthersetal
、)である。 第3図は、Li2CO3−Nb2O5系のニオブ酸リチ
ウムの状態図(J、 Crys、 Grow、 3.4
.、(1968) P、 Lenner etal、)
である。
FIG. 1 is a schematic sectional view of a high frequency induction heating furnace used in an example of the present invention. In Figure 1, 1 is the grown single crystal;
2 is an inner crucible, 3 is an outer crucible, 4 is a single crystal growth melt, 5
The melt between the crucibles, 6 a seed crystal, 7 a heater, 8 an after-heater, and 9 a refractory. Figure 2 shows the phase diagram of Li2O-Nb2O5 system lithium niobate (J, Appl, Phys, 42.5 (
1971) J, R, Carruthersetal
, ). Figure 3 shows the phase diagram of Li2CO3-Nb2O5-based lithium niobate (J, Crys, Grow, 3.4
.. , (1968) P., Lenner et al.
It is.

Claims (1)

【特許請求の範囲】[Claims] (1)ニオブ酸リチウム単結晶を引き上げ法で育成する
方法において、るつぼの周囲を結晶育成融液中に混入す
ることのない状態で結晶育成融液の近傍組成を有する融
液で包囲し、かつ結晶育成融液の初期組織を酸化リチウ
ム(Li_2O):酸化ニオブ(Nb_2O_5)=5
4〜60:46〜40(モル比)とし、結晶の育成速度
を0.1〜5g/時間とし、融液界面の温度勾配を20
〜60℃/cmとすることを特徴とするニオブ酸リチウ
ム単結晶の製造方法。
(1) In a method of growing a lithium niobate single crystal by a pulling method, the crucible is surrounded by a melt having a composition close to that of the crystal growth melt without being mixed into the crystal growth melt, and The initial structure of the crystal growth melt is lithium oxide (Li_2O):niobium oxide (Nb_2O_5) = 5
4-60:46-40 (molar ratio), crystal growth rate 0.1-5 g/hour, temperature gradient at the melt interface 20
A method for producing a lithium niobate single crystal, characterized in that the temperature is 60° C./cm.
JP20089490A 1990-07-27 1990-07-27 Production of lithium niobate single crystal Pending JPH0489398A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20089490A JPH0489398A (en) 1990-07-27 1990-07-27 Production of lithium niobate single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20089490A JPH0489398A (en) 1990-07-27 1990-07-27 Production of lithium niobate single crystal

Publications (1)

Publication Number Publication Date
JPH0489398A true JPH0489398A (en) 1992-03-23

Family

ID=16432026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20089490A Pending JPH0489398A (en) 1990-07-27 1990-07-27 Production of lithium niobate single crystal

Country Status (1)

Country Link
JP (1) JPH0489398A (en)

Similar Documents

Publication Publication Date Title
JPH0152359B2 (en)
JP2002293693A (en) Terbium-aluminum-garnet single crystal and method of manufacturing for the same
JP2010024071A (en) Piezoelectric single crystal and method for manufacturing the same
JP2001226196A (en) Terbium aluminum garnet single crystal and its producing method
EP0516014B1 (en) Rutile single crystals and their growth processes
JPH10167898A (en) Production of semi-insulative gaas single crystal
JPS5825078B2 (en) Single crystal manufacturing method
JPH0489398A (en) Production of lithium niobate single crystal
JPH1087392A (en) Production of compound semiconductor single crystal
JP2507910B2 (en) Method for producing oxide single crystal
JP3216298B2 (en) Vertical container for compound semiconductor crystal growth
JP6500807B2 (en) Growth method of CaMgZr substituted gadolinium gallium garnet (SGGG) single crystal
JPH03208882A (en) Production of single crystal
JPH03199191A (en) Production of single crystal
JPS6046078B2 (en) Single crystal growth method of solid solution composition of inorganic composite oxide
JP2814657B2 (en) Method for growing compound semiconductor single crystal
KR970007336B1 (en) Process for the preparation of single crystal for radioelectronics and piezotechnology
JP2741747B2 (en) Oxide single crystal and method for producing the same
JP3132034B2 (en) Method for growing compound semiconductor crystal
JP3208603B2 (en) How to make a single crystal
JPS63176397A (en) Production of iii-v compound semiconductor single crystal
JP2000327496A (en) Production of inp single crystal
JPH06183896A (en) Method for growing lithium niobate single crystal
JPH0465399A (en) Production of lithium niobate single crystal
JPS6042293A (en) Manufacture of single crystal